A Biplot-Based PCA Approach to Study the Relations between Indoor and Outdoor Air Pollutants Using Case Study Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sampling Protocol
2.2. Sensors
2.3. Descriptive Statistics and Correlation Analysis
2.4. Principal Component Analysis (PCA)
3. Results and Discussion
3.1. PM2.5, PM10, and NO2 Concentrations
3.2. Quantile–Quantile (Q-Q) Plot
3.3. Correlation Analysis
3.4. Biplot–PCA for Site 1, 2, 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Ambient Air Pollution Attributable Death Rate (Per 100,000 Population), World Health Organization. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ambient-air-pollution-attributable-death-rate-(per-100-000-population) (accessed on 26 February 2021).
- Ritchie, H.; Roser, M. Indoor Air Pollution. Available online: https://ourworldindata.org/indoor-air-pollution (accessed on 3 February 2021).
- US-EPA. Report on the Environment: What Are the Trends in Indoor Air Quality and Their Effects on Human Health? Available online: https://www.epa.gov/report-environment/indoor-air-quality (accessed on 3 November 2020).
- US-EPA. The Inside Story: A Guide to Indoor Air Quality. Available online: https://www.cpsc.gov/Safety-Education/Safety-Guides/Home/The-Inside-Story-A-Guide-to-Indoor-Air-Quality (accessed on 20 June 2020).
- Deng, S.; Lau, J. Seasonal variations of indoor air quality and thermal conditions and their correlations in 220 classrooms in the Midwestern United States. Build. Environ. 2019, 157, 79–88. [Google Scholar] [CrossRef]
- Seppanen, O.; Fisk, W.J. Relationship of SBS-Symptoms and Ventilation System Type in Office Buildings; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2002; pp. 1–8. [Google Scholar]
- Saeki, Y.; Kadonosono, K.; Uchio, E. Clinical and allergological analysis of ocular manifestations of sick building syndrome. Clin. Ophthalmol. 2017, 11, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Srinivasan, R. A systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability 2020, 12, 9045. [Google Scholar] [CrossRef]
- NAAQS. Primary National Ambient Air Quality Standard (NAAQS) for Sulfur Dioxide. Available online: https://www.epa.gov/so2-pollution/primary-national-ambient-air-quality-standard-naaqs-sulfur-dioxide (accessed on 26 July 2019).
- Correia, G.; Rodrigues, L.; Gameiro da Silva, M.; Gonçalves, T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med. Hypotheses 2020, 141, 109781. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines with implications for public health risk. medRxiv 2020, 18984–18990. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.-Y.; Yang, L.-M.; Xia, J.-J.; Fu, X.-H.; Zhang, Y.-Z. Possible aerosol transmission of COVID-19 and special precautions in dentistry. J. Zhejiang Univ. Sci. B 2020, 21, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Travaglio, M.; Yu, Y.; Popovic, R.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. medRxiv 2020, 115859. [Google Scholar] [CrossRef]
- EPA. Building Air Quality—A Guide for Building Owners and Facility Managers; EPA: Washington, DC, USA, 1991; pp. 1–228.
- Deng, G.; Li, Z.; Wang, Z.; Gao, J.; Xu, Z.; Li, J.; Wang, Z. Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing. Indoor Built Environ. 2017, 26, 60–68. [Google Scholar] [CrossRef]
- Shields, K.N.; Cavallari, J.M.; Hunt, M.J.O.; Lazo, M.; Molina, M.; Molina, L.; Holguin, F. Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: A panel study. Environ. Health 2013, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bluyssen, P.M.; Cox, C.; Seppänen, O.; Fernandes, E.D.O.; Clausen, G.; Müller, B.; Roulet, C.-A. Why, when and how do HVAC-systems pollute the indoor environment and what to do about it? The European AIRLESS project. Build. Environ. 2003, 38, 209–225. [Google Scholar] [CrossRef]
- De Robles, D.; Kramer, S.W. Improving Indoor Air Quality through the Use of Ultraviolet Technology in Commercial Buildings. Procedia Eng. 2017, 196, 888–894. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Yi, M.; Wang, Y.; Wang, P.; Xu, J.; Lin, F. High-performance inertial impaction filters for particulate matter removal. Sci. Rep. 2018, 8, 4757. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Wang, Z.; Delp, W.W.; Singer, B.C. Performance of low-cost indoor air quality monitors for PM2.5 and PM10 from residential sources. Build. Environ. 2020, 171, 106654. [Google Scholar] [CrossRef]
- Williams, R. EPA Tools and Resources Webinar, Low Cost Air Quality Sensors; EPA: Washington, DC, USA, 2019.
