Influence of the Process of Synthesis of Zeolites from Volcanic Ash in Its Synergistic Action as a Flame-Retardant for Polypropylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Process
2.2. Characterization of the Zeolites
2.3. Synthesis of Polypropylene Composites
2.4. Characterization of Polypropylene Composites
3. Results and Discussion
3.1. Material Characterization
3.2. Characterization of Polypropylene Composites
3.3. Flammability Tests
3.4. Mass Loss Calorimetry
4. Conclusions
- Four types of zeolites were synthesized from the volcanic ash collected by the Ubinas volcano (Moquegua, Peru). It was determined that synthesis temperature and alkaline solution have influenced on the textural properties and morphology of the synthesized zeolites, showing a variation in the SBET, pore size, pore volume and micropore area values.
- In the morphology, the presence of amorphous (Z4 zeolite) or crystalline phases (Z1 and Z3 zeolite) has been observed and in all synthesized zeolites, there are peaks corresponding to the presence of zeolites. Differences in morphology are also observed, being mostly pseudo-spherical and rough particles with the presence of cubic structures, as well. Polypropylene matrix composites were synthesized with APP, PER and zeolites at 1, 5 and 9% and the TGA, LOI, UL-94 and calorimetric cone tests were carried out, showing that the synthesized zeolites act as synergistic agents in the flame-retardant activity of APP:PER:PP. The PP matrix composite at 5% zeolites concentration showed the best flame-retardant activity, obtaining a LOI value of 46%, a FIGRA value of 0.19 and FPI of 0.24 at 50 kW/m2 for the PP_FR_Z3-5% composite. This was corroborated in the SEM images where the composites at 5% showed smooth and continuous structures (without holes), except for PP_FR_Z4-5%. In addition, the V-0 classification was obtained in the UL-94 test for all PP matrix composites. Therefore, the improvement of the synergistic action of zeolites synthesized from volcanic ash was verified, which in previous studies did show a synergistic action, being Z3 zeolite at 5% the best of the four despite that its SBET (11.43 m2/g) was the lowest among the four zeolites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APP | Ammonium polyphosphate |
APP:PER:PP | Ammonium polyphosphate, pentaerythritol and polypropylene |
APP-CNCA-DA-PP | Ammonium polyphosphate, halogen-free oligomeric triazine derivative and polypropylene |
BET | Brunauer–Emmett–Teller method |
CCT | Cone calorimetric test |
FIGRA | Fire Growth Rate Index |
FPI | Fire performance index |
HRR | Heat Release Rate |
LOI | Limiting oxygen index |
PER | Pentaerythritol |
pHRR | Peak of Heat released rate |
PP/FR | Polypropylene and Flame-retardant |
SBET | Specific surface area |
SEM | Scanning Electron Microscopy |
tflaming | Flaming time |
THR | Total heat released |
tIgn | Ignition time |
Tmax | Temperature at one sample lost maximum of its weight |
Tonset | Thermal degradation initiation temperature |
tpHRR | Peak of Heat released rate time |
UL-94 | Vertical burning test |
XRD | X ray difraction |
References
- Esthappan, S.K.; Kuttappan, S.K.; Joseph, R. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater. Des. 2012, 37, 537–542. [Google Scholar] [CrossRef]
