Identification of Environmental and Contextual Driving Factors of Air Conditioning Usage Behaviour in the Sydney Residential Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Preparation and Processing of Data
2.3. Statistical Analysis
3. Results
3.1. A/C Cooling Behaviour—‘Cooling On’
3.2. A/C Cooling Behaviour—‘Cooling Off’
3.3. A/C Heating Behaviour—‘Heating On’
3.4. A/C Heating Behaviour—‘Heating Off’
3.5. Generalisations across All of the Heating and Cooling Behaviour Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Australia Department of the Environment and Energy. Australian Energy Statistics; Australia Department of the Environment and Energy: Canberra, Australia, 2019.
- NatHERS. Nationwide House Energy Rating Scheme (NatHERS) 2010. Available online: https://www.nathers.gov.au/ (accessed on 25 September 2020).
- Mahdavi, A. People in building performance simulation. In Building Performance Simulation for Design and Operation; Hensen, J.L.M., Lamberts, R., Eds.; Spon Press: London, UK, 2011; pp. 56–83. [Google Scholar] [CrossRef]
- Branco, G.; Lachal, B.; Gallinelli, P.; Weber, W. Predicted versus observed heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data. Energy Build. 2004, 36, 542–555. [Google Scholar] [CrossRef]
- Calì, D.; Osterhage, T.; Streblow, R.; Müller, D. Energy performance gap in refurbished German dwellings: Lesson learned from a field test. Energy Build. 2016, 127, 1146–1158. [Google Scholar] [CrossRef]
- De Wilde, P. The gap between predicted and measured energy performance of buildings: A framework for investigation. Autom. Constr. 2014, 41, 40–49. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, H.J. A field study of occupant behavior and energy consumption in apartments with mechanical ventilation. Energy Build. 2012, 50, 19–25. [Google Scholar] [CrossRef]
- Parker, D.; Mills, E.; Rainer, L.; Bourassa, N.; Homan, G.; Berkeley, L. Accuracy of the home energy saver energy calculation methodology. In Proceedings of the 2012 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 12–17 August 2012. [Google Scholar]
- Ambrose, M.; James, M.; Law, A.; Osman, P.; White, S. The Evaluation of the 5-Star Energy Efficiency Standard for Residential Buildings; Commonwealth of Australia: Canberra, Australia, 2013. [Google Scholar]
- Tanimoto, J.; Hagishima, A. State transition stochastic model for predicting off to on cooling schedule in dwellings as implemented using a multilayered artificial neural network. J. Build. Perform. Simul. 2012, 5, 45–53. [Google Scholar] [CrossRef]
- Ren, X.; Yan, D.; Wang, C. Air-conditioning usage conditional probability model for residential buildings. Build. Environ. 2014, 81, 172–182. [Google Scholar] [CrossRef]
