Review of Water Leak Detection Methods in Smart Building Applications
Abstract
:1. Introduction
2. Sensing Technologies
2.1. Hardware Methods
2.1.1. Closed-Circuit Television (CCTV)
2.1.2. Ground Penetration Radar (GPR)
2.1.3. Acoustic Emission
2.1.4. Fiber Optics
2.1.5. Infrared Thermography
2.1.6. RFID Tag Sensor
2.1.7. Leakage Pinpointing Methods
2.2. Software Methods
2.2.1. Negative Pressure Waves (NPW)
2.2.2. Computational Fluid Dynamics (CFD)
2.2.3. Fuzzy Methods
3. Processing Methods
3.1. Imaging Processing
3.2. Machine Learning
3.2.1. Support Vector Machine (SVM)
3.2.2. Kalman Filtering
3.2.3. K-Nearest Neighbors (KNN)
3.3. Deep Learning
3.3.1. Artificial Neural Network (ANN)
3.3.2. Convolutional Neural Networks (CNN)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.; Bircumshaw, J. The waste of water in public supplies, and its prevention. In Proceedings of the Institution of Civil Engineers-Municipal Engineer; Part 4, Session 1891–1892. Thomas Telford-ICE Virtual Library: London, UK, 1996; Volume 110, pp. 260–275. [Google Scholar]
- Fahmy, M.; Moselhi, O. Automated detection and location of leaks in water mains using infrared photography. J. Perform. Constr. Facil. 2010, 24, 242–248. [Google Scholar] [CrossRef]
- Ait-Kadi, M. Water for Development and Development for Water: Realizing the sustainable development goals (SDGs) vision. Aquat. Procedia 2016, 6, 106–110. [Google Scholar] [CrossRef]
- Buckman, A.H.; Mayfield, M.; Beck, S.B. What is a smart building? Smart Sustain. Built Environ. 2014, 3, 92–109. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.; Kumar, A.; Singh, M.K.; Mahanta, P.; Mukhopadhyay, S.C. Sensing technologies for monitoring intelligent buildings: A review. IEEE Sens. J. 2018, 18, 4847–4860. [Google Scholar] [CrossRef]
- Wang, X.; Simpson, A.; Lambert, M.; Vítkovskỳ, J. Leak detection in pipeline systems using hydraulic methods: A review. In Proceedings of the Conference on Hydraulics in Civil Engineering; The Institutuion of Engineers: Hobart, Australia, 2001; pp. 23–30. [Google Scholar]
- Chang, S.; Yang, P.P.; Yamagata, Y.; Tobey, M.B. Modeling and design of smart buildings. In Urban Systems Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–86. [Google Scholar]
- Shah, J.; Mishra, B. Customized IoT enabled wireless sensing and monitoring platform for smart buildings. Procedia Technol. 2016, 23, 256–263. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Towards Achieving a Reliable Leakage Detection and Localization Algorithm for Application in Water Piping Networks: An Overview. IEEE Access 2017, 5, 20272–20285. [Google Scholar] [CrossRef]
- Moubayed, A.; Sharif, M.; Luccini, M.; Primak, S.; Shami, A. Water Leak Detection Survey: Challenges & Research Opportunities Using Data Fusion & Federated Learning. IEEE Access 2021, 9, 40595–40611. [Google Scholar]
- Wang, Z.; Wang, L.; Dounis, A.I.; Yang, R. Integration of plug-in hybrid electric vehicles into energy and comfort management for smart building. Energy Build. 2012, 47, 260–266. [Google Scholar] [CrossRef]
- Ibrahim, K.; Tariq, S.; Bakhtawar, B.; Zayed, T. Application of fiber optics in water distribution networks for leak detection and localization: A mixed methodology-based review. H2Open J. 2021, 4, 244–261. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, B.; Chen, W.; Tan, D.; Shen, D. Review of model-based and data-driven approaches for leak detection and location in water distribution systems. Water Supply 2021, 21, 3282–3306. [Google Scholar] [CrossRef]
