Selection of Ground Motion Intensity Measures in Fragility Analysis of a Mega-Scale Steel Frame Structure at Separate Limit States: A Case Study
Abstract
:1. Introduction
2. Basic Information
2.1. 48-Story Mega-Scale Steel Frame Structure
2.2. Selection of Ground Motions
2.3. Selection of Optimal Intensity Measures
No. | IM | Definition | Reference |
---|---|---|---|
1 | PGA | Peak ground acceleration | N.A. |
2 | PGV | Peak ground velocity | N.A. |
3 | PGD | Peak ground displacement | N.A. |
4 | SMA | The third peak in the acceleration time history | [34] |
5 | SMV | The third peak in the velocity time history | |
6 | EDA | The peak acceleration after filtering out components higher than 9 Hz | [35] |
7 | V/A | The ratio of peak ground velocity to peak ground acceleration | [33] |
8 | Sa(T1) | Spectral acceleration at the first vibration period T1 | N.A. |
9 | Sv(T1) | Spectral velocity at the first vibration period T1 | N.A. |
10 | Sd(T1) | Spectral displacement at the first vibration period T1 | N.A. |
11 | HI | , PSv(t): pseudospectral velocity | [36] |
12 | ASI | [37] | |
13 | VSI | ||
14 | S* | , Tf: softened period | [43] |
15 | IM-CR | RIM: self-adaptive parameter | [44] |
16 | IM-SR | ||
17 | INP | TN: the maximum period of interest | [45] |
18 | T2: the second vibration period | [38] | |
19 | T3: the third vibration period | ||
20 | IM12 | [39] | |
21 | IM123 | ||
22 | SN1 | [42] | |
23 | SN2 | ||
24 | S12 | [40] | |
25 | S123 | ||
26 | [41] | ||
27 | Sa,gm(Ti) | (Ti)5 = {T2m,min[(T2m + T1m)/2,1.5T2m],T1m,1.5T1m,2T1m} | [46] |
3. Seismic Fragility Analysis Using the MSA Method
3.1. MSA Method
3.2. Seismic Fragility Analysis
4. Influence of IMs on the Estimation of Fragility Curves
4.1. Comparative Analysis between PGA and Sa(T1)
4.2. Influence of Intensity Measures on the Estimation of βRTR
4.3. Optimal IM at Different Limit States
5. Conclusions
- (1)
- Among these 27 IMs, those that are not closely related to structural dynamic parameters tend to perform poorly. For example, Sa(T1) exhibits better performance than PGA, and the velocity-related IMs SMV and Sv(T1) are superior to other IMs of the same type. However, for velocity-type IM PGV, even though they are not closely related to structural dynamic parameters, lower discreteness can still be obtained. For combination-type IMs, the number of combined terms and the combined power index have a significant impact on their performance.
- (2)
- The IMs considering the effect of the higher modes perform better than IMs considering the effect of the softened period. Among the four limit states, the ground motion IMs considering the softened period present the best performance in the severe limit state. Most ground motion IMs considering higher mode shapes perform best in the negligible or light limit states among the four limit states in far-field earthquakes.
