Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery
Abstract
:1. Introduction
2. Methods
2.1. Case Study Building
2.2. Data Collection
2.3. Data Enrichment and Interface to Simulation
2.4. Model Variations and Sensitivity Analysis
3. Simulation Results and Discussion
3.1. Simulation of the Measurement Campaign
- All in all, the simulated temperatures, in particular of variation 4, match the measured temperatures well, especially when considering that the zone is actually divided into six rooms of which one (the kitchen, located in the ground floor) heated up much more quickly than the others and kept a temperature of about 37 °C from February 9 until the start of the cooldown due to the placement of the largest heater. Furthermore, the influence of the fans (intended to homogenise air temperatures) on convection was not modelled;
- The temperatures on February 13 and afterwards show that variation 1 overestimates daily temperature oscillation. With window SHGC and therefore solar gains reduced, the other model variations are more consistent with the measured temperatures during the period of approximately constant temperature between February 13 and 16;
- When comparing variations 2 and 3, the reduced interior thermal mass in variation 3 makes the simulated temperatures fit better to the measured values during the cooldown phase, but overshoot during heating up;
- Variation 4, which represents the best knowledge of the building and should therefore create the best temperature fit, reproduces the temperatures better than the other variations until the beginning of cooling down and is still reasonably accurate afterwards. The slight mismatch in the speed of heating up and cooling down cannot be caused by deviations of the thermal transmittance of the building envelope as temperatures fit well between February 10 and 16. A possible explanation is that the simplified resistance-capacitance representation of the exterior walls in Modelica cannot exactly model the dynamic behaviour of the actual walls. They are mostly composed of lightweight concrete with low heat capacity on the inside and bricks with high heat capacity on the outside and therefore will store heat further outside than their model representation and react faster to changes in the heat flow from the building interior;
- The agreement between simulated and measured temperatures is even better than the one of a simulation model based on German archetypes to a detailed simulation of a similar Belgian house in the original publication on TEASER [33]; therefore, the good agreement points towards the validity of the overall approach, at least for this specific age and size class.
3.2. Determination of the Heat Demand
3.3. Determination of the Heat Transfer Coefficient (HTC)
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEM | Building energy model |
BIM | Building information modelling |
DWD | German Meteorological Service (Deutscher Wetterdienst) |
HTC | Heat transfer coefficient |
IRT | Infrared thermography |
RC | Resistance-capacitance |
ROM | ReducedOrder model (as used in AixLib) |
SHGC | Solar heat gain coefficient |
TLS | Terrestrial laser scans |
TRY | Test reference year |
U-value | Thermal transmittance/overall heat transfer coefficient |
UAV | Unmanned aerial vehicle (“drone”) |
UBEM | Urban building energy modelling |
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2015. [Google Scholar]
- Kuramochi, T.; Höhne, N.; Schaeffer, M.; Cantzler, J.; Hare, B.; Deng, Y.; Sterl, S.; Hagemann, M.; Rocha, M.; Yanguas-Parra, P.A.; et al. Ten key short-term sectoral benchmarks to limit warming to 1.5 °C. Clim. Policy 2018, 18, 287–305. [Google Scholar] [CrossRef]
- European Commission. A Renovation Wave for Europe—Greening our Buildings, Creating Jobs, Improving Lives: COM/2020/662 Final; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2020. [Google Scholar]
- Rodríguez-Soria, B.; Domínguez-Hernández, J.; Pérez-Bella, J.M.; Del Coz-Díaz, J.J. Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss. Renew. Sustain. Energy Rev. 2014, 34, 78–90. [Google Scholar] [CrossRef]
- ISO 9972:2014-08. Thermal Performance of Buildings: Determination of Air Permeability of Buildings: Fan Pressurization Method; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO 9869-1:2014-08. Thermal Insulation: Building Elements: In-Situ Measurement of Thermal Resistance and Thermal Capacitance: Heat Flow Meter Method; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Balkowski, M.; Jagnow, K. Datenaufnahme Gebäudehülle. In Leitfaden Energieausweis. Teil 1 – Energiebedarfsausweis: Datenaufnahme Wohngebäude; Deutsche Energie-Agentur (Dena), Ed.; Dena: Berlin, Germany, 2015; pp. 23–46. [Google Scholar]
- ISO 13789:2017-06. Thermal Performance of Buildings: Transmission and Ventilation Heat Transfer Coefficients: Calculation Method; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Anderson, B.; Doran, S.; Mina, K.; Pettit, G. Thermal properties of building structures. In Environmental Design; CIBSE, Ed.; CIBSE: London, UK, 2006. [Google Scholar]
- Deutscher Wetterdienst; Bundesamt für Bauwesen und Raumordnung. Ortsgenaue Testreferenzjahre von Deutschland für Mittlere, Extreme und Zukünftige Witterungsverhältnisse: Handbuch. Available online: https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf (accessed on 9 November 2020).