- Tariq, S.; Hu, Z.; Zayed, T. Micro-electromechanical systems-based technologies for leak detection and localization in water supply networks: A bibliometric and systematic review. J. Clean. Prod. 2021, 289, 125751. [Google Scholar] [CrossRef]
- El-Zahab, S.; Zayed, T. Leak detection in Water Distribution Networks: An Introductory Overview. Smart Water 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Zhou, S.; O’Neill, Z.; O’Neill, C. A review of leakage detection methods for district heating networks. Appl. Therm. Eng. 2018, 137, 567–574. [Google Scholar] [CrossRef]
- Datta, S.; Sarkar, S. A review on different pipeline fault detection methods. J. Loss Prev. Process. Ind. 2016, 41, 97–106. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Xu, M. An integrated detection and location model for leakages in liquid pipelines. J. Pet. Sci. Eng. 2019, 175, 852–867. [Google Scholar] [CrossRef]
- Zhou, M.; Pan, Z.; Liu, Y.; Zhang, Q.; Cai, Y.; Pan, H. Leak Detection and Location Based on ISLMD and CNN in a Pipeline. IEEE Access 2019, 7, 30457–30464. [Google Scholar] [CrossRef]
- Atef, A.; Zayed, T.; Hawari, A.; Khader, M.; Moselhi, O. Multi-tier method using infrared photography and GPR to detect and locate water leaks. Autom. Constr. 2016, 61, 162–170. [Google Scholar] [CrossRef]
- Park, S.; Lim, H.; Tamang, B.; Jin, J.; Lee, S.; Park, S.; Kim, Y. A Preliminary Study on Leakage Detection of Deteriorated Underground Sewer Pipes Using Aerial Thermal Imaging. Int. J. Civ. Eng. 2020, 18, 1167–1178. [Google Scholar] [CrossRef]
- Hao, T.; Rogers, C.; Metje, N.; Chapman, D.; Muggleton, J.; Foo, K.; Wang, P.; Pennock, S.R.; Atkins, P.; Swingler, S.; et al. Condition assessment of the buried utility service infrastructure. Tunn. Undergr. Space Technol. 2012, 28, 331–344. [Google Scholar] [CrossRef]
- Boon, J. Combined CCTV and Leak Detection Technology for In-Service Water Transmission Mains. Water Pract. Technol. 2012, 7. [Google Scholar] [CrossRef]
- Liu, Z.; Kleiner, Y. State of the Art Review of Inspection Technologies for Condition Assessment of Water Pipes. Measurement 2013, 46, 1–15. [Google Scholar] [CrossRef]
- Lai, W.W.; Chang, R.K.; Sham, J.F.; Pang, K. Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high-frequency Ground Penetrating Radar (GPR). Tunn. Undergr. Space Technol. 2016, 52, 157–167. [Google Scholar] [CrossRef]
- Grasmueck, M.; Weger, R.; Horstmeyer, H. Full-resolution 3D GPR imaging. Geophysics 2005, 70, K12–K19. [Google Scholar] [CrossRef]
- Chen, D.H.; Wimsatt, A. Inspection and condition assessment using ground penetrating radar. J. Geotech. Geoenviron. Eng. 2010, 136, 207–214. [Google Scholar] [CrossRef]
- Evans, R.; Frost, M.; Stonecliffe-Jones, M.; Dixon, N. A review of pavement assessment using ground penetrating radar (GPR). In Proceedings of the 12th International Conference on Ground Penetrating Radar, Birmingham, UK, 16–19 June 2008. [Google Scholar]
- Daniels, D.J. Ground Penetrating Radar; IET: London, UK, 2004; Volume 1. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Oh, S. Laboratory Model Test for Identification of a Rear Cavity Occurrence Mechanism at Sewage Pipe in Sandy Ground. Master’s Thesis, Chonnam National University, Gwangju, South Korea, 2016; pp. 16–22. [Google Scholar]
