Mechanical and Thermal Behavior of Compressed Earth Bricks Reinforced with Lime and Coal Aggregates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.3. Brick Preparation
3. Discussion
3.1. Soil Identification Results
3.2. Formulation
3.3. Reconstructed Soil Results
3.3.1. Specific Weight
3.3.2. Compressive Strength
3.3.3. Thermal Conductivity
Composition | Thermal Conductivity (W/m.K) | Raw Soil Thermal Conductivity (W/m.K) | Difference between Raw and Modified State | Compressive Strength (MPa) | Reference |
---|---|---|---|---|---|
L20CA | 0.256 | 0.635 | 60% | 0.62 | Our Study |
L15CA | 0.399 | 0.635 | 37.17% | 0.81 | Our Study |
L10CA | 0.433 | 0.635 | 32% | 0.99 | Our Study |
Clay + 4%Alfa | 0.372 | 0.938 | 60.34% | 1.75 | [53] |
Clay + 4%straw | 0.34 | 0.938 | 63.75% | 1.53 | [53] |
Clay + 6% argan nuts + 5% cement | 0.481 | 0.865 | 44.39% | 1.85 | [54] |
Raw earth + 6% barley straw | 0.155 | 0.471 | 67.09% | 0.4 | [18] |
Raw earth + 6% lavender straw | 0.289 | 0.471 | 38.64% | 0.6 | [18] |
74%Laterite + 20%sand +6%cement | 0.69 | 0.8 | 13.75% | 2.5 | [55] |
Raw earth + 30% olive waste | 0.4 | 0.65 | 38.46% | _ | [20] |
Raw earth + 30% dates palm fiber | 0.28 | 0.65 | 56.92% | _ | [20] |
Raw earth + 30% straw | 0.26 | 0.65 | 60.00% | _ | [20] |
3.3.4. Economical Manufacturing CEBs Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Fakih, A.; Mohammed, B.S.; Liew, M.S.; Nikbakht, E. Incorporation of waste materials in the manufacture of masonry bricks: An update review. J. Build. Eng. 2019, 21, 37–54. [Google Scholar] [CrossRef]
- Zami, M.S.; Lee, A. Economic benefits of contemporary earth construction in low-cost urban housing—State-of-the-art review. J. Build. Apprais 2010, 5, 259–271. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Widder, L. Earth eco-building: Textile-reinforced earth block construction. Energy Procedia 2017, 122, 757–762. [Google Scholar] [CrossRef]
- Murmu, A.L.; Patel, A. Towards sustainable bricks production: An overview. Constr. Build. Mater. 2018, 165, 112–125. [Google Scholar] [CrossRef]
- Danso, H.; Martinson, D.B.; Ali, M.; Williams, J.B. Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Constr. Build. Mater. 2015, 101, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Bi, W.; Yan, Z.; Zhao, H.; Sun, L.; Wang, X.; Zhang, Z. The Influence of Two Natural Reinforcement Fibers on the Hygrothermal Properties of Earthen Plasters in Mogao Grottoes of China. J. Renew. Mater. 2020, 8, 1691–1710. [Google Scholar] [CrossRef]
- Javed, U.; Khushnood, R.A.; Memon, S.A.; Jalal, F.E.; Zafar, M.S. Sustainable incorporation of lime-bentonite clay composite for production of ecofriendly bricks. J. Clean. Prod. 2020, 263, 121469. [Google Scholar] [CrossRef]
- Delgado, M.C.J.; Guerrero, I.C. Earth building in Spain. Constr. Build. Mater. 2006, 20, 679–690. [Google Scholar] [CrossRef]
- Raheem, A.A.; Bello, O.A.; Makinde, O.A. A Comparative Study of Cement and Lime Stabilized Lateritic Interlocking Blocks. Pacific J. Sci. Technol. 2010, 11, 27–34. [Google Scholar]
- Miqueleiz, L.; Ramírez, F.; Seco, A.; Nidzam, R.M.; Kinuthia, J.M.; Tair, A.A.; Garcia, R.A. The use of stabilised Spanish clay soil for sustainable construction materials. Eng. Geol. 2012, 133–134, 9–15. [Google Scholar] [CrossRef]
- Nagaraj, H.B.; Sravan, M.V.; Arun, T.G.; Jagadish, K.S. Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. Int. J. Sustain. Built Environ. 2014, 3, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Imanzadeh, S.; Hibouche, A.; Jarno, A.; Taibi, S. Formulating and optimizing the compressive strength of a raw earth concrete by mixture design. Constr. Build. Mater. 2018, 163, 149–159. [Google Scholar] [CrossRef]
