Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Target Classroom, Indoor Plants, and Pollutants
3.2. Field Measurement Experiment
4. Analysis
4.1. Indoor Air Quality Improvement Effect from Plants
4.2. Perceived Air Quality Improvement Effect from Plants
4.3. Sick Building Syndrome Improvement Effect from Plants
4.4. Learning Concentration Improvement Effect from Plants
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Air Quality Index: Sustainable Environment and Infrastructure. 2018. Available online: https://u.ae/en/information-and-services/environment-and-energy/improving-air-quality (accessed on 10 April 2021).
- Sick Building Syndrome: The Killer within. 2011. Available online: https://www.khaleejtimes.com/nation/general/sick-building-syndrome-the-killer-within (accessed on 26 May 2021).
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Sick Buildings Are Leading to Sick UAE Office Workers, Doctors Say. 2016. Available online: https://www.thenationalnews.com/uae/health/sick-buildings-are-leading-to-sick-uae-office-workers-doctors-say-1.175866 (accessed on 26 May 2021).
- Steinemann, A.; Wargocki, P.; Rismanchi, B. Ten questions concerning green buildings and indoor air quality. Build. Environ. 2017, 112, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Improving indoor air quality, health and performance within environments where people live, travel, learn and work. Atmos. Environ. 2019, 200, 90–109. [Google Scholar] [CrossRef] [Green Version]
- Perez-Padilla, R.; Schilmann, A.; Riojas-Rodriguez, H. Respiratory health effects of indoor air pollution. Int. J. Tuberc. Lung Dis. 2010, 14, 1079–1086. [Google Scholar]
- Spiru, P.; Simona, P.L. A review on interactions between energy performance of the buildings, outdoor air pollution and the indoor air quality. Energy Procedia 2017, 128, 179–186. [Google Scholar] [CrossRef]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor Air Quality. Am. J. Lifestyle Med. 2017, 11, 284–295. [Google Scholar] [CrossRef]
- Lukcso, D.; Guidotti, T.L.; Franklin, D.E.; Burt, A. Indoor environmental and air quality characteristics, building-related health symptoms, and worker productivity in a federal government building complex. Arch. Environ. Occup. Health 2016, 71, 85–101. [Google Scholar] [CrossRef]
- Budaiova, Z.; Vilčeková, S. Assessing the effect of indoor environmental quality on productivity at office work. Sel. Sci. Pap. J. Civ. Eng. 2015, 10, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.L.; Lynch, R.A.; Floyd, E.L.; Wang, J.; Bartels, J.N. Indoor air quality in classrooms: Environmental measures and effective ventilation rate modeling in urban elementary schools. Build. Environ. 2018, 136, 185–197. [Google Scholar] [CrossRef]
- Kamaruzzaman, S.N.; Sabrani, N.A. The effect of indoor air quality (IAQ) towards occupants’ psychological performance in office buildings. J. Des. Built 2011, 4, 49–61. [Google Scholar]
- Geng, Y.; Ji, W.; Lin, B.; Zhu, Y. The impact of thermal environment on occupant IEQ perception and productivity. Build. Environ. 2017, 121, 158–167. [Google Scholar] [CrossRef]
- Tham, K.W. Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Turunen, M.; Toyinbo, O.; Putus, T.; Nevalainen, A.; Shaughnessy, R.; Haverinen-Shaughnessy, U. Indoor environmental quality in school buildings, and the health and wellbeing of students. Int. J. Hyg. Environ. Health 2014, 217, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Merabtine, A.; Maalouf, C.; Hawila, A.A.W.; Martaj, N.; Polidori, G. Building energy audit, thermal comfort, and IAQ assessment of a school building: A case study. Build. Environ. 2018, 145, 62–76. [Google Scholar] [CrossRef]
- Kang, S.; Ou, D.; Mak, C.M. The impact of indoor environmental quality on work productivity in university open-plan research offices. Build. Environ. 2017, 124, 78–89. [Google Scholar] [CrossRef]
- Di Giulio, M.; Grande, R.; Di Campli, E.; Di Bartolomeo, S.; Cellini, L. Indoor air quality in university environments. Environ. Monit. Assess. 2010, 170, 509–517. [Google Scholar] [CrossRef]