- Kim, J.; Park, S.; Kim, J.; Ahn, S.; Park, S.; Kim, Y. Accuracy evaluation and terrain model automation of reservoir using unmanned aerial vehicle system. J. Korean Soc. Agric. Eng. 2017, 59, 57–67. [Google Scholar]
- Ozevin, D.; Harding, J. Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity. Int. J. Press. Vessel. Pip. 2012, 92, 63–69. [Google Scholar] [CrossRef]
- Kalyanasundaram, P.; Jayakumar, T.; Raj, B.; Murthy, C.; Krishnan, A. Acoustic emission technique for leak detection in an end shield of a pressurised heavy water reactor. Int. J. Press. Vessel. Pip. 1989, 36, 65–74. [Google Scholar] [CrossRef]
- Ozevin, D.; Yalcinkaya, H. Reliable monitoring of leak in gas pipelines using acoustic emission method. In Proceedings of the Civil Struct. Health Monit. Workshop (CSHM), Berlin, Germany, 6–8 November 2012; pp. 1–8. [Google Scholar]
- Kammoun, M.; Kammoun, A.; Abid, M. Leak Detection Methods in Water Distribution Networks: A Comparative Survey on Artificial Intelligence Applications. J. Pipeline Syst. Eng. Pract. 2022, 13, 04022024. [Google Scholar] [CrossRef]
- Penner, E.; Stephens, J.; Odusina, E.; Akingbola, J.; Mannel, D.; Bagajewicz, M. Economic Comparison of a Simulator-Based GLR Method for Pipeline Leak Detection with Other Methods; University of Oklahoma: Norman, OK, USA, 2009. [Google Scholar]
- Ren, L.; Jiang, T.; Li, D.s.; Zhang, P.; Li, H.n.; Song, G.b. A method of pipeline corrosion detection based on hoop-strain monitoring technology. Struct. Control. Health Monit. 2017, 24, e1931. [Google Scholar] [CrossRef]
- Tian, X.; Jiao, W.; Liu, T.; Ren, L.; Song, B. Leakage detection of low-pressure gas distribution pipeline system based on linear fitting and extreme learning machine. Int. J. Press. Vessel. Pip. 2021, 194, 104553. [Google Scholar] [CrossRef]
- Niklès, M.; Vogel, B.H.; Briffod, F.; Grosswig, S.; Sauser, F.; Luebbecke, S.; Bals, A.; Pfeiffer, T. Leakage detection using fiber optics distributed temperature monitoring. In Proceedings of the Smart Structures and Materials 2004: Smart Sensor Technology and Measurement Systems, San Diego, CA, USA, 14 March 2004; Volume 5384, pp. 18–25. [Google Scholar]
- Ravet, F.; Briffod, F.; Chin, S.; Rochat, E.; Martinez, J.G. Pipeline geohazard risk monitoring with optical fiber distributed sensors: Experience with andean and arctic routes. In Proceedings of the International Pipeline Conference, Calgary, AB, Canada, 24–28 September 2018; American Society of Mechanical Engineers: Calgary, AB, Canada; Volume 51883, p. V003T04A031. [Google Scholar]
- Senior, J.M.; Jamro, M.Y. Optical Fiber Communications: Principles and Practice; Pearson Education: London, UK, 2009. [Google Scholar]
- Bremer, K.; Meinhardt-Wollweber, M.; Thiel, T.; Werner, G.; Sun, T.; Grattan, K.; Roth, B. Sewerage tunnel leakage detection using a fibre optic moisture-detecting sensor system. Sens. Actuators A Phys. 2014, 220, 62–68. [Google Scholar] [CrossRef]
- Benet, G.; Blanes, F.; Simó, J.E.; Pérez, P. Using infrared sensors for distance measurement in mobile robots. Robot. Auton. Syst. 2002, 40, 255–266. [Google Scholar] [CrossRef]
- Malheiros, P.; Gonçalves, J.; Costa, P.G.d. Towards a more accurate model for an infrared distance sensor. In Proceedings of the International Symposium on Computational Intelligence for Engineering Systems, Porto Portugal, 18–19 November 2009; p. 15. [Google Scholar]