- Basma, A.A.; Tuncer, E.R. Effect of lime on volume change and compressibility of expansive clays. Trans Res. Rec. C 1991, 1295, 52–61. [Google Scholar]
- Chen, X.-F.; Jiao, C.-J. Microstructure and physical properties of concrete containing recycled aggregates pre-treated by a nano-silica soaking method. Build. Eng. 2022, 51, 104363. [Google Scholar] [CrossRef]
- Taha, Y.; Benzaazoua, M.; Hakkou, R.; Mansori, M. Coal mine wastes recycling for coal recovery and eco-friendly bricks production. Miner. Eng. 2017, 107, 123–138. [Google Scholar] [CrossRef]
- Vavřínová, N.; Stejskalová, K.; Teslík, J.; Kubenková, K.; Majer, J. Research of Mechanical and Thermal Properties of Composite Material Based on Gypsum and Straw. J. Renew. Mater. 2022, 10, 1859–1873. [Google Scholar] [CrossRef]
- Giroudon, M.; Laborel-Préneron, A.; Aubert, J.E.; Magniont, C. Comparison of barley and lavender straws as bioaggregates in earth bricks. Constr. Build. Mater. 2019, 202, 254–265. [Google Scholar] [CrossRef]
- Ajouguim, S.; Talibi, S.; Djelal-Dantec, C.; Hajjou, H.; Waqif, M.; Stefanidou, M.; Saadi, L. Effect of Alfa fibers on the mechanical and thermal properties of compacted earth bricks. Mater. Today Proc. 2019, 37, 4049–4057. [Google Scholar] [CrossRef]
- Lamrani, M.; Mansour, M.; Laaroussi, N.; Khalfaoui, M. Thermal study of clay bricks reinforced by three ecological materials in south of Morocco. Energy Procedia 2019, 156, 273–277. [Google Scholar] [CrossRef]
- Khoudja, D.; Taallah, B.; Izemmouren, O.; Aggoun, S.; Herihiri, O.; Guettala, A. Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste. Constr. Build. Mater. 2021, 270, 121824. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Wei, W.; Jamil, I.; Sharif, M.; Chandio, A.A.; Ahmad, F. Evaluating the factors of coal consumption inefficiency in energy intensive industries of China: An epsilon-based measure model. Resour. Policy 2022, 78, 102800. [Google Scholar] [CrossRef]
- Masuka, S.; Gwenzi, W.; Rukuni, T. Development, engineering properties and potential applications of unfired earth bricks reinforced by coal fly ash, lime and wood aggregates. J. Build. Eng. 2018, 18, 312–320. [Google Scholar] [CrossRef]
- Meliho, M.; Khattabi, A.; Mhammdi, N. Spatial assessment of soil erosion risk by integrating remote sensing and GIS techniques: A case of Tensift watershed in Morocco. Environ. Earth Sci. 2020, 79, 1–19. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, Q.; Jiang, S.; Shen, Z.; Zhang, Y.; Tang, R.; Yang, A.; Chow, C.W. Utilization of Dredged River Sediment in Preparing Autoclaved Aerated Concrete Blocks. J. Renew. Mater. 2022, 10, 1–20. [Google Scholar] [CrossRef]
- Serbah, B.; Abou-Bekr, N.; Bouchemella, S.; Eid, J.; Taibi, S. Dredged sediments valorisation in compressed earth blocks: Suction and water content effect on their mechanical properties. Constr. Build. Mater. 2018, 158, 503–515. [Google Scholar] [CrossRef]
- Lyons, A. Lime, cement and concrete. In Materials for Architects and Builders; Routledge: Oxfordshire, UK, 2020; pp. 79–138. [Google Scholar] [CrossRef]
- Moevus, M.; Fontaine, L.; Anger, R.; Doat, P. Mariette Projet: Béton d’Argile Environnemental (B.A.E.); CRAterre, ENSAG, Ministère de l’Écologie, du Développement Durable et de l’Énergie: Paris, France, 2013; 877p.