- (3)
- The correlation between structural damage and spectral acceleration is affected by the damage limit state and ground motion characteristics. Based on this result, the combination-type ground motion intensity measure is improved, and different parameter values for near-field and far-field earthquakes are proposed. Perhaps, because of the weakening of the effect of higher mode shapes under near-field earthquakes, a larger value of c is adopted in near-field earthquakes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, X.; Li, H.N.; Li, G.; Dong, Z.Q. Fragility analysis of a transmission tower under combined wind and rain loads. J. Wind Eng. Ind. Aerodyn. 2020, 199, 104098. [Google Scholar] [CrossRef]
- Dong, Z.Q.; Li, G.; Song, B.; Lu, G.H.; Li, H.N. Failure risk assessment method of masonry structures under earthquakes and flood scouring. Mech. Adv. Mater. Struct. 2022, 29, 3055–3066. [Google Scholar] [CrossRef]
- Aloisio, A.; Contento, A.; Alaggio, R.; Briseghella, B.; Fragiacomo, M. Probabilistic Assessment of a Light-Timber Frame Shear Wall with Variable Pinching under Repeated Earthquakes. J. Struct. Eng. 2022, 148, 04022178. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, Z.; Wei, Y.; Xie, Q.; Sun, X. Seismic performance and resilience assessment of friction damped self-centering prestressed concrete frames. Eng. Struct. 2022, 263, 114346. [Google Scholar] [CrossRef]
- Huang, L.; Clayton, P.M.; Zhou, Z. Seismic design and performance of self-centering precast concrete frames with variable friction dampers. Eng. Struct. 2021, 245, 112863. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Z.Y.; Gu, X.L.; Yang, Q.C.; Li, S.Y.; Zhao, Y.S. Confinement behavior and stress-strain response of square concrete columns strengthened with carbon textile reinforced concrete (CTRC) composites. Eng. Struct. 2022, 266, 114592. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, N.H.; Gu, X.L.; Wei, Z.Y.; Zhang, Z. Study of the confinement performance and stress-strain response of RC columns with corroded stirrups. Eng. Struct. 2022, 266, 114476. [Google Scholar] [CrossRef]
- Sun, B.; Gu, Q.; Zhang, P.; Ou, J. A practical numerical substructure method for seismic nonlinear analysis of tall building structures. Struct. Des. Tall Spec. Build. 2017, 26, 1377. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, N.; Guan, Z.; Li, J. Seismic vulnerability assessment of tall pier bridges under mainshock-aftershock-like earthquake sequences using vector-valued intensity measure. Eng. Struct. 2022, 253, 113732. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, J. Seismic resilient design with base isolation device using friction pendulum bearing and viscous damper. Soil Dyn. Earthq. Eng. 2022, 153, 107073. [Google Scholar] [CrossRef]
- Chen, X.; Ikago, K.; Guan, Z.; Wang, X. Lead-Rubber-Bearing with Negative Stiffness Springs (LRB-NS) for Base-Isolation Seismic Design of Resilient Bridges: A Theoretical Feasibility Study. Eng. Struct. 2022, 266, 114601. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Huang, L. Effects of loading rates on the hysteretic response of resilient variable friction dampers. Int. J. Steel Struct. 2021, 21, 1550–1563. [Google Scholar] [CrossRef]
- Sun, B.Y.; Zhang, Y.T.; Dai, D.H.; Wang, L.; Ou, J.P. Seismic fragility analysis of large-scale frame structures with local nonlinearities using an efficient reduced-order NR method. Soil Dyn. Earthq. Eng. 2022; accepted. [Google Scholar]
- Lai, X.; He, Z.; Chen, Y.; Zhang, Y.; Li, Z.; Guo, Z.; Ma, L. A modified spectral-velocity-based earthquake intensity measure for super high-rise buildings. Soil Dyn. Earthq. Eng. 2022, 162, 107504. [Google Scholar] [CrossRef]
- Riddell, R. On ground motion intensity indices. Earthq. Spectra 2007, 23, 147–173. [Google Scholar] [CrossRef]