- Yao, J. Modelling and simulating occupant behaviour on air conditioning in residential buildings. Energy Build. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Bruce-Konuah, A.; Jones, R.V.; Fuertes, A. Physical environmental and contextual drivers of occupants’ manual space heating override behaviour in UK residential buildings. Energy Build. 2019, 183, 129–138. [Google Scholar] [CrossRef]
- Andersen, R.K.; Fabi, V.; Corgnati, S.P. Predicted and actual indoor environmental quality: Verification of occupants’ behaviour models in residential buildings. Energy Build. 2016, 127, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.; Fabi, V.; Toftum, J.; Corgnati, S.P.; Olesen, B.W. Window opening behaviour modelled from measurements in Danish dwellings. Build. Environ. 2013, 69, 101–113. [Google Scholar] [CrossRef]
- Fabi, V.; Andersen, R.V.; Corgnati, S.P. Influence of occupant’s heating set-point preferences on indoor environmental quality and heating demand in residential buildings. HVAC R Res. 2013, 19, 635–645. [Google Scholar] [CrossRef]
- Jeong, B.; Jeong, J.W.; Park, J.S. Occupant behavior regarding the manual control of windows in residential buildings. Energy Build. 2016, 127, 206–216. [Google Scholar] [CrossRef]
- Rijal, H.B.; Tuohy, P.; Humphreys, M.A.; Nicol, J.F.; Samuel, A.; Clarke, J. Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy Build. 2007, 39, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Nicol, J.F. Characterising occupant behavior in buildings: Towards a stochastic model of occupant use of windows, lights, blinds heaters and fans. Seventh Int. IBPSA Conf. 2001, 2, 1073–1078. [Google Scholar]
- van Marken Lichtenbelt, W.D.; Daanen, H.A.M.; Wouters, L.; Fronczek, R.; Raymann, R.J.E.M.; Severens, N.M.W.; Van Someren, E.J. Evaluation of wireless determination of skin temperature using iButtons. Physiol. Behav. 2006, 88, 489–497. [Google Scholar] [CrossRef]
- de Dear, R.; Kim, J.; Parkinson, T. Residential adaptive comfort in a humid subtropical climate—Sydney Australia. Energy Build. 2018, 158, 1296–1305. [Google Scholar] [CrossRef]
- Kim, J.; de Dear, R.; Parkinson, T.; Candido, C. Understanding patterns of adaptive comfort behaviour in the Sydney mixed-mode residential context. Energy Build. 2017, 141, 274–283. [Google Scholar] [CrossRef]
- The Department of Environmental Sciences Automatic Weather Station. AWS n.d. Available online: http://aws.mq.edu.au/ (accessed on 16 January 2020).