- Schlegl, T.; Bretterklieber, T.; Neumayer, M.; Zangl, H. A novel sensor fusion concept for distance measurement in Automotive Applications. IEEE Sens. 2010, 775–778. [Google Scholar] [CrossRef]
- Ismail, R.; Omar, Z.; Suaibun, S. Obstacle-avoiding robot with IR and PIR motion sensors. IOP Conf. Ser. Mater. Sci. Eng. 2016, 152, 012064. [Google Scholar] [CrossRef]
- Aslam, H.; Kaur, M.; Mortula, M.; Ali, T. A Conceptual Approach to Detection of Water Pipe Leakage using Non Destructive Techniques. In Proceedings of the 5th International Conference on Water, Energy and Environment, Sharjah, UAE, 28 February–2 March 2017; Volume 2, p. 12. [Google Scholar]
- Bach, P.M.; Kodikara, J.K. Reliability of Infrared Thermography in Detecting Leaks in Buried Water Reticulation Pipes. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 4210–4224. [Google Scholar] [CrossRef]
- Chatelard, C.; Krapez, J.C.; Barillot, P.; Déliot, P.; Frédéric, Y.M.; Pierro, J.; Nouvel, J.F.; Hélias, F.; Louvet, Y.; Legoff, I.; et al. Multispectral approach assessment for detection of losses in water transmission systems by airborne remote sensing. EPiC Ser. Eng. 2018, 3, 408–418. [Google Scholar]
- Chatelard, C.; Muñoz, J.S.; Krapez, J.C.; Mazel, C.; Olichon, V.; Polo, J.B.; Frédéric, Y.M.; Hélias, F.; Barillot, P.; Legoff, I.; et al. Leak detection in water transmission systems by multispectral remote sensing with airplane and UAV. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7124–7127. [Google Scholar]
- Farmer, E.; Kohlrust, R.; Myers, G.; Verduzco, G. Leak-detection tool undergoes field tests. Oil Gas J. 1988, 86. [Google Scholar]
- Whaley, R.S.; Van Reet, J.; Nicholas, R.E. A tutorial on computer based leak detection methods. In Proceedings of the PSIG Annual Meeting, Corpus Christi, TX, USA, 22–23 October 1992. [Google Scholar]
- Yahia, M.; Gawai, R.; Ali, T.; Mortula, M.M.; Albasha, L.; Landolsi, T. Non-Destructive Water Leak Detection Using Multitemporal Infrared Thermography. IEEE Access 2021, 9, 72556–72567. [Google Scholar] [CrossRef]
- Jönsson, L. Interaction of a hydraulic transient with a leak in a pipe flow. In Proceedings of the 14th Australasian Fluid Mechanics Conference, Adelaide, Australia, 10–14 December 2001; Adelaide University: Adelaide, Australia, 2001. [Google Scholar]
- Ismail, M.I.M.; Dziyauddin, R.A.; Salleh, N.A.A.; Muhammad-Sukki, F.; Bani, N.A.; Izhar, M.A.M.; Latiff, L.A. A review of vibration detection methods using accelerometer sensors for water pipeline leakage. IEEE Access 2019, 7, 51965–51981. [Google Scholar] [CrossRef]
- Menke, F.; Knochel, R.; Boltze, T.; Hauenschild, C.; Leschnik, W. Moisture measurement in walls using microwaves. In Proceedings of the 1995 IEEE MTT-S International Microwave Symposium, Orlando, FL, USA, 15–20 May 1995; pp. 1147–1150. [Google Scholar]
- Siden, J.; Zeng, X.; Unander, T.; Koptyug, A.; Nilsson, H.E. Remote moisture sensing utilizing ordinary RFID tags. In Proceedings of the SENSORS, Delft, The Netherlands, 14–20 October 2007; pp. 308–311. [Google Scholar]
- Hao, T.; Burd, H.J.; Edwards, D.J.; Stevens, C.J. Enhanced detection of buried assets. In Proceedings of the 2008 Loughborough Antennas and Propagation Conference, Loughborough, UK, 17–18 March 2008; pp. 249–252. [Google Scholar]
- Thornton, J. Speed and Quality of Leak Repair. Water Loss Control. Man. 2002, 241. [Google Scholar]