- Ye, L.P.; Ma, Q.L.; Miao, Z.W.; Guan, H.; Zhuge, Y. Numerical and comparative study of earthquake intensity indices in seismic analysis. Struct. Design Tall Spec. Build. 2013, 22, 362–381. [Google Scholar] [CrossRef]
- Kostinakis, K.; Fontara, I.K.; Athanatopoulou, A.M. Scalar structure-specific ground motion intensity measures for assessing the seismic performance of structures: A review. J. Earthq. Eng. 2018, 22, 630–665. [Google Scholar] [CrossRef]
- Zhang, Y.T.; He, Z.; Yang, Y.F. A spectral-velocity-based combination-type earthquake intensity measure for super high-rise buildings. Bull. Earthq. Eng. 2018, 16, 643–677. [Google Scholar] [CrossRef]
- Zhang, Y.T.; He, Z.; Lu, W.; Yang, Y. A spectral-acceleration-based linear combination-type earthquake intensity measure for high-rise buildings. J. Earthq. Eng. 2018, 22, 1479–1508. [Google Scholar] [CrossRef]
- Zhang, Y.T.; He, Z. Appropriate ground motion intensity measures for estimating the earthquake demand of floor acceleration-sensitive elements in super high-rise buildings. Struct. Infrastruct. Eng. 2019, 15, 467–483. [Google Scholar] [CrossRef]
- Lu, X.; Lu, X.; Guan, H.; Ye, L. Comparison and selection of ground motion intensity measures for seismic design of super high-rise buildings. Adv. Struct. Eng. 2013, 16, 1249–1262. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.Y.; Zhang, Y.T.; Ou, X.Y.; Shi, Y.A.; Liu, S.Y.; Fan, J.X. Seismic fragility analysis of buckling-restrained brace-strengthened reinforced concrete frames using a performance-based plastic design method. Structures 2022, 43, 338–350. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Ouyang, X.Y.; Sun, B.Y.; Shi, Y.A.; Wang, Z. A comparative study on seismic fragility analysis of RC frame structures with consideration of modeling uncertainty under far-field and near-field ground motion excitation. Bull. Earthq. Eng. 2022, 20, 1455–1487. [Google Scholar] [CrossRef]
- Baker, J.W. Efficient analytical fragility function fitting using dynamic structural analysis. Earthq. Spectra 2015, 31, 579–599. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2002, 31, 491–514. [Google Scholar] [CrossRef]
- GB50011-2010; Code for Seismic Design of Buildings. China Architecture & Building Press: Beijing, China, 2010. (In Chinese)
- Sun, B.; Zhang, Y.; Huang, C. Machine learning-based seismic fragility analysis of large-scale steel buckling restrained brace frames. CMES-Comput. Model. Eng. Sci. 2020, 125, 755–776. [Google Scholar] [CrossRef]
- Mazzoni, S.; McKenna, F.; Scott, M.H.; Fenves, G.L. Open System for Earthquake Engineering Simulation (OpenSees) Command Language Manual. Available online: http://opensees.berkeley.edu/wiki/index.php/Command_Manual (accessed on 2 March 2011).
- Zhu, M.; McKenna, F.; Scott, M.H. OpenSeesPy: Python library for the OpenSees finite element framework. SoftwareX 2018, 7, 6–11. [Google Scholar] [CrossRef]
- Ancheta, T.D.; Darragh, R.B.; Stewart, J.P.; Seyhan, E.; Silva, W.J.; Chiou, B.S.J.; Wooddell, K.E.; Graves, R.W.; Kottke, A.R.; Boore, D.M.; et al. NGA-West2 database. Earthq. Spectra 2014, 30, 989–1005. [Google Scholar] [CrossRef]
- Baker, J.W. Quantitative classification of near-fault ground motions using wavelet analysis. Bull. Seismol. Soc. Am. 2007, 97, 1486–1501. [Google Scholar] [CrossRef]
- Quantification of Building Seismic Performance Factors; FEMA P695; FEMA: Washington, DC, USA, 2009.
- Sucuoǧlu, H.; Nurtuǧ, A. Earthquake ground motion characteristics and seismic energy dissipation. Earthq. Eng. Struct. Dyn. 1995, 24, 1195–1213. [Google Scholar] [CrossRef]
- Nuttli, O.W. The Relation of Sustained Maximum Ground Acceleration and Velocity to Earthquake Intensity and Magnitude; Miscellaneous Paper S-71-1, Report 16; U.S. Army Corps of Engineers, Waterways Experiment Station: Vicksburg, MS, USA, 1979.