- ANSI/ASHRAE. ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy; ASHRAE Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- Schweiker, M.; Shukuya, M. Comparison of theoretical and statistical models of air-conditioning-unit usage behaviour in a residential setting under Japanese climatic conditions. Build Environ. 2009, 44, 2137–2149. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- R Core team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Yan, D.; O’Brien, W.; Hong, T.; Feng, X.; Burak Gunay, H.; Tahmasebi, F.; Mahdavi, A. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build. 2015, 107, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Zaki, S.A.; Hagishima, A.; Fukami, R.; Fadhilah, N. Development of a model for generating air-conditioner operation schedules in Malaysia. Build. Environ. 2017, 122, 354–362. [Google Scholar] [CrossRef]
- Xia, D.; Lou, S.; Huang, Y.; Zhao, Y.; Li, D.H.W.; Zhou, X. A study on occupant behaviour related to air-conditioning usage in residential buildings. Energy Build. 2019, 203, 109446. [Google Scholar] [CrossRef]
- An, J.; Yan, D.; Hong, T. Clustering and statistical analyses of air-conditioning intensity and use patterns in residential buildings. Energy Build. 2018, 174, 214–227. [Google Scholar] [CrossRef]
- Zhou, H.; Qiao, L.; Jiang, Y.; Sun, H.; Chen, Q. Recognition of air-conditioner operation from indoor air temperature and relative humidity by a data mining approach. Energy Build. 2016, 111, 233–241. [Google Scholar] [CrossRef]
- Mun, S.H.; Kwak, Y.; Huh, J.H. A case-centered behavior analysis and operation prediction of AC use in residential buildings. Energy Build. 2019, 188, 137–148. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, T.; Luo, X. An agent-based stochastic Occupancy Simulator. Build. Simul. 2018, 11, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Sekar, A.; Williams, E.; Chen, R. Changes in Time Use and Their Effect on Energy Consumption in the United States. Joule 2018, 2, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Kashif, A.; Le, X.H.B.; Dugdale, J.; Ploix, S. Agent based framework to simulate inhabitants’ behaviour in domestic settings for energy management. In Proceedings of the ICAART 2011—Proceeding of 3rd International Conference on Agents and Artificial Intelligence, Rome, Italy, 28–30 January 2011; Volume 2, pp. 190–199. [Google Scholar]
- Papadopoulos, S.; Azar, E. Integrating building performance simulation in agent-based modeling using regression surrogate models: A novel human-in-the-loop energy modeling approach. Energy Build. 2016, 128, 214–223. [Google Scholar] [CrossRef]
House Index | Number of Residents | Average Age of the Residents | Number of Storeys | House Construction | Participation Duration (Years) | IEQ Sensor Location | Participating Season a |
---|---|---|---|---|---|---|---|
1 | 4 | 19 | Two Storey | Double brick | 0.8 | Living | SMR/AUT/ WIN |
2 | 2 | 35 | Other | Other | 0.7 | Living/Bed | SMR/AUT/ WIN |
3 | 4 | 19 | One storey | Brick veneer | 1.5 | Living | SPG/SMR/ AUT/WIN |
4 | 2 | 35 | One storey | Double brick | 0.3 | Living | SPG/WIN |