- Sekhar, S.; Goh, S. Thermal comfort and IAQ characteristics of naturally/mechanically ventilated and air-conditioned bedrooms in a hot and humid climate. Build. Environ. 2011, 46, 1905–1916. [Google Scholar] [CrossRef]
- Ben-David, T.; Waring, M.S. Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Build. Environ. 2016, 104, 320–336. [Google Scholar] [CrossRef] [Green Version]
- Awbi, H.B. Ventilation for Good Indoor Air Quality and Energy Efficiency. Energy Procedia 2017, 112, 277–286. [Google Scholar] [CrossRef]
- Pereira, L.D.; Raimondo, D.; Corgnati, S.P.; da Silva, M.G. Assessment of indoor air quality and thermal comfort in Portuguese secondary classrooms: Methodology and results. Build. Environ. 2014, 81, 69–80. [Google Scholar] [CrossRef]
- Brilli, F.; Fares, S.; Ghirardo, A.; de Visser, P.; Calatayud, V.; Muñoz, A.; Annesi-Maesano, I.; Sebastiani, F.; Alivernini, A.; Varriale, V.; et al. Plants for Sustainable Improvement of Indoor Air Quality. Trends Plant Sci. 2018, 23, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Sevik, H. Measuring the Impact of Selected Plants on Indoor CO2 Concentrations. Pol. J. Environ. Stud. 2016, 25, 973–979. [Google Scholar] [CrossRef]
- Irga, P.; Torpy, F.; Burchett, M. Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmos. Environ. 2013, 77, 267–271. [Google Scholar] [CrossRef]
- Pegas, P.N.; Alves, C.; Nunes, T.; Bate-Epey, E.F.; Evtyugina, M.; Pio, C. Could Houseplants Improve Indoor air Quality in Schools? J. Toxicol. Environ. Health Part A 2012, 75, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Irga, P.J.; Paull, N.; Abdo, P.; Torpy, F. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Build. Environ. 2017, 115, 281–290. [Google Scholar] [CrossRef]
- Llewellyn, D.; Dixon, M. 4.26 Can plants really improve indoor air quality. In Comprehensive Biotechnology, 2nd ed.; Academic Press: Burlington, MA, USA, 2011; pp. 331–338. [Google Scholar]
- Jasmin, G.A.; Noorizan, M.; Suhardi, M.; Murad, A.G.; Ina, K. The Use of Plants to Improve Indoor Air Quality in Small Office Space. Pertanika J. Soc. Sci. Humanit. 2012, 20, 493–503. [Google Scholar]
- EPA. Indoor Pollutants and Sources: Basic Information on Pollutants and Sources of Indoor Air Pollution. 2021. Available online: https://www.epa.gov/indoor-air-quality-iaq/indoor-pollutants-and-sources (accessed on 4 April 2021).
- de Gennaro, G.; Dambruoso, P.R.; Loiotile, A.D.; Di Gilio, A.; Giungato, P.; Tutino, M.; Marzocca, A.; Mazzone, A.; Palmisani, J.; Porcelli, F. Indoor air quality in schools. Environ. Chem. Lett. 2014, 12, 467–482. [Google Scholar] [CrossRef]
- Chithra, V.S.; Nagendra, S.S. Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in Chennai, India. Build. Environ. 2012, 54, 159–167. [Google Scholar] [CrossRef]
- Abouleish, M.Z. Indoor air quality and COVID-19. Public Health 2021, 191, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Angelova, R.A.; Stankov, P.; Markov, D.; Velichkova, R.; Simova, I. Human as a physiological source of deterioration of the air quality and comfort conditions indoors. CBU Int. Conf. Proc. 2019, 7, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.-C.; Wu, P.-C.; Tseng, C.-H.; Su, H.-J. Indoor air quality varies with ventilation types and working areas in hospitals. Build. Environ. 2015, 85, 190–195. [Google Scholar] [CrossRef]
- Finell, E.; Haverinen-Shaughnessy, U.; Tolvanen, A.; Laaksonen, S.; Karvonen, S.; Sund, R.; Saaristo, V.; Luopa, P.; Ståhl, T.; Putus, T.; et al. The associations of indoor environment and psychosocial factors on the subjective evaluation of Indoor Air Quality among lower secondary school students: A multilevel analysis. Indoor Air 2017, 27, 329–337. [Google Scholar] [CrossRef]
- ICIEE. The International Center for Indoor Environment and Energy at Technical University of Denmark (DTU). 2021. Available online: https://www.iciee.byg.dtu.dk/ (accessed on 8 April 2021).