- Benjamin, J.R.; Associates, Inc. A Criterion for Determining Exceedances of the Operating Basis Earthquake; EPRI Report NP-5930; Electric Power Research Institute: Palo Alto, CA, USA, 1988. [Google Scholar]
- Housner, G.W. Spectrum Intensity of Strong Motion Earthquakes. In Proceedings of the Symposium on Earthquakes and Blast Effects on Structures, Los Angeles, CA, USA, 21 June 1952. [Google Scholar]
- Von Thun, J.L.; Roehm, L.H.; Scott, G.A.; Wilson, J. Earthquake Ground Motions for Design and Analysis of Dams. In Earthquake Engineering and Soil Dynamics II; Recent Advances in Ground-Motion Evaluation; ASCE Library: Reston, VA, USA, 1988; pp. 463–481. [Google Scholar]
- Shome, N.; Cornell, C.A. Probabilistic Seismic Demand Analysis of Non-Linear Structures (Report No. RMS-35); Stanford University: Stanford, CA, USA, 1999. [Google Scholar]
- Vamvatsikos, D.; Cornell, C.A. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information. Earthq. Eng. Struct. Dyn. 2005, 34, 1573–1600. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, N.; Lu, X. Study on intensity measure of incremental dynamic analysis for high-rise structures. J. Build. Struct. 2013, 34, 53–60. (In Chinese) [Google Scholar]
- Lu, X.; Ye, L.; Lu, X.; Li, M.; Ma, X. An improved ground motion intensity measure for super high-rise buildings. Sci. China Technol. Sci. 2013, 56, 1525–1533. [Google Scholar] [CrossRef]
- Lin, L.; Naumoski, N.; Saatcioglu, M.; Foo, S. Improved intensity measures for probabilistic seismic demand analysis. Part 1: Development of improved intensity measures. Can. J. Civ. Eng. 2011, 38, 79–88. [Google Scholar] [CrossRef]
- Cordova, P.P.; Deierlein, G.G.; Mehanny, S.S.; Cornell, C.A. Development of a two-parameter seismic intensity measure and probabilistic assessment procedure. In Proceedings of the Second US–Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Sapporo, Hokkaido, 11–13 September 2001; pp. 187–206. [Google Scholar]
- Mehanny, S.S. A broad-range power-law form scalar-based seismic intensity measure. Eng. Struct. 2009, 31, 1354–1368. [Google Scholar] [CrossRef]
- Bojórquez, E.; Iervolino, I. Spectral shape proxies and nonlinear structural response. Soil Dyn. Earthq. Eng. 2011, 31, 996–1008. [Google Scholar] [CrossRef]
- Kazantzi, A.K.; Vamvatsikos, D. Intensity measure selection for vulnerability studies of building classes. Earthq. Eng. Struct. Dyn. 2015, 44, 2677–2694. [Google Scholar] [CrossRef]
- Zhang, Y.T.; He, Z. Seismic collapse risk assessment of super high-rise buildings considering modeling uncertainty: A case study. Struct. Des. Tall Spec. Build. 2020, 29, e1687. [Google Scholar] [CrossRef]
- Zentner, I.; Gündel, M.; Bonfils, N. Fragility analysis methods: Review of existing approaches and application. Nucl. Eng. Des. 2017, 323, 245–258. [Google Scholar] [CrossRef]
- Shinozuka, M.; Feng, M.Q.; Lee, J.; Naganuma, T. Statistical analysis of fragility curves. J. Eng. Mech. ASCE 2000, 126, 1224–1231. [Google Scholar] [CrossRef]