- Chatzidiakou, L.; Krause, A.; Popoola, O.; Di Antonio, A.; Kellaway, M.; Han, Y.; Squires, F.; Wang, T.; Zhang, H.; Wang, Q.; et al. Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. Atmos. Meas. Tech. 2019, 12, 4643–4657. [Google Scholar] [CrossRef] [Green Version]
- Nezis, I.; Biskos, G.; Eleftheriadis, K.; Kalantzi, O.I. Particulate matter and health effects in offices—A review. Build. Environ. 2019, 156, 62–73. [Google Scholar] [CrossRef]
- Chamseddine, A.; Alameddine, I.; Hatzopoulou, M.; El-Fadel, M. Seasonal variation of air quality in hospitals with indoor–outdoor correlations. Build. Environ. 2019, 148, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, M.F.; Felgueiras, F.; Mourão, Z.; Fernandes, E.O. Assessment of the air quality in 20 public indoor swimming pools located in the Northern Region of Portugal. Environ. Int. 2019, 133, 105274. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, X.; Wang, Y.; Zhao, J.; Zhu, K. Seasonal patterns of PM10, PM2.5, and PM1.0 concentrations in a naturally ventilated residential underground garage. Build. Environ. 2017, 124, 294–314. [Google Scholar] [CrossRef]
- Kim, J.; Kong, M.; Hong, T.; Jeong, K.; Lee, M. The effects of filters for an intelligent air pollutant control system considering natural ventilation and the occupants. Sci. Total Environ. 2019, 657, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Paciência, I.; Pereira, C.; Teixeira, J.P.; Fernandes, E.D.O. Indoor air quality in Portuguese schools: Levels and sources of pollutants. Indoor Air 2016, 26, 526–537. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.-B.; Jeong, W.; Park, D.; Kim, K.-T.; Cho, K.H. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations, Korea. J. Hazard. Mater. 2015, 297, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Shrestha, S. Source Classification of Indoor Air Pollutants Using Principal Component Analysis for Smart Home Monitoring Applications. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 129–133. [Google Scholar] [CrossRef]
- Ul-Saufie, A.Z.; Yahaya, A.S.; Ramli, N.A.; Rosaida, N.; Hamid, H.A. Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmos. Environ. 2013, 77, 621–630. [Google Scholar] [CrossRef]
- Braak, C.; Ter, J.F. Principal Components Biplots and Alpha and Beta Diversity, Wiley on behalf of the Ecological Society of America. Bioinformatics 2005, 21, 454–462. [Google Scholar]
- Hron, K.; Jelínková, M.; Filzmoser, P.; Kreuziger, R.; Bednář, P.; Barták, P. Statistical analysis of wines using a robust compositional biplot. Talanta 2012, 90, 46–50. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE 62.1 The Standards for Ventilation and Indoor Air Quality. Available online: https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2 (accessed on 4 April 2020).
- EPA. A Standardized EPA Protocol for Characterizing Indoor Air Quality in Large Office Buildings; EPA: Washinton, DC, USA, 2016.