- Bundestag. Gebäudeenergiegesetz. BGBL I (Bundesgesetzblatt Teil I) 2020, 37, 1728. [Google Scholar]
- Kelly, S.; Crawford-Brown, D.; Pollitt, M.G. Building performance evaluation and certification in the UK: Is SAP fit for purpose? Renew. Sustain. Energy Rev. 2012, 16, 6861–6878. [Google Scholar] [CrossRef]
- van den Brom, P.; Meijer, A.; Visscher, H. Performance gaps in energy consumption: Household groups and building characteristics. Build. Res. Inf. 2018, 46, 54–70. [Google Scholar] [CrossRef] [Green Version]
- Jack, R.; Loveday, D.; Allinson, D.; Lomas, K. First evidence for the reliability of building co-heating tests. Build. Res. Inf. 2018, 46, 383–401. [Google Scholar] [CrossRef] [Green Version]
- Alzetto, F.; Pandraud, G.; Fitton, R.; Heusler, I.; Sinnesbichler, H. QUB: A fast dynamic method for in-situ measurement of the whole building heat loss. Energy Build. 2018, 174, 124–133. [Google Scholar] [CrossRef]
- Belussi, L.; Danza, L.; Meroni, I.; Salamone, F. Energy performance assessment with empirical methods: Application of energy signature. Opto-Electron. Rev. 2015, 23, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Hollick, F.P.; Gori, V.; Elwell, C.A. Thermal performance of occupied homes: A dynamic grey-box method accounting for solar gains. Energy Build. 2020, 208, 109669. [Google Scholar] [CrossRef]
- Crawley, J.; McKenna, E.; Gori, V.; Oreszczyn, T. Creating Domestic Building Thermal Performance Ratings Using Smart Meter Data. Build. Cities 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Erkoreka, A.; Garcia, E.; Martin, K.; Teres-Zubiaga, J.; Del Portillo, L. In-use office building energy characterization through basic monitoring and modelling. Energy Build. 2016, 119, 256–266. [Google Scholar] [CrossRef]
- Coakley, D.; Raftery, P.; Keane, M. A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 2014, 37, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the art in building modelling and energy performances prediction: A review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Eschmann, C.; Kuo, C.M.; Kuo, C.H.; Boller, C. High-Resolution Multisensor Infrastructure Inspection with Unmanned Aircraft Systems. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W2, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Küng, O.; Strecha, C.; Fua, P.; Gurdan, D.; Achtelik, M.; Doth, K.M.; Stumpf, J. Simplified Building Models Extraction from Ultra-Light UAV Imagery. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-1/C22, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Mill, T.; Alt, A.; Liias, R. Combined 3D building surveying techniques—Terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes. J. Civ. Eng. Manag. 2013, 19, S23–S32. [Google Scholar] [CrossRef]
- Johnston, M.; Zakhor, A. Estimating building floor plans from exterior using laser scanners. In Proceedings of the SPIE 6805, Three-Dimensional Image Capture and Applications, San Jose, CA, USA, 28–29 January 2008; p. 68050H. [Google Scholar] [CrossRef]