- Puust, R.; Kapelan, Z.; Savic, D.; Koppel, T. A Review of Methods for Leakage Management in Pipe Networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Ishii, H.; Seki, K.; Morishita, H.; Yamazaki, T. Leakage Detection Method using Helium; United. States Patent US4419882A, 13 December 1983. [Google Scholar]
- Erizaldy, A.; Nurhajati, N. Leak Detection on Water Distribution Networks using Helium Gas. Civ. Environ. Res. 2017, 9, 20–29. [Google Scholar]
- de Joode, A.S.; Hoffman, A. Pipeline leak detection and theft detection using rarefaction waves. In Proceedings of the 6th Pipeline Technology Conference, Hannover, Germany, 4–5 April 2011. [Google Scholar]
- Chung, D.; Pullin, D. Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence. J. Fluid Mech. 2010, 643, 279–308. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.; Khalifa, A.; Youcef-Toumi, K.; Chatzigeorgiou, D. Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction. Comput. Fluids 2012, 57, 110–123. [Google Scholar] [CrossRef]
- Jujuly, M.; Thodi, P.; Rahman, A.; Khan, F. Computational fluid dynamics modeling of subsea pipeline leaks in arctic conditions. In Proceedings of the Arctic Technology Conference, St. John’s, NL, Canada, 24–26 October 2016. [Google Scholar] [CrossRef]
- Moubayed, A.; Injadat, M.; Nassif, A.B.; Lutfiyya, H.; Shami, A. E-learning: Challenges and research opportunities using machine learning & data analytics. IEEE Access 2018, 6, 39117–39138. [Google Scholar]
- Kruse, R.; Gebhardt, J.E.; Klowon, F. Foundations of Fuzzy Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Islam, M.S.; Sadiq, R.; Rodriguez, M.J.; Francisque, A.; Najjaran, H.; Hoorfar, M. Leakage detection and location in water distribution systems using a fuzzy-based methodology. Urban Water J. 2011, 8, 351–365. [Google Scholar] [CrossRef]
- Mashford, J.; De Silva, D.; Burn, S.; Marney, D. Leak detection in simulated water pipe networks using SVM. Appl. Artif. Intell. 2012, 26, 429–444. [Google Scholar] [CrossRef]
- Colombo, A.F.; Lee, P.; Karney, B.W. A Selective Literature Review of Transient-Based Leak Detection Methods. J.-Hydro.-Environ. Res. 2009, 2, 212–227. [Google Scholar] [CrossRef]
- Stampolidis, A.; Soupios, P.; Vallianatos, F.; Tsokas, G. Detection of leaks in buried plastic water distribution pipes in urban places–A case study. In Proceedings of the 2nd International Workshop onAdvanced Ground Penetrating Radar, Delft, The Netherlands, 14–16 May 2003; pp. 120–124. [Google Scholar]
- Hadjimitsis, D.G.; Agapiou, A.; Themistocleous, K.; Alexakis, D.D.; Toulios, G.; Perdikou, S.; Sarris, A.; Toulios, L.; Clayton, C. Detection of water pipes and leakages in rural water supply networks using remote sensing techniques. Remote. Sens.-Environ.-Integr. Approaches 2013, 155–180. [Google Scholar] [CrossRef]
- Chan, T.K.; Chin, C.S.; Zhong, X. Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection. IEEE Access 2018, 6, 78846–78867. [Google Scholar] [CrossRef]
- Griffin, J.D.; Durgin, G.D.; Haldi, A.; Kippelen, B. RF tag antenna performance on various materials using radio link budgets. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 247–250. [Google Scholar] [CrossRef]
- Dobkin, D.M.; Weigand, S.M. Environmental effects on RFID tag antennas. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Los Angeles, CA, USA, 18–27 July 2005; pp. 135–138. [Google Scholar]