- WHO. Methods for Monitoring Indoor Air Quality in Schools; WHO: Bonn, Germany, 2011. [Google Scholar]
- SINPHONIE. The Schools Indoor Pollution and Health Observatory Network in Europe (SINPHONIE) Project; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Zhang, H.; Srinivasan, R.; Ganesan, V. Low cost, multi-pollutant sensing system using raspberry pi for indoor air quality monitoring. Sustainability 2021, 13, 370. [Google Scholar] [CrossRef]
- Roshan, S.K.; Godini, H.; Nikmanesh, B.; Bakhshi, H.; Charsizadeh, A. Study on the relationship between the concentration and type of fungal bio-aerosols at indoor and outdoor air in the Children’s Medical Center, Tehran, Iran. Environ. Monit. Assess. 2019, 191, 48. [Google Scholar] [CrossRef]
- AQ-SPEC. Air Quality Egg Evaluation Summary; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Laboratory Evaluation Air Quality Egg 2018 Model; AQ-SPEC: Diamond Bar, CA, USA, 2018. [Google Scholar]
- Stewart, D.R.; Saunders, E.; Perea, R.; Fitzgerald, R.; Campbell, D.E.; Stockwell, W.R. Projected changes in particulate matter concentrations in the South Coast Air Basin due to basin-wide reductions in nitrogen oxides, volatile organic compounds, and ammonia emissions. J. Air Waste Manag. Assoc. 2019, 69, 192–208. [Google Scholar] [CrossRef] [PubMed]
- SCAQMD. South Coast Air Quality Mnanagement District Draft Staff Report for 2015 8-Hour Ozone Standard Reasonably Available Control Technology (RACT) Demonstration APRIL 2020; SCAQMD: Diamond Bar, CA, USA, 2020. [Google Scholar]
- AQ-SPEC. Field Evaluation uHoo PM2.5, Ozone, and CO Sensor; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQSPEC. Field Evaluation Air Quality Egg v.2 Particulate Matter; AQSPEC: Diamond Bar, CA, USA, 2018. [Google Scholar]
- Oldford, R.W. Self-Calibrating Quantile–Quantile Plots. Am. Stat. 2016, 70, 74–90. [Google Scholar] [CrossRef]
- Augustin, N.H.; Sauleau, E.A.; Wood, S.N. On quantile quantile plots for generalized linear models. Comput. Stat. Data Anal. 2012, 56, 2404–2409. [Google Scholar] [CrossRef] [Green Version]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Gauthier, T.D. Detecting trends using spearman’s rank correlation coefficient. Environ. Forensics 2001, 2, 359–362. [Google Scholar] [CrossRef]
- Kriegel, H.P.; Kröger, P.; Schubert, E.; Zimek, A. A general framework for increasing the robustness of PCA-based correlation clustering algorithms. In Proceedings of the International Conference on Scientific and Statistical Database Management 2008, Hong Kong, China, 9–11 July 2008; pp. 418–435. [Google Scholar] [CrossRef] [Green Version]
- Holand, S.M. PRINCIPAL COMPONENTS ANALYSIS (PCA); University of Georgia: Athens, GA, USA, 2019. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Martins, F.G.; Sousa, S.I.V.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Selection and validation of parameters in multiple linear and principal component regressions. Environ. Model. Softw. 2008, 23, 50–55. [Google Scholar] [CrossRef]