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolverton, B.C.; Nelson, M. Using plants and soil microbes to purify indoor air: Lessons from NASA and Biosphere 2 experiments. Field Actions Sci. Rep. J. Field Actions 2020, 21, 54–59. [Google Scholar]
- Wheeler, R.M. Plants for human life support in space: From Myers to Mars. Gravit. Space Res. 2010, 23, 25–36. [Google Scholar]
- Aydogan, A.; Cerone, R. Review of the effects of plants on indoor environments. Indoor Built Environ. 2021, 30, 442–460. [Google Scholar] [CrossRef]
- Torpy, F.; Zavattaro, M. Bench-Study of Green-Wall Plants for Indoor Air Pollution Reduction. J. Living Arch. 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Su, Y.-M. CO2 Purify Effect on Improvement of Indoor Air Quality (IAQ) Through Indoor Vertical Greening. In Transactions on Engineering Technologies; Springer: Dordrecht, The Netherlands, 2014; pp. 569–580. [Google Scholar]
- Oh, H.-J.; Nam, I.-S.; Yun, H.; Kim, J.; Yang, J.; Sohn, J.-R. Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Build. Environ. 2014, 82, 203–214. [Google Scholar] [CrossRef]
- Sheng, Y.; Fang, L.; Sun, Y. An experimental evaluation on air purification performance of Clean-Air Heat Pump (CAHP) air cleaner. Build. Environ. 2018, 127, 69–76. [Google Scholar] [CrossRef]
- Raanaas, R.K.; Patil, G.G.; Hartig, T. Effects of an Indoor Foliage Plant Intervention on Patient Well-being during a Residential Rehabilitation Program. HortScience 2010, 45, 387–392. [Google Scholar] [CrossRef]
- McArthur, J.; Powell, C. Health and wellness in commercial buildings: Systematic review of sustainable building rating systems and alignment with contemporary research. Build. Environ. 2020, 171, 106635. [Google Scholar] [CrossRef]
- Kim, J.; Cha, S.H.; Koo, C.; Tang, S.-K. The effects of indoor plants and artificial windows in an underground environment. Build. Environ. 2018, 138, 53–62. [Google Scholar] [CrossRef]
- Torpy, F.; Irga, P.; Burchett, M. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For. Urban Green. 2014, 13, 227–233. [Google Scholar] [CrossRef]
- Gunawardena, K.; Steemers, K. Living walls in indoor environments. Build. Environ. 2019, 148, 478–487. [Google Scholar] [CrossRef]
- Han, K.-T. Influence of passive versus active interaction with indoor plants on the restoration, behaviour and knowledge of students at a junior high school in Taiwan. Indoor Built Environ. 2018, 27, 818–830. [Google Scholar] [CrossRef]
- Ikei, H.; Komatsu, M.; Song, C.; Himoro, E.; Miyazaki, Y. The physiological and psychological relaxing effects of viewing rose flowers in office workers. J. Physiol. Physiol. 2014, 33, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-S.; Lee, J.; Park, B.-J.; Miyazaki, Y. Interaction with indoor plants may reduce psychological and physiological stress by suppressing autonomic nervous system activity in young adults: A randomized crossover study. J. Physiol. Anthr. 2015, 34, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikei, H.; Song, C.; Igarashi, M.; Namekawa, T.; Miyazaki, Y. Physiological and psychological relaxing effects of visual stimulation with foliage plants in high school students. Adv. Hortic. Sci. 2014, 28, 111–116. [Google Scholar]
- Qin, J.; Sun, C.; Zhou, X.; Leng, H.; Lian, Z. The effect of indoor plants on human comfort. Indoor Built Environ. 2014, 23, 709–723. [Google Scholar] [CrossRef]
- Park, S.-A.; Song, C.; Choi, J.-Y.; Son, K.-C.; Miyazaki, Y. Foliage Plants Cause Physiological and Psychological Relaxation as Evidenced by Measurements of Prefrontal Cortex Activity and Profile of Mood States. HortScience 2016, 51, 1308–1312. [Google Scholar] [CrossRef]
- Kurazumi, Y.; Kondo, E.; Fukagawa, K.; Hashimoto, R.; Nyilas, A.; Sakoi, T.; Tsuchikawa, T. The Influence of Foliage Plants on Psychological and Physiological Responses. Health 2017, 9, 601. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-Y.; Park, S.-A.; Jung, S.-J.; Lee, J.-Y.; Son, K.-C.; An, Y.-J.; Lee, S.-W. Physiological and psychological responses of humans to the index of greenness of an interior space. Complement. Ther. Med. 2016, 28, 37–43. [Google Scholar] [CrossRef]
- Bhargava, B.; Malhotra, S.; Chandel, A.; Rakwal, A.; Kashwap, R.R.; Kumar, S. Mitigation of indoor air pollutants using Areca palm potted plants in real-life settings. Environ. Sci. Pollut. Res. 2021, 28, 8898–8906. [Google Scholar] [CrossRef]
- Oh, G.S.; Jung, G.J.; Seo, M.H.; Bin Im, Y. Experimental study on variations of CO2 concentration in the presence of indoor plants and respiration of experimental animals. Hortic. Environ. Biotechnol. 2011, 52, 321–329. [Google Scholar] [CrossRef]
- Sayed, E.L.; Naema, I. Purification of Indoor Air from Pollutants by Areca Palm (Chrysalidocarpus lutescens L.) Treated with some Non-Enzymatic Antioxidants. J. Plant Prod. 2020, 11, 455–463. [Google Scholar]
- Apte, M.G.; Apte, J.S. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building (No. LBNL-3368E); Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA, 2010. [Google Scholar]
- Kulkarni, K.A.; Zambare, M.S. The Impact Study of Houseplants in Purification of Environment Using Wireless Sensor Network. Wirel. Sens. Netw. 2018, 10, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Khansaheb, A. Let’s Not Forget Indoor Air Quality as Well. 2020. Available online: https://gulfnews.com/business/analysis/lets-not-forget-indoor-air-quality-as-well-1.1589873286956#:~:text=The%20Dubai%20Municipality%20standard%20for,of%20continuous%20monitoring%20pre-occupancy (accessed on 12 April 2021).