- IMANOR NM EN 933-1; Essais pour Déterminer les Caractéristiques Géométriques des Granulats—Partie 1: Détermination de la Granularité—Analyse Granulométrique par Tamisage. IMANOR: Rabat, Marroco, 2018.
- PR XP P13-901; Blocs de Terre Comprimée pour Murs et Cloisons Définitions-Spécifications—Méthodes D’essai—Conditions de Réception. AFNOR: Saint Denis, France, 2017.
- Van Damme, H.; Houben, H. Earth concrete. Stabilization revisited. Cem. Concr. Res. 2018, 114, 90–102. [Google Scholar] [CrossRef]
- MOPT. Bases Para el Diseno y Construcción con Tapial; Centro de Publicaciones, Secretaria General Técnica Ministerio de Obras Públicas y Transportes: Madrid, Spain, 1992.
- IMANOR NM ISO/TS 17892-12; Reconnaissance et essais géotechniques—Essais de sol au laboratoire—Partie 12: Détermination des limites d’Atterberg. IMANOR: Rabat, Marroco, 2015.
- NM 13.1.023; Sols: Reconnaissance et essais Determination des References de Compactage d un Materiau Essai Proctor Normal Essai Proctor Modifie. IMANOR: Rabat, Morocco, 2019.
- Mouiya, M.; Arib, A.; Taha, Y.; Tamraoui, Y.; Hakkou, R.; Alami, J.; Huger, M.; Tessier-Doyen, N. Characterization of a chiastolite-type andalusite: Structure and physicochemical properties related to mullite transformation. Mater. Res. Express 2022, 9, 74002. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum recycling: New horizons for a more sustainable road material application. J. Build. Eng. 2020, 30, 101267. [Google Scholar] [CrossRef]
- NTC 5324; Bloques de Suelo Cemento para Muros y Divisiones: Definiciones, Especificaciones, Métodos de Ensayos Condiciones de Entrega. ICONTEC: Bogotá, Colombia, 2004.
- Olivier, M.; Mesbah, A.; Morel, J.C.; El Gharbi, Z. Test Methods for strength tests on blocks of compressed earth. Mode opératoire pour la réalisation d’essais de résistance sur blocs de terre comprimée. Mater. Struct. 1997, 30, 515–517. [Google Scholar] [CrossRef]
- UNE 41410; Compressed Earth Blocs for Walls and Partitions: Definitions, Specifications and Test Methods. UNE: Madrid, Spain, 2008.