- Paul, L.C.; Suman, A.A.; Sultan, N. Methodological Analysis of Principal Component Analysis (PCA) Method. IJCEM Int. J. Comput. Eng. Manag. 2013, 16, 2230–7893. [Google Scholar]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Computational Statistics: Principal component analysis. Wiley Interdiscip. Rev. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Smith, L. A Tutorial on PCSA; Department of Computer Science, University of Otago: Dunedin, New Zealand, 2006; pp. 12–28. [Google Scholar]
- Kim, M.; Sankararao, B.; Kang, O.; Kim, J.; Yoo, C. Monitoring and prediction of indoor air quality (IAQ) in subway or metro systems using season dependent models. Energy Build. 2012, 46, 48–55. [Google Scholar] [CrossRef]
- Bengfort, B.; Bilbro, R. Yellowbrick: Visualizing the Scikit-Learn Model Selection Process. J. Open Source Softw. 2019, 4, 1075. [Google Scholar] [CrossRef]
- ANSI-ASHRAE. ANSI/ASHRAE Standard 62.1-2019, Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2019. [Google Scholar]
- Zhou, Z.; Liu, Y.; Yuan, J.; Zuo, J.; Chen, G.; Xu, L.; Rameezdeen, R. Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China. Renew. Sustain. Energy Rev. 2016, 64, 372–381. [Google Scholar] [CrossRef]
- Jedrychowski, W.A.; Perera, F.P.; Pac, A.; Jacek, R.; Whyatt, R.M.; Spengle, J.D.; Dumyahn, T.S.; Sochacka-Tatara, E. Variability of total exposure to PM2.5 related to indoor and outdoor pollution sources: Krakow study in pregnant women. Sci. Total Environ. 2006, 366, 47–54. [Google Scholar] [CrossRef]
- Song, P.; Wanga, L.; Hui, Y.; Li, R. PM2.5 Concentrations Indoors and Outdoors in Heavy Air Pollution Days in Winter. Procedia Eng. 2015, 121, 1902–1906. [Google Scholar] [CrossRef] [Green Version]
- Martuzevicius, D.; Grinshpun, S.A.; Lee, T.; Hu, S.; Biswas, P.; Reponen, T.; LeMasters, G. Traffic-related PM2.5 aerosol in residential houses located near major highways: Indoor versus outdoor concentrations. Atmos. Environ. 2008, 42, 6575–6585. [Google Scholar] [CrossRef]
- Chao, C.Y.; Wong, K.K. Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmos. Environ. 2002, 36, 265–277. [Google Scholar] [CrossRef]
- NAAQS. Primary National Ambient Air Quality Standards (NAAQS) for Nitrogen Dioxide. Available online: https://www.epa.gov/no2-pollution/primary-national-ambient-air-quality-standards-naaqs-nitrogen-dioxide (accessed on 4 May 2020).
- Spengler, J.D.; Ferris, B.G.; Dockery, D.W.; Speizer, F.E. Sulfur Dioxide and Nitrogen Dioxide Levels Inside and Outside Homes and the Implications on Health Effects Research. Environ. Sci. Technol. 1979, 13, 1276–1280. [Google Scholar] [CrossRef]
- Goyal, R.; Khare, M. Indoor-outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway. Atmos. Environ. 2009, 43, 6026–6038. [Google Scholar] [CrossRef]
- Nadali, A.; Arfaeinia, H.; Asadgol, Z.; Fahiminia, M. Indoor and outdoor concentration of PM10, PM2.5 and PM1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environ. Pollut. Bioavailab. 2020, 32, 47–55. [Google Scholar] [CrossRef] [Green Version]