- DEWA. Green Building Regulations & Specifications. 2021. Available online: https://www.dewa.gov.ae/~/media/Files/Consultants%20and%20Contractors/Green%20Building/Greenbuilding_Eng.ashx (accessed on 4 April 2021).
- Rosbach, J.T.; Vonk, M.; Duijm, F.; Van Ginkel, J.T.; Gehring, U.; Brunekreef, B. A ventilation intervention study in classrooms to improve indoor air quality: The FRESH study. Environ. Health 2013, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Spiegelhalter, D. Introducing The Art of Statistics: How to Learn from Data. Numeracy 2020, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. Thermal Environment Conditions for Human Occupancy. 2013. Available online: https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/55_2010_opq_Final_08012013.pdf (accessed on 4 April 2021).
- GhaffarianHoseini, A.; AlWaer, H.; Omrany, H.; GhaffarianHoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick building syndrome: Are we doing enough? Arch. Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef] [Green Version]
- Sarkhosh, M.; Najafpoor, A.A.; Alidadi, H.; Shamsara, J.; Amiri, H.; Andrea, T.; Kariminejad, F. Indoor Air Quality associations with sick building syndrome: An application of decision tree technology. Build. Environ. 2021, 188, 107446. [Google Scholar] [CrossRef]
- Gubb, C.; Blanusa, T.; Griffiths, A.; Pfrang, C. Can houseplants improve indoor air quality by removing CO2 and increasing relative humidity? Air Qual. Atmos. Health 2018, 11, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, Z.; Nordquist, T.; Norbäck, D. The prevalence and incidence of sick building syndrome in Chinese pupils in relation to the school environment: A two-year follow-up study. Indoor Air 2011, 21, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Abdo, P.; Huynh, B.P.; Irga, P.; Torpy, F.R. Evaluation of air flow through an active green wall biofilter. Urban For. Urban Green. 2019, 41, 75–84. [Google Scholar] [CrossRef]
- Lee, E. Indoor environmental quality (IEQ) of LEED-certified home: Importance-performance analysis (IPA). Build. Environ. 2019, 149, 571–581. [Google Scholar] [CrossRef]
- Fleck, R.; Gill, R.; Pettit, T.; Irga, P.; Williams, N.; Seymour, J.; Torpy, F. Characterisation of fungal and bacterial dynamics in an active green wall used for indoor air pollutant removal. Build. Environ. 2020, 179, 106987. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.; Abdo, P.; Torpy, F. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 2017, 125, 299–307. [Google Scholar] [CrossRef]
- Parsaee, M.; Demers, C.M.; Hébert, M.; Lalonde, J.-F.; Potvin, A. A photobiological approach to biophilic design in extreme climates. Build. Environ. 2019, 154, 211–226. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, S.; MacNaughton, P.; Allen, J.G.; Spengler, J.D. Physiological and cognitive performance of exposure to biophilic indoor environment. Build. Environ. 2018, 132, 255–262. [Google Scholar] [CrossRef]
- Srikanth, P.; Sudharsanam, S.; Steinberg, R. Bio-aerosols in indoor environment: Composition, health effects and analysis. Indian J. Med. Microbiol. 2008, 26, 302. [Google Scholar] [CrossRef]