- Patel, D.; Estevam Schmiedt, J.; Röger, M.; Hoffschmidt, B. Approach for external measurements of the heat transfer coefficient (U-value) of building envelope components using UAV based infrared thermography. In Proceedings of the 14th Quantitative InfraRed Thermography Conference (QIRT), Berlin, Germany, 25–29 June 2018; QIRT Council: Berlin, Germany, 2018; pp. 379–386. [Google Scholar] [CrossRef]
- Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Autom. Constr. 2018, 93, 252–264. [Google Scholar] [CrossRef]
- Garwood, T.L.; Hughes, B.R.; O’Connor, D.; Calautit, J.K.; Oates, M.R.; Hodgson, T. A framework for producing gbXML building geometry from Point Clouds for accurate and efficient Building Energy Modelling. Appl. Energy 2018, 224, 527–537. [Google Scholar] [CrossRef]
- Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D. Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-1/W1, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Malihi, S.; Valadan Zoej, M.; Hahn, M. Large-Scale Accurate Reconstruction of Buildings Employing Point Clouds Generated from UAV Imagery. Remote Sens. 2018, 10, 1148. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, C.F.; Cerezo Davila, C. Urban building energy modeling—A review of a nascent field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Sola, A.; Corchero, C.; Salom, J.; Sanmarti, M. Multi-domain urban-scale energy modelling tools: A review. Sustain. Cities Soc. 2020, 54, 101872. [Google Scholar] [CrossRef]
- Remmen, P.; Lauster, M.; Mans, M.; Fuchs, M.; Osterhage, T.; Müller, D. TEASER: An open tool for urban energy modelling of building stocks. J. Build. Perform. Simul. 2018, 11, 84–98. [Google Scholar] [CrossRef]
- Loga, T.; Stein, B.; Diefenbach, N. TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy Build. 2016, 132, 4–12. [Google Scholar] [CrossRef]
- Müller, D.; Lauster, M.; Constantin, A.; Fuchs, M.; Remmen, P. AixLib—An Open-Source Modelica Library within the IEA-EBC Annex 60 Framework. In Proceedings of the CESBP Central European Symposium on Building Physics and BauSIM 2016, Dresden, Germany, 14–16 September 2016; Grunewald, J., Ed.; Fraunhofer IRB Verlag: Stuttgart, Germany, 2016; pp. 3–9. [Google Scholar]
- Lauster, M.; Müller, D. Methoden der Zeitreihenanalyse für die Bewertung von urbanen Gebäudesimulationen. Bauphysik 2018, 40, 420–426. [Google Scholar] [CrossRef]
- Risch, S.; Remmen, P.; Müller, D. Influence of data acquisition on the Bayesian calibration of urban building energy models. Energy Build. 2021, 230, 110512. [Google Scholar] [CrossRef]
- Gorzalka, P.; Linkiewicz, M.; Frommholz, D.; Dahlke, D.; Schorn, C.; Estevam Schmiedt, J.; Hoffschmidt, B. Dataset for Automated Building Energy Simulation Model Generation of a Case Study Single Family House. Available online: https://doi.org/10.6084/m9.figshare.14055197 (accessed on 23 August 2021).