5 | 2 | 35 | One storey | Lightweight cladding | 0.3 | Living/Bed | SPG/SMR |
6 | 2 | 35 | Other | Double brick | 0.6 | Living | SPG/SMR/ AUT |
7 | 3 | 40 | One storey | Brick veneer | 2.1 | Living/Bed | SPG/SMR/ AUT/WIN |
8 | 3 | 40 | Split level | Timber | 2.1 | Bed | SPG/SMR/ AUT/WIN |
9 | 2 | 35 | Other | Double brick | 1.1 | Living/Bed | SPG/SMR/ AUT/WIN |
10 | 3 | 45 | One storey | Double brick | 2.1 | Living | SPG/SMR/ AUT/WIN |
11 | 5 | 25 | Two Storey | Composite | 1.6 | Living | SPG/SMR/ AUT/WIN |
12 | 4 | 33 | Two Storey | Brick veneer | 1.6 | Bed | SPG/SMR/ AUT/WIN |
13 | 2 | 30 | Other | Other | 0.3 | Living | SPG/WIN |
14 | 2 | 65 | Other | Other | 0.6 | Living/Bed | SPG/SMR/ AUT |
15 | 6 | 38 | Split level | Composite | 0.3 | Bed | SPG/SMR |
16 | 4 | 41 | Two Storey | Double brick | 2.1 | Living/Bed | SPG/SMR/ AUT/WIN |
17 | 2 | 30 | One storey | Brick veneer | 2.1 | Living/Bed | SPG/SMR/ AUT/WIN |
18 | 4 | 32 | One storey | Other | 1.8 | Living | SPG/SMR/ AUT/WIN |
19 | 2 | 35 | One storey | Double brick | 1.5 | Living | SPG/SMR/ AUT |
20 | 3 | 24 | Other | Lightweight cladding | 1.7 | Living | SPG/SMR/ AUT/WIN |
21 | 2 | 35 | One storey | Other | 1.8 | Living/Bed | SPR/WIN |
22 | - | - | Other | Other | 1.3 | Bed | SMR/AUT |
23 | 4 | 24 | One storey | Brick veneer | 2.1 | Living | SPG/SMR/ AUT/WIN |
24 | 6 | 33 | Two Storey | Brick veneer | 2.1 | Living | SPG/SMR/ AUT/WIN |
25 | 5 | 30 | Other | Double brick | 0.8 | Living | SPR/SMR/ AUT |
26 | 2 | 35 | Other | Double brick | 1.4 | Living | SPG/SMR/ AUT/WIN |
27 | 2 | 60 | Two Storey | Double brick | 1.3 | Bed | SMR/AUT |
28 | 3 | 34 | Two Storey | Composite | 1.2 | Living | SPG/SMR/ AUT/WIN |
29 | 2 | 55 | Split level | Brick veneer | 1.2 | Bed | SPG/SMR/ AUT/WIN |
30 | 2 | 45 | One storey | Brick veneer | 1.2 | Living | SPG/SMR/ AUT/WIN |
31 | 4 | 28 | One storey | Brick veneer | 0.8 | Living | SPG/SMR/ AUT/WIN |
32 | 2 | 65 | Two Storey | Brick veneer | 1.1 | Living/Bed | SPG/SMR/ AUT/WIN |
33 | 4 | 19 | One storey | Timber | 1.1 | Living | SPG/SMR/ AUT/WIN |
34 | 4 | 21 | One storey | Brick veneer | 1.1 | Living | SPG/SMR/ AUT/WIN |
35 | 2 | 60 | Split level | Other | 0.8 | Living | SPG/SMR/ AUT/WIN |
36 | 4 | 21 | Two Storey | Composite | 0.9 | Living | SPG/SMR/ AUT/WIN |
Variable | Unit |
---|---|
Categorical | |
Season | Summer/Winter/Intermediate |
Day of week | Weekday/Weekend |
Time of day | Night/Morning/Afternoon/Evening |
Continuous | |
Outdoor air temperature (To) | °C |
Outdoor relative humidity (RHo) | % |
Solar radiation (Rad) | W/m2 |
Wind speed (WS) | m/s |
Rainfall (RF) | mm |
Prevailing mean outdoor temperature (PMA) | °C |
Indoor air temperature (Ti) | °C |
Indoor relative humidity (RHi) | % |
Variable | Unit |