- Güneyisi, E.M. Seismic reliability of steel moment resisting framed buildings retrofitted with buckling restrained braces. Earthq. Eng. Struct. Dyn. 2012, 41, 853–874. [Google Scholar] [CrossRef]
- Eads, L.; Miranda, E.; Krawinkler, H.; Lignos, D.G. An efficient method for estimating the collapse risk of structures in seismic regions. Earthq. Eng. Struct. Dyn. 2013, 42, 25–41. [Google Scholar] [CrossRef]
Component | Floor | Section | Section Geometry | Material |
---|---|---|---|---|
Mega column | 1–12 | box-type | 0.9 × 0.9 × 0.065 × 0.065 | Q345 |
13–24 | box-type | 0.9 × 0.9 × 0.04 × 0.04 | Q345 | |
25–36 | box-type | 0.8 × 0.8 × 0.04 × 0.04 | Q235 | |
37–48 | box-type | 0.7 × 0.7 × 0.03 × 0.03 | Q235 | |
Secondary column | 1–24 | box-type | 0.8 × 0.8 × 0.06 × 0.06 | Q345 |
25–48 | box-type | 0.75 × 0.75 × 0.05 × 0.05 | Q235 | |
Mega beam | 1–48 | I-type | 0.8 × 0.3 × 0.019 × 0.035 | Q235 |
Secondary beam | 1–48 | I-type | 0.692 × 0.3 × 0.013 × 0.02 | Q235 |
Mega-column beam | 1–48 | I-type | 0.7 × 0.3 × 0.013 × 0.024 | Q235 |
Mega-column brace | 1–24 | box-type | 0.25 × 0.25 × 0.018 × 0.018 | Q235 |
25–48 | box-type | 0.25 × 0.25 × 0.014 × 0.014 | Q235 | |
Mega-beam brace | 19–20 | box-type | 0.35 × 0.35 × 0.02 × 0.02 | Q235 |
36–37, 48 | box-type | 0.35 × 0.35 × 0.018 × 0.018 | Q235 | |
Slab | 1–48 | / | 40 × 40 × 0.12 | C30 |
Order | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Period (s) | T1 = 4.88 | T2 = 1.52 | T3 = 0.77 | T4 = 0.50 | T5 = 0.36 |
No. | Far-Field Set | Near-Field Set | ||||||
---|---|---|---|---|---|---|---|---|
Year | Earthquake | File Names | Lowest Frequency (Hz) | Year | Earthquake | File Names | Lowest Frequency (Hz) | |
1 | 1971 | San Fernando | SFERN/PEL090 | 0.1 | 1971 | SanFernando | SFERN/PUL164 | 0.0875 |
2 | 1979 | Imperial Valley-06 | IMPVALL.H/H-DLT262 | 0.0875 | 1979 | ImperialValley-06 | IMPVALL.H/H-EMO000 | 0.1 |
3 | 1979 | Imperial Valley-06 | IMPVALL.H/H-E11140 | 0.1 | 1979 | ImperialValley-06 | IMPVALL.H/H-E04140 | 0.0625 |
4 | 1984 | Morgan Hill | MORGAN/G03090 | 0.1 | 1979 | ImperialValley-06 | IMPVALL.H/H-E06140 | 0.0625 |
5 | 1987 | Superstition Hills-02 | SUPER.B/B-ICC000 | 0.0875 | 1979 | ImperialValley-06 | IMPVALL.H/H-E07140 | 0.075 |
6 | 1987 | Superstition Hills-02 | SUPER.B/B-IVW360 | 0.1 | 1992 | CapeMendocino | CAPEMEND/PET000 | 0.07 |
7 | 1989 | Loma Prieta | LOMAP/A02043 | 0.075 | 1994 | Northridge-01 | NORTHR/RRS228 | 0.1 |
8 | 1989 | Loma Prieta | LOMAP/AND250 | 0.1 | 1995 | Kobe/Japan | KOBE/KJM000 | 0.0625 |
9 | 1989 | Loma Prieta | LOMAP/OHW000 | 0.1 | 1999 | Kocaeli/Turkey | KOCAELI/YPT060 | 0.0875 |
10 | 1989 | Loma Prieta | LOMAP/SFO000 | 0.075 | 1999 | Chi-Chi/Taiwan | CHICHI/TCU052-E | 0.05 |
11 | 1992 | Landers | LANDERS/CLW-LN | 0.1 | 1999 | Chi-Chi/Taiwan | CHICHI/TCU065-E | 0.075 |
12 | 1992 | Landers | LANDERS/YER270 | 0.07 | 1999 | Chi-Chi/Taiwan | CHICHI/TCU068-E | 0.0375 |
13 | 1995 | Kobe/Japan | KOBE/ABN090 | 0.025 | 1999 | Chi-Chi/Taiwan | CHICHI/TCU101-E | 0.05 |