- McCormack, M.C.; Breysse, P.N.; Hansel, N.N.; Matsui, E.C.; Tonorezos, E.S.; Curtin-Brosnan, J.; Williams, D.L.; Buckley, T.J.; Eggleston, P.A.; Diette, G.B. Common household activities are associated with elevated particulate matter concentrations in bedrooms of inner-city Baltimore pre-school children. Environ. Res. 2008, 106, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Pennise, D.; Brant, S.; Agbeve, S.M.; Quaye, W.; Mengesha, F.; Tadele, W.; Wofchuck, T. Indoor air quality impacts of an improved wood stove in Ghana and an ethanol stove in Ethiopia. Energy Sustain. Dev. 2009, 13, 71–76. [Google Scholar] [CrossRef]
- Chen, Q.; Hildemann, L.M. The effects of human activities on exposure to particulate matter and bioaerosols in residential homes. Environ. Sci. Technol. 2009, 43, 4641–4646. [Google Scholar] [CrossRef] [PubMed]
Building Type | Elementary School (Site 1) | Lab (Site 2) | Residential (Site 3) |
---|---|---|---|
Space Type | Media Center | Office Room | Living Room |
Room Size | 1180 sq.ft 18′8″ | Space floor area: 321 sq.ft Height: 11′4″ | Space floor area: 421 sq.ft Height: 9′6″ |
Floor material | Carpet | Plywood | Carpet |
HVAC Model | Carrier 50HJ-(008-14) 3 Ton Single-Package RTU; | Mitsubishi PEA-A18AA –1.5-ton concealed CLG. Ducted UNIT W/DUCT BOX& Registers; MITSUBISHI MXZ-3A30N | GOODMAN GSX130481 4-tons 2 Ton Central Air Conditioner Air Handler Unit GOODMAN Model AWUF24051BA |
Number of AHU/room | 2 | 1 | 1 |
Air flow rate plan: | 1500 CFM | 635 CFM | 835 CFM |
Air Filter | Dual-Ply Filter Media (Dustlok) | PP Honeycomb fabric (washable) | AAF Flanders: PREpleat® LPD SC |
Air Filter Level | MERV-9 | MERV-8 | MERV-8 |
PM2.5 absorption capability | 35%–50% | 20%–35% | 20%–35% |
Distance to nearest major road | 1383.25 ft. | 244.62 ft. | 1827.51 ft. |
No. of windows | n/a | 3 | 2 |
Indoor smoking | Not allowed | Not allowed | Not allowed |
Measured Parameter | Example Product | Manufacturer | Measurement Tolerance/Repeatability | Measuring Range | Circuit Voltage | Response Time |
---|---|---|---|---|---|---|
PM2.5; PM10 | PMS5003 | Plantower | ± 10%@ 100–500 μg/m3; ± 10 μg/m3 @0–100 μg/m3 | 0~500 µg/m3; ≥ 1000 µg/m3 | 5.0–5.5v | 10 s |
NO2 | 3SP_NO2_5F P Package | SPEC sensors | <± 5% of reading or 10 ppb | 0–5 ppm | 10 to 50 uW | < 15 s |
CO | 3SP_CO_1000 Package | SPEC sensors | <± 2% of reading | 0 to 1000 ppm | 10 to 50 uW | < 30 s (15 s typical) |
RHT | DHT22 | Aosong Electronics | ± 0.5 °C and ± 1% | 40 °C to 80 °C; 0% to 100% | 3.5–5.5 v | 2 s |
Site 1 | Site 2 | Site 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Environmental Parameters | Average ± SD | Min | Max | Med | I/O | Average ± SD | Min | Max | Med | I/O | Average ± SD | Min | Max | Med | I/O |
PM2.5 (µg/m3) | 5.85 ± 3.91 | 0.00 | 19.70 | 4.85 | 0.66 | 3.04 ± 3.18 | 0.00 | 38.50 | 1.20 | 0.44 | 13.00 ± 30.20 | 0.00 | 455.90 | 4.90 | 2.20 |
PM10 (µg/m3) | 6.09 ± 4.07 | 0.00 | 23.80 | 5.00 | 0.68 | 3.18 ± 3.38 | 0.00 | 45.00 | 1.30 | 0.42 | 15.00 ± 35.30 | 0.00 | 529.90 | 5.18 | 2.00 |
NO2 (ppb) | 32.30 ± 3.69 | 14.80 | 46.50 | 31.90 | 0.63 | 54.30 ± 7.49 | 38.70 | 86.30 | 62.10 | 1.11 | 42.50 ± 3.80 | 30.90 | 69.30 | 41.30 | 1.30 |
Temp. (°F) | 73.30 ± 1.01 | 73.30 | 76.40 | 73.40 | 1.31 | 77.00 ± 1.33 | 73.90 | 80.20 | 75.10 | 0.94 | 79.60 ± 1.53 | 76.30 | 82.00 | 80.20 | 1.01 |