- Younis, A.A. Flammability properties of polypropylene containing montmorillonite and some of silicon compounds. Egypt. J. Pet. 2017, 26, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Maier, C.; Calafut, T. Polypropylene. The Definitive User’s Guide and Databook, 1st ed.; William Andrew: New York, NY, USA, 1998; pp. 50–105. [Google Scholar]
- Yang, L.; Cheng, W.; Zhou, J.; Li, H.; Wang, X.; Chen, X.; Zhang, Z. Effects of microencapsulated APP-II on the microstructure and flame retardancy of PP/APP–II/PER composites. Polym. Degrad. Stab. 2014, 105, 150–159. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, X.; Liu, G. Synthesis of an integrated intumescent flame retardant and its flame retardancy properties for polypropylene. Polym. Degrad. Stab. 2017, 138, 106–114. [Google Scholar] [CrossRef]
- Demir, H.; Arkış, E.; Balköse, D.; Ülkü, S. Synergistic effect of natural zeolites on flame retardant additives. Polym. Degrad. Stab. 2005, 89, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Zhang, Y.; Liu, S.; Chi, Z.; Xu, J. Synergistic effects of 4A zeolite on the flame retardant properties and thermal stability of a novel halogen-free PP/IFR composite: Novel halogen-free pp/ifr composite. Polym. Adv. Technol. 2013, 24, 478–486. [Google Scholar] [CrossRef]
- Almirón, J.; Roudet, F.; Duquesne, S. Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites. J. Fire Sci. 2019, 37, 434–451. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, B.; Quan, H.; Yam, R.C.M.; Yuen, R.K.K.; Li, R.K.Y. Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Compos. Sci. Technol. 2009, 69, 2675–2681. [Google Scholar] [CrossRef]
- Sanhueza, V.M.; Bennun, L.D. Synthesis of zeolitic materials from volcanic ash in presence and absence of cetyltrimethylammonium bromide. Rev. Int. Contam. Ambient. 2015, 31, 185–193. [Google Scholar]
- Mohamed, R.M.; Mkhalid, I.A.; Barakat, M.A. Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arab. J. Chem. 2015, 8, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Pandiangan, K.D.; Arief, S.; Jamarun, N.; Simanjuntak, W. Synthesis of Zeolite-X from rice husk silica and aluminum metal as a catalyst for transesterification of palm oil. J. Mater. Environ. Sci. 2017, 8, 1797–1802. [Google Scholar]
- Bohra, S.; Kundu, D.; Naskar, M.K. One-pot synthesis of NaA and NaP zeolite powders using agro-waste material and other low cost organic-free precursors. Ceram. Int. 2014, 40, 1229–1234. [Google Scholar] [CrossRef]
- Wei, P.; Hao, J.; Du, J.; Han, Z.; Wang, J. An investigation on synergism of an intumescent flame retardant based on silica and alumina. J. Fire Sci. 2003, 21, 17–28. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W.; Chen, H.; Zhang, S.; Li, J. Synergistic effect of synthetic zeolites on flame-retardant wood-flour/polypropylene composites. Constr. Build. Mater. 2015, 79, 337–344. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Guo, H. Synergistic flame retardant effects of different zeolites on intumescent fire retardant coating for wood. BioResources 2017, 12, 3–5. [Google Scholar] [CrossRef] [Green Version]
- ASTM D2863; Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index). American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM D3801-00; Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position. American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- IEC 60695-11-10; Methods, Fire Hazard Testing—Part 11–10: Test Flames—50 W Horizontal and Vertical Flame Test. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- IEC 60707; Flammability of Solid Non-Metallic Materials When Exposed to Flame Sources—List of Test Methods. International Electrotechnical Commission: Geneva, Switzerland, 1999.