---|---|
Solar radiation (W/m2) | Log(Solar radiation + 1) (Log(W/m2)) |
Wind speed (m/s) | Log(Wind speed + 1) (Log(m/s)) |
Rainfall (mm) | Log(Rainfall + 1) (Log(mm)) |
Variable | Cooling On | Cooling Off | ||||
---|---|---|---|---|---|---|
GVIF | Df | GVIF1/(2×Df) | GVIF | Df | GVIF1/(2×Df) | |
Living | ||||||
Season | 1.8 | 2 | 1.2 | |||
Day of week | 1 | 1 | 1 | |||
Time of day | 7 | 3 | 1.4 | 6.9 | 3 | 1.4 |
Rad | 6.5 | 1 | 2.6 | 6.3 | 1 | 2.5 |
RF | 1 | 1 | 1 | |||
WS | 1.3 | 1 | 1.1 | 1.3 | 1 | 1.1 |
PMA | 1.9 | 1 | 1.4 | 1.3 | 1 | 1.1 |
To | 4.9 | 1 | 2.2 | 3.6 | 1 | 1.9 |
RHo | 3.8 | 1 | 2 | 4.8 | 1 | 2.2 |
Ti | 2 | 1 | 1.4 | 1.2 | 1 | 1.1 |
RHi | 2 | 1 | 1.4 | |||
Bed | ||||||
Season | 2.8 | 2 | 1.3 | 2.3 | 2 | 1.2 |
Day of week | 1 | 1 | 1 | |||
Time of day | 1.6 | 3 | 1.1 | 10.1 | 3 | 1.5 |
Rad | 6.4 | 1 | 2.5 | |||
RF | 1.1 | 1 | 1 | |||
WS | 1.3 | 1 | 1.2 | 1.6 | 1 | 1.3 |
PMA | 3.1 | 1 | 1.7 | |||
To | 1.8 | 1 | 1.3 | 5.3 | 1 | 2.3 |
RHo | 7.1 | 1 | 2.7 | |||
Ti | 3.5 | 1 | 1.9 | |||
RHi | 1.3 | 1 | 1.1 | 4.9 | 1 | 2.2 |
Variable | Heating On | Heating Off | ||||
---|---|---|---|---|---|---|
GVIF | Df | GVIF1/(2×Df) | GVIF | Df | GVIF1/(2×Df) | |
Living | ||||||
Season | 3 | 2 | 1.3 | 2.9 | 2 | 1.3 |
Day of week | 1 | 1 | 1 | |||
Time of day | 3 | 3 | 1.2 | 5.4 | 3 | 1.3 |
Rad | 2.4 | 1 | 1.6 | 4.3 | 1 | 2.1 |
RF | 1.1 | 1 | 1.1 | |||
WS | 1.5 | 1 | 1.2 | 1.1 | 1 | 1.1 |
PMA | 3.3 | 1 | 1.8 | 3 | 1 | 1.7 |
To | 4.4 | 1 | 2.1 | 1.8 | 1 | 1.3 |
RHo | 3.1 | 1 | 1.8 | |||
Ti | 2.3 | 1 | 1.5 | 1.3 | 1 | 1.1 |
RHi | 1.9 | 1 | 1.4 | |||
Bed | ||||||
Season | 7 | 2 | 1.6 | |||
Time of day | 3.2 | 3 | 1.2 | 8.5 | 3 | 1.4 |
Rad | 2.6 | 1 | 1.6 | 5.8 | 1 | 2.4 |
WS | 1.2 | 1 | 1.1 | 1.2 | 1 | 1.1 |
PMA | 7.4 | 1 | 2.7 | 2.7 | 1 | 1.6 |
To | 3.5 | 1 | 1.9 | 3.7 | 1 | 1.9 |
Ti | 1.7 | 1 | 1.3 | 2.1 | 1 | 1.5 |
RHi | 1.2 | 1 | 1.1 |
To | RHo | Rad | WS | RF | PMA | Ti | RHi | |||
---|---|---|---|---|---|---|---|---|---|---|
Living Room | Bed-Room | Living Room | Bed-Room | |||||||
A/C Off | ||||||||||
Max | 45.9 | 100 | 1218.9 | 74 | 25.8 | 25.3 | 43.1 | 47.1 | 91.7 | 91.5 |
3rd quarter | 22 | 84 | 319.2 | 17 | 0 | 21.7 | 24.6 | 24.7 | 66.8 | 66.4 |
Mean | 18.4 | 68.8 | 183.5 | 11.4 | 0 | 18.4 | 21.6 | 21.7 | 57.6 | 55.1 |
Median | 18.8 | 70 | 5.5 | 10 | 0 | 19 | 21.7 | 22.1 | 58.9 | 56.4 |
1st quarter | 14.9 | 56 | 0 | 5 | 0 | 15.3 | 19.1 | 18.7 | 50.1 | 44.9 |
Min | −2.2 | 4 | 0 | 0 | 0 | 8.5 | 9.1 | 5.6 | 12.4 | 12.5 |
A/C Cooling on | ||||||||||
Max | 45.9 | 100 | 1154 | 63 | 18 | 25.3 | 36.2 | 36.6 | 91.5 | 91.5 |
3rd quarter | 27.4 | 76 | 350.3 | 22 | 0 | 23.2 | 26.2 | 25.2 | 61.1 | 85.1 |
Mean | 25.6 | 61.5 | 206.2 | 15.4 | 0 | 22.1 | 24.7 | 23.2 | 54.8 | 69.7 |
Median | 24.6 | 65 | 14 | 15 | 0 | 22.5 | 24.6 | 23.1 | 54.1 | 70.9 |