14 | 1995 | Kobe/Japan | KOBE/FKS090 | 0.1 | 1999 | Chi-Chi/Taiwan | CHICHI/TCU102-E | 0.0625 |
15 | 1999 | Kocaeli/Turkey | KOCAELI/ARE000 | 0.0875 | 1999 | Duzce/Turkey | DUZCE/DZC180 | 0.1 |
16 | 1999 | Kocaeli/Turkey | KOCAELI/DZC180 | 0.1 | 1989 | LomaPrieta | LOMAP/LEX000 | 0.1 |
17 | 1999 | Chi-Chi | CHICHI/CHY101-E | 0.05 | 2003 | Bam/Iran | BAM/BAM-L | 0.0625 |
18 | 1999 | Chi-Chi | CHICHI/TCU045-E | 0.05 | 2010 | Darfield/NewZealand | DARFIELD/GDLCN55W | 0.0625 |
19 | 1999 | Duzce/Turkey | DUZCE/BOL000 | 0.0625 | 2010 | Darfield/NewZealand | DARFIELD/LINCN23E | 0.075 |
20 | 1999 | Hector Mine | HECTOR/HEC000 | 0.0375 | 2010 | Darfield/NewZealand | DARFIELD/TPLCN27W | 0.0625 |
21 | 1989 | Loma Prieta | LOMAP/WAH000 | 0.1 | 1979 | ImperialValley-06 | IMPVALL.H/H-ECC002.AT2 | 0.075 |
22 | 1994 | Northridge-01 | NORTHR/TAR360 | 0.1 | 1979 | ImperialValley-06 | IMPVALL.H/H-E10050.AT2 | 0.075 |
23 | 1999 | Chi-Chi | CHICHI/TCU088-E | 0.1 | 1979 | ImperialValley-06 | IMPVALL.H/H-E05140.AT2 | 0.05 |
24 | 1999 | Chi-Chi | CHICHI/TCU095-E | 0.05 | 1979 | ImperialValley-06 | IMPVALL.H/H-EDA270.AT2 | 0.02875 |
25 | 2004 | Niigata/Japan | NIIGATA/NIG023EW | 0.075 | 1979 | ImperialValley-06 | IMPVALL.H/H-HVP225.AT2 | 0.075 |
26 | 2007 | Chuetsu-oki/Japan | CHUETSU/65005EW | 0.075 | 1992 | Landers | LANDERS/LCN260.AT2 | 0 |
27 | 2007 | Chuetsu-oki/Japan | CHUETSU/65025EW | 0.0625 | 1999 | Chi-Chi_Taiwan | CHICHI/CHY024-E.AT2 | 0.025 |
28 | 2007 | Chuetsu-oki/Japan | CHUETSU/65056EW | 0.075 | 1999 | Chi-Chi_Taiwan | CHICHI/TCU049-E.AT2 | 0.025 |
29 | 2007 | Chuetsu-oki/Japan | CHUETSU/65057EW | 0.1 | 1999 | Chi-Chi_Taiwan | CHICHI/TCU075-E.AT2 | 0.05 |
30 | 2007 | Chuetsu-oki/Japan | CHUETSU/6CB51EW | 0.1 | 1999 | Chi-Chi_Taiwan | CHICHI/TCU082-E.AT2 | 0.05 |
Damage Limit State | θmax |
---|---|
Negligible | 0.5% |
Light | 1.5% |
Moderate | 2.5% |
Severe | 3.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shen, R.; Sun, B.; Liu, T.; Shi, Y.; Li, L. Selection of Ground Motion Intensity Measures in Fragility Analysis of a Mega-Scale Steel Frame Structure at Separate Limit States: A Case Study. Buildings 2022, 12, 1530. https://doi.org/10.3390/buildings12101530
Zhang Y, Shen R, Sun B, Liu T, Shi Y, Li L. Selection of Ground Motion Intensity Measures in Fragility Analysis of a Mega-Scale Steel Frame Structure at Separate Limit States: A Case Study. Buildings. 2022; 12(10):1530. https://doi.org/10.3390/buildings12101530
Chicago/Turabian StyleZhang, Yantai, Ruihan Shen, Baoyin Sun, Tingting Liu, Yongan Shi, and Luyao Li. 2022. "Selection of Ground Motion Intensity Measures in Fragility Analysis of a Mega-Scale Steel Frame Structure at Separate Limit States: A Case Study" Buildings 12, no. 10: 1530. https://doi.org/10.3390/buildings12101530
APA StyleZhang, Y., Shen, R., Sun, B., Liu, T., Shi, Y., & Li, L. (2022). Selection of Ground Motion Intensity Measures in Fragility Analysis of a Mega-Scale Steel Frame Structure at Separate Limit States: A Case Study. Buildings, 12(10), 1530. https://doi.org/10.3390/buildings12101530