- Zhang, H.; Yoshino, H. Analysis of indoor humidity environment in Chinese residential buildings. Build. Environ. 2010, 45, 2132–2140. [Google Scholar] [CrossRef]
Air Purification Plants | O2 Concentration (%) | CO2 Concentration (ppm) | CO2/O2 of Plants for a Given Fixed Time | ||
---|---|---|---|---|---|
T = 0 h | T = 7 h | T = 0 h | T = 7 h | Ratio | |
Areca Palm | 18.56 | 21.33 | 428 | 419 | 3:1 |
Tulasi | 18.56 | 22.30 | 429 | 410 | 4:1 |
Aloevera | 19.12 | 21.07 | 428 | 418 | 5:1 |
Peace Lily | 19.00 | 20.62 | 428 | 420 | 4:1 |
Devils Ivy | 19.00 | 21.00 | 428 | 420 | 4:1 |
Snake Plant | 19.00 | 21.00 | 429 | 419 | 5:1 |
Orchids | 19.00 | 21.10 | 429 | 421 | 4:1 |
Lady Palm | 19.00 | 21.32 | 427 | 419 | 3:1 |
Rubber Plant | 19.00 | 21.24 | 426 | 418 | 3:1 |
English Ivy | 19.00 | 21.18 | 427 | 419 | 3:1 |
Measurement Equipment | Measuring Items | Range | Resolution | Type |
---|---|---|---|---|
Temperature and Humidity Data Logger (RS PRO RS-172TK) | Temperature (°C) | −60–155 | 0.1 | |
Humidity (%) | 10–95 | 1 | ||
Globe Temperature (°C) | −60–155 | 0.1 | ||
PMV Meter (AM-101) | Air Flow(m/s) | 0–1 1–5 | ±0.1 ±0.5 | |
Light Meter (DL7040) | Illumination (lx) | 0–10,000 lx | 1 lx | |
IAQ Analyzer (IQ Analyzer 6400) | CO2 (ppm) | 0–5000 | 1 | NDIR |
CO2 (ppm) | Lux (lx) | Ta (°C) | MRT (°C) | Va (m/s) | RH (%) | OT (°C) | PMV | |
---|---|---|---|---|---|---|---|---|
Mean | 2078 | 580 | 24.30 | 24.44 | 0.02 | 44.20 | 24.44 | 0.12 |
Standard Deviation | 696 | 230 | 1.12 | 1.10 | 0.01 | 18.32 | 1.08 | 0.45 |
# | Symptoms | % | # | Symptoms | % |
---|---|---|---|---|---|
1 | Throat Dryness | 14.02 | 15 | Ears: Itchy | 2.24 |
2 | Eyes Dryness | 12.65 | 16 | Throat: Mucus | 1.99 |
3 | Skin Dryness | 12.06 | 17 | Ears: Hearing Loss | 1.81 |
4 | Nerve/Mental: Dozing Off | 9.41 | 18 | Throat: Itchy | 1.41 |
5 | Nerve/Mental: Drowsiness | 7.51 | 19 | Throat: Coughing | 1.15 |
6 | Nerve/Mental: Tiredness | 6.62 | 20 | Nerve/Mental: Dizziness | 0.91 |
7 | Nose: Itchy | 5.11 | 21 | Eyes: Red Eyes | 0.71 |
8 | Throat: Stinging | 3.38 | 22 | Nerve/Mental: Nervousness | 0.64 |
9 | Nerve/Mental: Less Concentration | 3.08 | 23 | Eyes: Glare | 0.51 |
10 | Eyes: Stinging | 2.96 | 24 | Skin: Stinging | 0.32 |
11 | Ears: Tinnitus | 2.95 | 25 | Nerve/Mental: Anger | 0.31 |
12 | Nose: Sneezing | 2.77 | 26 | Nose: Pungent Smell | 0.27 |
13 | Nerve/Mental: Headache | 2.76 | 27 | Nerve/Mental: Absent Mindedness | 0.13 |
14 | Skin: Itchy | 2.31 | Total | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.; Awad, J. Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates. Buildings 2021, 11, 289. https://doi.org/10.3390/buildings11070289
Jung C, Awad J. Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates. Buildings. 2021; 11(7):289. https://doi.org/10.3390/buildings11070289
Chicago/Turabian StyleJung, Chuloh, and Jihad Awad. 2021. "Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates" Buildings 11, no. 7: 289. https://doi.org/10.3390/buildings11070289
APA StyleJung, C., & Awad, J. (2021). Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates. Buildings, 11(7), 289. https://doi.org/10.3390/buildings11070289