1st quarter | 22.5 | 51 | 0 | 9 | 0 | 21.6 | 23.2 | 21.2 | 47.6 | 59 |
Min | 5.8 | 7 | 0 | 0 | 0 | 11.3 | 14.1 | 11.6 | 14.9 | 12.5 |
A/C Heating on | ||||||||||
Max | 36.3 | 100 | 1013.8 | 59 | 6.4 | 25.3 | 35.7 | 37.7 | 91.5 | 91.5 |
3rd quarter | 14.5 | 89 | 43.9 | 15 | 0 | 13.9 | 21.6 | 19.7 | 60.9 | 65.7 |
Mean | 12.6 | 70.8 | 73.8 | 11 | 0.1 | 13.3 | 19.7 | 16.7 | 50.4 | 51.8 |
Median | 12.5 | 71 | 0 | 9 | 0 | 12.8 | 19.6 | 15.6 | 52 | 51.2 |
1st quarter | 10.7 | 55 | 0 | 5 | 0 | 12 | 17.2 | 13.1 | 41 | 37.5 |
Min | −0.2 | 10 | 0 | 0 | 0 | 8.5 | 10.1 | 9.1 | 12.5 | 12.5 |
Variables | Cooling On | Cooling Off | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Confidence Interval | Magnitude | Coefficient | Confidence Interval | Magnitude | |||
2.50% | 97.50% | 2.50% | 97.50% | |||||
Living room | ||||||||
Intercept | −17.881 | −18.956 | −16.822 | 1.481 | 0.349 | 2.603 | ||
Summer | 0.224 | 0.044 | 0.408 | |||||
Winter | −0.976 | −2.178 | −0.072 | |||||
Weekend | 0.326 | 0.199 | 0.451 | |||||
Evening | 0.637 | 0.34 | 0.931 | −0.123 | −0.439 | 0.189 | ||
Morning | −0.563 | −0.775 | −0.358 | 0.233 | −0.049 | 0.505 | ||
Night | −1.398 | −1.928 | −0.905 | −0.44 | −0.844 | −0.042 | ||
Rad | 0.051 | −0.004 | 0.107 | 0.4 | −0.124 | −0.183 | −0.066 | 0.9 |
RF | −1.071 | −2.179 | −0.213 | 3.5 | ||||
WS | 0.135 | 0.041 | 0.231 | 0.6 | −0.082 | −0.171 | 0.009 | 0.3 |
PMA | 0.134 | 0.092 | 0.177 | 2.3 | −0.079 | −0.118 | −0.039 | 1 |
To | 0.173 | 0.15 | 0.195 | 8.3 | −0.103 | −0.13 | −0.075 | 3.6 |
RHo | 0.009 | 0.004 | 0.015 | 0.9 | −0.022 | −0.029 | −0.014 | 2 |
Ti | 0.139 | 0.114 | 0.164 | 4.7 | 0.04 | 0.01 | 0.07 | 0.9 |
RHi | 0.029 | 0.022 | 0.036 | 2.2 | ||||
Bedroom | ||||||||
Intercept | −14.813 | −16.081 | −13.58 | 0.309 | −1.158 | 1.764 | ||
Summer | 0.417 | 0.178 | 0.664 | 0.115 | −0.145 | 0.382 | ||
Winter | 0.931 | 0.316 | 1.523 | 0.832 | 0.073 | 1.595 | ||
Weekend | 0.38 | 0.215 | 0.543 | |||||
Evening | 0.786 | 0.577 | 0.997 | 0.152 | −0.305 | 0.603 | ||
Morning | −0.423 | −0.698 | −0.155 | 0.551 | 0.206 | 0.894 | ||
Night | 0.038 | −0.288 | 0.357 | −0.037 | −0.542 | 0.463 | ||
Rad | 0.074 | −0.009 | 0.157 | 0.5 | ||||
RF | 0.906 | 0.15 | 1.577 | 2.2 | ||||
WS | −0.098 | −0.194 | 0.001 | 0.4 | −0.156 | −0.256 | −0.055 | 0.6 |
PMA | 0.162 | 0.1 | 0.225 | 2.6 | ||||
To | 0.181 | 0.162 | 0.201 | 8.4 | −0.195 | −0.247 | −0.145 | 7.8 |
RHo | −0.012 | −0.025 | 0.001 | 1.1 | ||||
Ti | 0.153 | 0.103 | 0.204 | 3.8 | ||||
RHi | 0.01 | 0.004 | 0.016 | 0.8 | −0.009 | −0.02 | 0.002 | 0.7 |
Variables | Heating On | Heating Off | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Confidence Interval | Magnitude | Coefficient | Confidence Interval | Magnitude | |||
2.50% | 97.50% | 2.50% | 97.50% | |||||