- ISO 1210; Plastics—Determination of the Burning Behaviour of Horizontal and Vertical Specimens in Contact with a Small-Flame Ignition Source. Organismo de Normalización en España: Madrid, Spain, 1996.
- Ugal, J.R.; Hassan, K.H.; Ali, I.H. Preparation of type 4A zeolite from Iraqi kaolin: Characterization and properties measurements. J. Assoc. Arab. Univ. Basic Appl. Sci. 2010, 9, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Goñi, S.; Peña, R.; Guerrero, A. Hydrothermal Synthesis of Zeolite from Coal Class F Fly Ash. Influence of Temperature. Mater. Construcc. 2010, 60, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Franus, W. Characterization of X-type Zeolite Prepared from Coal Fly Ash. Pol. J. Environ. Stud. 2012, 21, 337–343. [Google Scholar]
- Liu, X.; Wang, Y.; Cui, X.; He, Y.; Mao, J. Influence of synthesis parameters on NaA zeolite crystals. Powder Technol. 2013, 243, 184–193. [Google Scholar] [CrossRef]
- Zayhalvid, R.; Tovar, C.; Djaouadi, D. Síntesis y Caracterización de Zeolitas con Estructura Jerárquica de Poros Como Potenciales Materiales para la Generación de Aromáticos. Master’s Thesis, Universidad Central de Venezuela, Caracas, Venezuela, 2016. [Google Scholar]
- Stocker, K.; Ellersdorfer, M.; Lehner, M.; Raith, J.G. Characterization and utilization of natural zeolites in technical applications. Berg-Huettenmannische Mon. 2017, 162, 142–147. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, L.; Chen, L. Synergistic Flame Retardant Effects between Aluminum Hydroxide and Halogen-free Flame Retardants in High Density Polyethylene Composites. Procedia Eng. 2016, 135, 631–636. [Google Scholar] [CrossRef] [Green Version]
Oxides | (%) | Oxides | (%) | Oxides | (%) |
---|---|---|---|---|---|
SiO2 | 51.3 | SO3 | 7.3 | P2O5 | 0.16 |
K2O | 1.84 | Fe2O3 | 3.8 | others | 0.09 |
Al2O3 | 26.19 | MnO | 0.05 | P.F. * | 3.53 |
CaO | 4.92 | TiO2 | 0.8 |
Sample Code | Temperature (°C) | NaOH Molarity (M) | Time (h) |
---|---|---|---|
Z1 | 120 | 1.5 | 12 |
Z2 | 150 | 1.5 | 12 |
Z3 | 180 | 1.5 | 12 |
Z4 * | 120 | 1.5 | 12 |
Sample | PP (wt%) | APP (wt%) | PER (wt%) | Z1 (wt%) | Z2 (wt%) | Z3 (wt%) | Z4 (wt%) |
---|---|---|---|---|---|---|---|
PP_FR | 70.0 | 20.0 | 10.0 | ||||
PP_FR_Z1-1% | 69.3 | 19.8 | 9.9 | 1.0 | |||
PP_FR_Z1-5% | 66.5 | 19.0 | 9.5 | 5.0 | |||
PP_FR_Z1-9% | 63.7 | 18.2 | 9.1 | 9.0 | |||
PP_FR_Z2-1% | 69.3 | 19.8 | 9.9 | 1.0 | |||
PP_FR_Z2-5% | 66.5 | 19.0 | 9.5 | 5.0 | |||
PP_FR_Z2-9% | 63.7 | 18.2 | 9.1 | 9.0 | |||
PP_FR_Z3-1% | 69.3 | 19.8 | 9.9 | 1.0 | |||
PP_FR_Z3-5% | 66.5 | 19.0 | 9.5 | 5.0 | |||
PP_FR_Z3-9% | 63.7 | 18.2 | 9.1 | 9.0 | |||
PP_FR_Z4-1% | 69.3 | 19.8 | 9.9 | 1.0 | |||
PP_FR_Z4-5% | 66.5 | 19.0 | 9.5 | 5.0 | |||
PP_FR_Z4-9% | 63.7 | 18.2 | 9.1 | 9.0 |
Samples | Temperature (°C) | Pore Size (Å) | Pore Volume (mm3/g) | Micropore Area (m2/g) | SBET (m2/g) |
---|---|---|---|---|---|
Z1 | 120 | 66.49 | 38.26 | 0.13 | 27.85 |
Z2 | 150 | 96.84 | 47.12 | 8.08 | 25.91 |
Z3 | 180 | 146.81 | 39.70 | 8.60 | 11.43 |
Z4 | 120 | 76.89 | 37.90 | 6.26 | 30.56 |
Samples | Tonset (°C) | Average Tonset | Tmax (°C) | Average Tmax | Residue (%) at 800 °C |