Humidity (%) | 44.70 ± 5.67 | 44.70 | 64.40 | 43.90 | 0.66 | 67.70 ± 3.74 | 54.10 | 79.10 | 71.50 | 0.83 | 53.50 ± 2.04 | 44.00 | 62.80 | 53.70 | 0.76 |
Site 1 | Site 2 | Site 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Environmental Parameters | Average ± SD | Min | Max | Med | I/O | Average ± SD | Min | Max | Med | I/O | Average ± SD | Min | Max | Med | I/O |
PM2.5 (µg/m3) | 10.80 ± 8.04 | 0.00 | 48.70 | 9.05 | 0.66 | 7.44 ± 2.74 | 0.70 | 41.80 | 6.50 | 0.44 | 8.12 ± 3.74 | 0.50 | 31.50 | 8.08 | 2.20 |
PM10 (µg/m3) | 11.60 ± 8.80 | 0.00 | 60.60 | 9.55 | 0.68 | 8.01 ± 2.84 | 0.80 | 49.90 | 7.00 | 0.42 | 9.53 ± 4.07 | 0.71 | 40.60 | 9.37 | 2.00 |
NO2 (ppb) | 102.60 ± 74.50 | 0.00 | 413.6 | 81.10 | 0.63 | 142.6 ± 6.94 | 0.00 | 517.5 | 169.90 | 1.11 | 118.90 ± 59.00 | 0.20 | 225.30 | 130.6 | 1.30 |
Temp. (°F) | 57.30 ± 10.00 | 38.80 | 86.60 | 55.10 | 1.31 | 82.40 ± 1.20 | 70.80 | 104.35 | 79.90 | 0.94 | 79.20 ± 6.30 | 67.60 | 102.1 | 77.70 | 1.01 |
Humidity (%) | 71.60 ± 14.90 | 22.70 | 92.10 | 77.60 | 0.66 | 70.90 ± 3.28 | 34.80 | 89.10 | 75.30 | 0.83 | 73.10 ± 13.3 | 33.60 | 89.20 | 78.00 | 0.76 |
Indoor_PM2.5 | Indoor_PM10 | Indoor_NO2 | |
---|---|---|---|
PCs_Sites | Coefficient (95% CI) | Coefficient (95% CI) | Coefficient (95% CI) |
PC1_Site 1 | *** 0.333 (0.326 to 0.340) | *** 0.330 (0.322 to 0.337) | *** −0.130 (−0.145 to −0.116) |
PC2_Site 1 | *** 0.195 (0.187 to 0.204) | *** 0.195 (0.186 to 0.205) | *** −0.142 (−0.161 to −0.123) |
PC3_Site 1 | *** 0.492 (0.481 to 0.502) | *** 0.490 (0.479 to 0.501) | *** 0.534 (0.509 to 0.558) |
PC1_Site 2 | *** 0.178 (0.167 to 0.189) | *** 0.176 (0.165 to 0.187) | *** −0.255 (−0.272 to −0.238) |
PC2_Site 2 | *** 0.485 (0.471 to 0.500) | *** 0.482 (0.467 to −0.497) | *** 0.135(0.115 to −0.156) |
PC1_Site 3 | *** 0.052 (0.026 to 0.077) | *** 0.050 (0.024 to 0.075) | *** −0.160 (−0.185 to −0.136) |
PC2_Site 3 | *** −0.061 (−0.090 to −0.031) | *** −0.061 (−0.090 to −0.031) | *** 0.091 (0.063 to 0.119) |
PC3_Site 3 | ** −0.037 (−0.071 to −0.004) | ** −0.038 (−0.072 to −0.004) | * 0.000 (−0.059 to 0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Srinivasan, R. A Biplot-Based PCA Approach to Study the Relations between Indoor and Outdoor Air Pollutants Using Case Study Buildings. Buildings 2021, 11, 218. https://doi.org/10.3390/buildings11050218
Zhang H, Srinivasan R. A Biplot-Based PCA Approach to Study the Relations between Indoor and Outdoor Air Pollutants Using Case Study Buildings. Buildings. 2021; 11(5):218. https://doi.org/10.3390/buildings11050218
Chicago/Turabian StyleZhang, He, and Ravi Srinivasan. 2021. "A Biplot-Based PCA Approach to Study the Relations between Indoor and Outdoor Air Pollutants Using Case Study Buildings" Buildings 11, no. 5: 218. https://doi.org/10.3390/buildings11050218
APA StyleZhang, H., & Srinivasan, R. (2021). A Biplot-Based PCA Approach to Study the Relations between Indoor and Outdoor Air Pollutants Using Case Study Buildings. Buildings, 11(5), 218. https://doi.org/10.3390/buildings11050218