Living room | ||||||||
Intercept | −0.639 | −1.465 | 0.183 | −4.854 | −5.771 | −3.939 | ||
Summer | −0.138 | −0.565 | 0.264 | 0.777 | 0.226 | 1.321 | ||
Winter | 0.819 | 0.611 | 1.032 | 0.17 | −0.041 | 0.385 | ||
Weekend | −0.12 | −0.248 | 0.006 | |||||
Evening | −0.795 | −0.983 | −0.604 | 0.516 | 0.257 | 0.784 | ||
Morning | −0.627 | −0.813 | −0.441 | 0.728 | 0.498 | 0.961 | ||
Night | −2.169 | −2.431 | −1.911 | 1.142 | 0.821 | 1.466 | ||
Rad | −0.237 | −0.273 | −0.201 | 1.7 | 0.097 | 0.047 | 0.148 | 0.7 |
RF | 0.473 | 0.026 | 0.864 | 1.6 | ||||
WS | 0.141 | 0.076 | 0.206 | 0.6 | −0.165 | −0.223 | −0.106 | 0.7 |
PMA | −0.103 | −0.14 | −0.066 | 1.7 | 0.081 | 0.032 | 0.129 | 1.3 |
To | −0.075 | −0.1 | −0.05 | 3.6 | 0.039 | 0.016 | 0.063 | 1.4 |
RHo | −0.018 | −0.023 | −0.013 | 1.7 | ||||
Ti | −0.132 | −0.16 | −0.104 | 4.5 | 0.027 | 0.008 | 0.046 | 0.6 |
RHi | 0.022 | 0.016 | 0.028 | 1.7 | ||||
Bedroom | ||||||||
Intercept | −0.548 | −1.781 | 0.677 | −4.298 | −4.964 | −3.646 | ||
Summer | 1.147 | 0.696 | 1.605 | |||||
Winter | 0.58 | 0.235 | 0.937 | |||||
Evening | −0.692 | −0.991 | −0.387 | 0.618 | 0.195 | 1.066 | ||
Morning | −0.118 | −0.375 | 0.138 | 0.024 | −0.301 | 0.352 | ||
Night | −2.332 | −2.817 | −1.875 | 1.138 | 0.543 | 1.738 | ||
Rad | −0.187 | −0.239 | −0.135 | 1.3 | 0.095 | 0.012 | 0.181 | 0.7 |
WS | 0.125 | 0.028 | 0.223 | 0.5 | −0.128 | −0.234 | −0.021 | 0.5 |
PMA | −0.14 | −0.207 | −0.073 | 2.3 | 0.157 | 0.101 | 0.214 | 2.4 |
To | 0.042 | 0.008 | 0.075 | 2 | 0.084 | 0.043 | 0.127 | 2.9 |
Ti | −0.254 | −0.281 | −0.227 | 10.5 | −0.06 | −0.093 | −0.029 | 1.5 |
RHi | 0.01 | 0.005 | 0.015 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, B.; Kim, J.; Ma, Z.; Cooper, P.; de Dear, R. Identification of Environmental and Contextual Driving Factors of Air Conditioning Usage Behaviour in the Sydney Residential Buildings. Buildings 2021, 11, 122. https://doi.org/10.3390/buildings11030122
Jeong B, Kim J, Ma Z, Cooper P, de Dear R. Identification of Environmental and Contextual Driving Factors of Air Conditioning Usage Behaviour in the Sydney Residential Buildings. Buildings. 2021; 11(3):122. https://doi.org/10.3390/buildings11030122
Chicago/Turabian StyleJeong, Bongchan, Jungsoo Kim, Zhenjun Ma, Paul Cooper, and Richard de Dear. 2021. "Identification of Environmental and Contextual Driving Factors of Air Conditioning Usage Behaviour in the Sydney Residential Buildings" Buildings 11, no. 3: 122. https://doi.org/10.3390/buildings11030122
APA StyleJeong, B., Kim, J., Ma, Z., Cooper, P., & de Dear, R. (2021). Identification of Environmental and Contextual Driving Factors of Air Conditioning Usage Behaviour in the Sydney Residential Buildings. Buildings, 11(3), 122. https://doi.org/10.3390/buildings11030122