- Penteado, C.; Olivatti, Y.; Lopes, G.; Rodrigues, P.; Filev, R.; Aquino, P.T. Water Leaks Detection Based on Thermal Images. In Proceedings of the 2018 IEEE international smart cities conference (ISC2), Kansas, MO, USA, 16–19 September 2018; pp. 1–8. [Google Scholar]
- Hassan, N.; Akamatsu, N. A New Approach for Contrast Enhancement Using Sigmoid Function. Int. Arab J. Inf. Technol. 2004, 1, 221–225. [Google Scholar]
- Sergio Rodrigues, P.; Wachs-Lopes, G.; Morello Santos, R.; Coltri, E.; Antonio Giraldi, G. A q-extension of sigmoid functions and the application for enhancement of ultrasound images. Entropy 2019, 21, 430. [Google Scholar] [CrossRef]
- Qu, Z.; Feng, H.; Zeng, Z.; Zhuge, J.; Jin, S. A SVM-based pipeline leakage detection and pre-warning system. Measurement 2010, 43, 513–519. [Google Scholar] [CrossRef]
- Cody, R.; Narasimhan, S.; Tolson, B. One-class SVM–Leak detection in water distribution systems. Proc. Comput. Control. Water Ind. CCWI 2017. [Google Scholar] [CrossRef]
- Mamo, T.G. Virtual District Metered Area Municipal Water Supply Pipeline Leak Detection and Classification Using Advance Pattern Recognizer Multi-Class Support Vector Machine For Risk-Based Asset Management. Ph.D. Thesis, Polytechnic Institute of New York University, New York, NY, USA, 2014. [Google Scholar]
- Zhang, Q.; Wu, Z.Y.; Zhao, M.; Qi, J.; Huang, Y.; Zhao, H. Leakage zone identification in large-scale water distribution systems using multiclass support vector machines. J. Water Resour. Plan. Manag. 2016, 142, 04016042. [Google Scholar] [CrossRef]
- Alves Coelho, J.; Glória, A.; Sebastião, P. Precise water leak detection using machine learning and real-time sensor data. IoT 2020, 1, 474–493. [Google Scholar] [CrossRef]
- Lin, H.; Lin, H.; Fang, X.; Wang, M.; Huang, L. Intelligent pipeline leak detection and analysis system. In Proceedings of the 2020 15th International Conference on Computer Science & Education (ICCSE), Delft, The Netherlands, 18–22 August 2020; pp. 206–210. [Google Scholar]
- Banjara, N.K.; Sasmal, S.; Voggu, S. Machine Learning Supported Acoustic Emission Technique for Leakage Detection in Pipelines. Int. J. Press. Vessel. Pip. 2020, 188, 104243. [Google Scholar] [CrossRef]
- Ye, G.; Fenner, R.A. Kalman filtering of hydraulic measurements for burst detection in water distribution systems. J. Pipeline Syst. Eng. Pract. 2011, 2, 14–22. [Google Scholar] [CrossRef]
- Kang, D.; Lansey, K. Real-time demand estimation and confidence limit analysis for water distribution systems. J. Hydraul. Eng. 2009, 135, 825–837. [Google Scholar] [CrossRef]
- Okeya, I.; Kapelan, Z.; Hutton, C.; Naga, D. Online burst detection in a water distribution system using the Kalman filter and hydraulic modelling. Procedia Eng. 2014, 89, 418–427. [Google Scholar] [CrossRef]
- Rashid, S.; Akram, U.; Khan, S.A. WML: Wireless sensor network based machine learning for leakage detection and size estimation. Procedia Comput. Sci. 2015, 63, 171–176. [Google Scholar] [CrossRef]
- Kayaalp, F.; Zengin, A.; Kara, R.; Zavrak, S. Leakage detection and localization on water transportation pipelines: A multi-label classification approach. Neural Comput. Appl. 2017, 28, 2905–2914. [Google Scholar] [CrossRef]
- Fereidooni, Z.; Tahayori, H.; Bahadori-Jahromi, A. A hybrid model-based method for leak detection in large scale water distribution networks. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1613–1629. [Google Scholar] [CrossRef]
- Schalkoff, R.J. Artificial Neural Networks; McGraw-Hill Higher Education: New York, NY, USA, 1997. [Google Scholar]