---|---|---|---|---|---|
PP | 293 | 445 | 0.0 | ||
PP_FR | 184 | 481 | 9.8 | ||
PP_FR_Z1-1% | 164 | 173 | 383 | 427 | 13.9 |
PP_FR_Z1-5% | 179 | 419 | 16.9 | ||
PP_FR_Z1-9% | 176 | 480 | 21.9 | ||
PP_FR_Z2-1% | 209 | 187 | 482 | 478 | 14.9 |
PP_FR_Z2-5% | 160 | 469 | 17.1 | ||
PP_FR_Z2-9% | 192 | 483 | 17.8 | ||
PP_FR_Z3-1% | 195 | 185 | 481 | 462 | 11.7 |
PP_FR_Z3-5% | 174 | 423 | 19.3 | ||
PP_FR_Z3-9% | 185 | 482 | 20.6 | ||
PP_FR_Z4-1% | 219 | 177 | 480 | 428 | 14.3 |
PP_FR_Z4-5% | 126 | 423 | 18.0 | ||
PP_FR_Z4-9% | 187 | 382 | 20.3 |
Samples | LOI | UL-94 |
---|---|---|
PP | 19 | NT * |
PP_FR | 36 | V-0 |
PP_FR_Z1-1% | 42 | V-0 |
PP_FR_Z1-5% | 45 | V-0 |
PP_FR_Z1-9% | 44 | V-0 |
PP_FR_Z2-1% | 39 | V-0 |
PP_FR_Z2-5% | 44 | V-0 |
PP_FR_Z2-9% | 44 | V-0 |
PP_FR_Z3-1% | 39 | V-0 |
PP_FR_Z3-5% | 46 | V-0 |
PP_FR_Z3-9% | 44 | V-0 |
PP_FR_Z4-1% | 40 | V-0 |
PP_FR_Z4-5% | 46 | V-0 |
PP_FR_Z4-9% | 45 | V-0 |
Sample | tIgn | tflaming | pHRR | S.D. | THR | S.D. | tpHRR | Residue | S.D. | FIGRA | FPI |
---|---|---|---|---|---|---|---|---|---|---|---|
(s) | (s) | (kW/m2) | (MJ/m2) | (s) | % | ||||||
At 35 kW/m2 | |||||||||||
PP_FR | 51 | 1806 | 89.86 | 2.29 | 96.50 | 5.43 | 1263 | 38.9 | 2.3 | 89.86 | 2.29 |
PP_FR_Z1-5% | 39 | 2518 | 58.69 | 1.68 | 83.87 | 4.01 | 1435 | 33.3 | 0.9 | 58.69 | 1.68 |
PP_FR_Z2-5% | 49 | 2692 | 60.36 | 4.04 | 92.79 | 7.64 | 748 | 37.8 | 1.9 | 60.36 | 4.04 |
PP_FR_Z3-5% | 64 | 2442 | 54.65 | 8.31 | 90.56 | 0.06 | 2031 | 44.1 | 1.7 | 54.65 | 8.31 |
PP_FR_Z4-5% | 44 | 3163 | 51.60 | 4.43 | 86.26 | 7.12 | 1956 | 42.3 | 3.7 | 51.60 | 4.43 |
At 50 kW/m2 | |||||||||||
PP_FR | 21 | 1213 | 146.29 | 3.81 | 94.39 | 2.29 | 708 | 24.3 | 5.3 | 0.21 | 0.14 |
PP_FR_Z1-5% | 19 | 1456 | 98.69 | 4.59 | 76.91 | 0.02 | 372 | 27.7 | 2.9 | 0.27 | 0.19 |
PP_FR_Z2-5% | 19 | 1456 | 98.69 | 4.59 | 77.02 | 0.06 | 372 | 27.7 | 2.9 | 0.27 | 0.19 |
PP_FR_Z3-5% | 26 | 1341 | 107.28 | 6.33 | 90.17 | 1.40 | 539 | 30.7 | 3.1 | 0.19 | 0.24 |
PP_FR_Z4-5% | 17 | 3163 | 101.87 | 6.82 | 86.73 | 8.69 | 421 | 28.5 | 0.01 | 0.24 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almirón, J.; Vargas, M.; Tupayachy-Quispe, D.; Duquesne, S.; Roudet, F.; Silva-Vela, A. Influence of the Process of Synthesis of Zeolites from Volcanic Ash in Its Synergistic Action as a Flame-Retardant for Polypropylene Composites. Buildings 2022, 12, 24. https://doi.org/10.3390/buildings12010024
Almirón J, Vargas M, Tupayachy-Quispe D, Duquesne S, Roudet F, Silva-Vela A. Influence of the Process of Synthesis of Zeolites from Volcanic Ash in Its Synergistic Action as a Flame-Retardant for Polypropylene Composites. Buildings. 2022; 12(1):24. https://doi.org/10.3390/buildings12010024
Chicago/Turabian StyleAlmirón, Jonathan, María Vargas, Danny Tupayachy-Quispe, Sophie Duquesne, Francine Roudet, and Alejandro Silva-Vela. 2022. "Influence of the Process of Synthesis of Zeolites from Volcanic Ash in Its Synergistic Action as a Flame-Retardant for Polypropylene Composites" Buildings 12, no. 1: 24. https://doi.org/10.3390/buildings12010024
APA StyleAlmirón, J., Vargas, M., Tupayachy-Quispe, D., Duquesne, S., Roudet, F., & Silva-Vela, A. (2022). Influence of the Process of Synthesis of Zeolites from Volcanic Ash in Its Synergistic Action as a Flame-Retardant for Polypropylene Composites. Buildings, 12(1), 24. https://doi.org/10.3390/buildings12010024