- Gorzalka, P.; Estevam Schmiedt, J.; Göttsche, J.; Hoffschmidt, B.; Linkiewicz, M.; Patel, D.; Plattner, S.; Schorn, C.; Frommholz, D. Remote Sensing For Building Energy Simulation Input—A Field Trial. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; Corrado, V., Fabrizio, E., Gasparella, A., Patuzzi, F., Eds.; IBPSA: Toronto, ON, Canada, 2020; pp. 4094–4101. [Google Scholar] [CrossRef]
- Arroyo Ohori, K.; Biljecki, F.; Kumar, K.; Ledoux, H.; Stoter, J. Modeling Cities and Landscapes in 3D with CityGML. In Building Information Modeling; Borrmann, A., König, M., Koch, C., Beetz, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 199–215. [Google Scholar] [CrossRef] [Green Version]
- DIN 5034-4:1994-09. Tageslicht in Innenräumen: Vereinfachte Bestimmung von Mindestfenstergrößen für Wohnräume; Deutsches Institut für Normung: Berlin, Germany, 1994. [Google Scholar]
- VDI 6007 Part 3:2015-06. Calculation of Transient Thermal Response of Rooms and Buildings—Modelling of Solar Radiation; The Association of German Engineers: Düsseldorf, Germany, 2015. [Google Scholar]
- Lauster, M.; Müller, D. Characterization of Linear Reduced Order Building Models Using Bode Plots. In Proceedings of the 13th International Modelica Conference, Regensburg, Germany, 4–6 March 2019; Linköping University Electronic Press: Linköping, Sweden, 2019; pp. 25–32. [Google Scholar] [CrossRef] [Green Version]
- Lauster, M. Parametrierbare Gebäudemodelle für Dynamische Energiebedarfsrechnungen von Stadtquartieren. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 28 May 2018. [Google Scholar] [CrossRef]
- Ministerium für Bauen und Wohnen des Landes Nordrhein-Westfalen. Verbesserung des Wärmeschutzes im Gebäudebestand des Landes Nordrhein-Westfalen, Berichte; Ministerium für Bauen und Wohnen des Landes Nordrhein-Westfalen: Düsseldorf, Germany, 1993; Volume 2/93. [Google Scholar]
- ISO 9869-2:2018-08. Thermal Insulation: Building Elements: In-Situ Measurement of Thermal Resistance and Thermal Capacitance: Infrared Method for Frame Structure Dwelling; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- ISO 6946:2017-06. Building Components and Building Elements: Thermal Resistance and Thermal Transmittance: Calculation Methods; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Haas, A.; Peichl, M.; Dill, S. Layer determination of building structures with SAR in near field environment. In Proceedings of the 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 209–212. [Google Scholar]
- Kölsch, B.; Schiricke, B.; Estevam Schmiedt, J.; Hoffschmidt, B. Estimation of Air Leakage Sizes in Building Envelope using High-Frequency Acoustic Impulse Response Technique. In Proceedings of the 40th AIVC—8th TightVent—6th venticool Conference, Ghent, Belgium, 15–16 October 2019; INIVE: Sint-Stevens-Woluwe, Belgium, 2019. [Google Scholar]
Var. No. | U-Value Source | (Mean) U-Values [Wm−2 K−1] | SHGC | ||||
---|---|---|---|---|---|---|---|
Roofs | Ext. Walls | Attic Floor | Basem. Ceil. | ||||
1 | TABULA | 0.9 (3.2) | 1.2 | 0.8 | 1.1 | 0.6 | 376 |
2 | TABULA | 0.9 (3.2) | 1.2 | 0.8 | 1.1 | 0.36 | 376 |
3 | TABULA | 0.9 (3.2) | 1.2 | 0.8 | 1.1 | 0.36 | 265 |
4 | Best guess | 0.4 (6.7) | 1.3 (1.8) | 0.5 | 1.1 | 0.36 | 265 |
5 | Best case | 0.7 (3.2) | 0.9 (1.7) | 0.7 | 0.8 | 0.36 | 265 |
6 | Worst case | 1.8 (3.2) | 1.7 | 1.3 | 1.3 | 0.36 | 265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorzalka, P.; Estevam Schmiedt, J.; Schorn, C.; Hoffschmidt, B. Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery. Buildings 2021, 11, 380. https://doi.org/10.3390/buildings11090380
Gorzalka P, Estevam Schmiedt J, Schorn C, Hoffschmidt B. Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery. Buildings. 2021; 11(9):380. https://doi.org/10.3390/buildings11090380
Chicago/Turabian StyleGorzalka, Philip, Jacob Estevam Schmiedt, Christian Schorn, and Bernhard Hoffschmidt. 2021. "Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery" Buildings 11, no. 9: 380. https://doi.org/10.3390/buildings11090380
APA StyleGorzalka, P., Estevam Schmiedt, J., Schorn, C., & Hoffschmidt, B. (2021). Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery. Buildings, 11(9), 380. https://doi.org/10.3390/buildings11090380