- Shukla, H.; Piratla, K. Leakage Detection in Water Pipelines using Supervised Classification of Acceleration Signals. Autom. Constr. 2020, 117, 103256. [Google Scholar] [CrossRef]
- Pedraza, A.; Gallego, J.; Lopez, S.; Gonzalez, L.; Laurinavicius, A.; Bueno, G. Glomerulus Classification with Convolutional Neural Networks. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh, UK, 11–13 July 2017; pp. 839–849. [Google Scholar]
- Cody, R.A.; Tolson, B.A.; Orchard, J. Detecting leaks in water distribution pipes using a deep autoencoder and hydroacoustic spectrograms. J. Comput. Civ. Eng. 2020, 34, 04020001. [Google Scholar] [CrossRef]
- Awwad, A.; Yahyia, M.; Albasha, L.; Mortula, M.M.; Ali, T. Communication network for ultrasonic acoustic water leakage detectors. IEEE Access 2020, 8, 29954–29964. [Google Scholar] [CrossRef]
- Boaz, L.; Kaijage, S.; Sinde, R. An overview of pipeline leak detection and location systems. In Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014), Arusha, Tanzania, 14–18 July 2014; pp. 133–137. [Google Scholar]
- Parida, R.K.; Thyagarajan, V.; Menon, S. A thermal imaging based wireless sensor network for automatic water leakage detection in distribution pipes. In Proceedings of the 2013 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 17–19 January 2013; pp. 1–6. [Google Scholar]
- Tian, C.H.; Yan, J.C.; Huang, J.; Wang, Y.; Kim, D.S.; Yi, T. Negative pressure wave based pipeline leak detection: Challenges and algorithms. In Proceedings of the 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, Suzhou, China, 8–10 July 2012; pp. 372–376. [Google Scholar]
- Kim, Y.H.; Ahn, S.C.; Kwon, W.H. Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets Syst. 2000, 111, 215–224. [Google Scholar] [CrossRef]
- Ahn, S.C.; Kim, Y.H.; Kwon, W.H. Computational complexity of fuzzy controllers and its application to a real-time loop controller. IFAC Proc. Vol. 1995, 28, 441–447. [Google Scholar]
- Da Silva, H.V.; Morooka, C.K.; Guilherme, I.R.; da Fonseca, T.C.; Mendes, J.R. Leak detection in petroleum pipelines using a fuzzy system. J. Pet. Sci. Eng. 2005, 49, 223–238. [Google Scholar] [CrossRef]
- Vattano, S. Smart buildings for A Sustainable Development. J. Econ. World 2014, 2, 310–324. [Google Scholar]
- Kalogeras, A.P.; Rivano, H.; Ferrarini, L.; Alexakos, C.; Iova, O.; Rastegarpour, S.; Mbacké, A.A. Cyber physical systems and Internet of Things: Emerging paradigms on smart cities. In Proceedings of the 2019 First International Conference on Societal Automation (SA), Krakow, Poland, 4–6 September 2019; pp. 1–13. [Google Scholar]
- Mylonas, G.; Kalogeras, A.; Kalogeras, G.; Anagnostopoulos, C.; Alexakos, C.; Muñoz, L. Digital twins from smart manufacturing to smart cities: A survey. IEEE Access 2021, 9, 143222–143249. [Google Scholar] [CrossRef]
- Murali, M.; Ramsami, A.; Varanasi, S. Smart Building Automation Using Internet of Things. IRJET J. 2019, 6, 1504–1510. [Google Scholar]
- Mace, J.C.; Czekster, R.M.; Morisset, C.; Maple, C. Smart building risk assessment case study: Challenges, deficiencies and recommendations. In Proceedings of the 2020 16th European Dependable Computing Conference (EDCC), Munich, Germany, 7–10 September 2020; pp. 59–64. [Google Scholar]
Review | Highlight | Leak Detection | Data Analysis | Application |
---|---|---|---|---|
Techniques | Techniques | |||
[12] | Advantages, limitations, and solutions approach for various pipeline systems |
|
| Pipeline systems |
[9] | Fiber optics research developments in water leak utilizing bibliometric and systemic analysis |
|
| Water distribution networks |
[13] | Model-based and data-driven techniques to detect leaks in water distribution systems |
|
| Water distribution networks |
[14] | Comparison of hydrophones with other sensing technologies for detecting water leaks |
|
| Pipeline systems |
[15] | A scientometric investigation and qualitative discussions based on micro-electromechanical systems (MEMS) in leak detection |
|
| Water distribution networks |
[16] | History of leak detection in pipelines by using visualization tools VOSviewer and CiteNetExplorer |
|
| Water distribution networks |
[11] | Two distinct concepts in water leak detection technique which is sensor data fusion and federated learning |
|
| Pipeline systems |
[17] | The distinctions, pros, and cons between water distribution networks, oil/gas networks, and district heating networks |
|
| District heating networks |
Type | Method | Advantages | Limitations |
---|---|---|---|
Hardware | Closed-Circuit Television (CCTV) | ||
Acoustic Emission |
| ||
Ground Penetration Radar (GPR) |
|
| |
Fiber optics |
| ||
Infrared Thermography |
| ||
RFID tags sensor |
| ||
Leak Noise Correlators (LNC) |
|
| |
Tracer Gas Technique (TGT) |
| ||
Pig-Mounted Acoustic (PMA) |
| ||
Software | Negative Pressure Wave (NPW) |
| |
Computational Fluid Dynamics (CFD) |
|
| |
Fuzzy Methods |
|
|
Method | Performance | |||
---|---|---|---|---|
Low Cost | Easy Installation | High Accuracy | Fast Response Time | |
Closed-Circuit Television (CCTV) | X | X | / | X |
Acoustic Emission | X | / | / | / |
Ground Penetration Radar | X | / | X | X |
Fiber optics | X | / | / | / |
Infrared Thermography | / | / | X | / |
RFID tags sensor | / | / | X | / |
Leak Noise Correlators (LNC) | X | X | / | X |
Tracer Gas Technique (TGT) | X | X | / | X |
Pig-Mounted Acoustic (PMA) | X | X | / | X |
Negative Pressure Waves (NPW) | / | / | X | / |
Computational Fluid Dynamics (CFD) | / | X | / | / |
Fuzzy Methods | X | X | / | / |
Algorithms | Method | Performance | ||||
---|---|---|---|---|---|---|
Classification | Prediction | Large Data Sets | Easy Implementation | Fast Detection Time | Sensitive to Noise Data | |
Support Vector Machine (SVM) | / | X | X | / | / | / |
Kalman Filtering | / | X | X | X | / | X |
K-Nearest Neighbors (KNN) | X | / | X | / | / | / |
Artificial Neural Networks (ANN) | X | / | / | X | X | / |
Convolutional Neural Networks (CNN) | / | X | / | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Yussof, N.A.; Ho, H.W. Review of Water Leak Detection Methods in Smart Building Applications. Buildings 2022, 12, 1535. https://doi.org/10.3390/buildings12101535
Mohd Yussof NA, Ho HW. Review of Water Leak Detection Methods in Smart Building Applications. Buildings. 2022; 12(10):1535. https://doi.org/10.3390/buildings12101535
Chicago/Turabian StyleMohd Yussof, Nurfarah Anisah, and Hann Woei Ho. 2022. "Review of Water Leak Detection Methods in Smart Building Applications" Buildings 12, no. 10: 1535. https://doi.org/10.3390/buildings12101535
APA StyleMohd Yussof, N. A., & Ho, H. W. (2022). Review of Water Leak Detection Methods in Smart Building Applications. Buildings, 12(10), 1535. https://doi.org/10.3390/buildings12101535