- Quang, T.N.; Hervi, D.B.; Cédrc, S. Determination of thermal properties of asphalt mixtures as another output from cy-clic tension-compression test. Road Mater. Pavement Des. 2012, 13, 85–103. [Google Scholar]
- Boukhattem, L.; Boumhaout, M.; Hamdi, H.; Benhamou, B.; Nouh, F.A. Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh. Constr. Build. Mater. 2017, 148, 811–823. [Google Scholar] [CrossRef]
- Guering, L. Construction à Faible Coût dans les Programmes Spéciaux de Travaux Publics; Principes Directeurs pour L’emploi de la Terre Crue; Bureau International du Travail: Genève, Switzerland, 1985. [Google Scholar]
- Hugo, G.H.H. Earth Construction: A Comprehensive Guide; Intermediate Technology Publications: Stanford, CA, USA, 1994. [Google Scholar]
- Lahdili, M.; El Abbassi, F.E.; Sakami, S.; Aamouche, A. The improvement of mechanical and thermal behavior of local compressed Earth blocks. AIP Conf. Proc. 2021, 2345, 020040. [Google Scholar] [CrossRef]
- Ma, S.K.S.; Qian, Y. Performance-based study on the rheological and hardened properties of blended cement mortars incorporating palygorskite clays and carbon nanotubes. Constr. Build. Mater. 2018, 171, 663–671. [Google Scholar] [CrossRef]
- Delgado, M.C.J.; Guerrero, I.C. The selection of soils for unstabilised earth building: A normative review. Constr. Build. Mater. 2007, 21, 237–251. [Google Scholar] [CrossRef]
- Koutous, A.; Hilali, E. Grain shape effects on the mechanical behavior of compacted earth. Case Stud. Constr. Mater. 2019, 11, e00303. [Google Scholar] [CrossRef]
- Yu, B.; Zhou, J.; Cheng, B.; Yang, W. Compressive strength development and microstructure of magnesium phosphate cement concrete. Constr. Build. Mater. 2021, 283, 122585. [Google Scholar] [CrossRef]
- Taj-Eddine, J.-P.T.K.; Rey, J.; Canérot, J.; Peybernés, B. Lithostratigraphy, biostratigraphy and sedimentary dynamics of the Lower Cretaceous deposits on the northern side of the western High Atlas (Morocco). Cretac. Res. 1988, 141–158. [Google Scholar]
- Missenard, M.S.Y.; Taki, Z.; de Lamotte, D.F.; Benammi, M.; Hafid, M.; Leturmy, P. Tectonic styles in the Marrakesh High Atlas (Morocco): The role of heritage and mechanical stratigraphy. J. Afr. Earth Sci. 2007, 48, 247–266. [Google Scholar] [CrossRef]
- Gundu, R. Carbonate/clay-mineral relationships and the origin of protodolomite in l-2 and l-3 carbonate reservoir rocks of the bombay high oil field, INDIA. Sediment. Geol. 1981, 29, 223–232. [Google Scholar] [CrossRef]
- Le Runigo, D.D.B.; Cuisinier, O.; Cui, Y.-J.; Ferber, V. Impact of initial state on the fabric and permeability of a lime-treated silt under long-term leaching. Can. Geotech. J. 2009, 46, 1243–1257. [Google Scholar] [CrossRef]
- El Hamdouni, Y.; Khabbazi, A.; Benayad, C.; Dadi, A.; Ahmid, O.I. Contribution to the Thermal and Mechanical Behavior of the Two Materials at the Base of Clay Reinforced by Fibers ALFA and of Straw Fibers. Res. J. Appl. Sci. Eng. Technol. 2016, 12, 490–497. [Google Scholar] [CrossRef]
- Tatane, M.; Elminor, H.; Ayeb, M.; Lacherai, A.; Feddaoui, M.; Aitnouh, F.; Boukhattem, L. Effect of Argan Nut Shell Powder on Thermal and Mechanical Behavior of Compressed Earth Blocks Performance des panneaux photovoltaïques View project PROPRE.MA View project Effect of Argan Nut Shell Powder on Thermal and Mechanical Behavior of Compressed E. Int. J. Appl. Eng. Res. 2018, 13, 4740–4750. Available online: http://www.ripublication.com (accessed on 1 September 2022).
- Toure, P.M.; Sambou, V.; Faye, M.; Thiam, A. Mechanical and thermal characterization of stabilized earth bricks. Energy Procedia 2017, 139, 676–681. [Google Scholar] [CrossRef]
Soils | Proctor Test | Atterberg Limits | |||
---|---|---|---|---|---|
Dry Density (kg/m3) | Water Content (%) | Liquidity Limit (%) | Plasticity Limit (%) | Plasticity Index (%) | |
Zrekten | 1.98 | 10 | 39 | 19 | 17 |
Ouirgane | 1.98 | 8 | 32 | 21 | 15 |
Ouled Dlim | 1.97 | 7 | 34 | 20 | 14 |
Soil | Granulometric Sieve (mm) | Specific Weight (kg/m3) | Chemical Analysis (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | MnO | TiO2 | Na2O | |||
Lime | 0/1 | 0.67 | 2.68 | 1.50 | 0.05 | 42.52 | 31.36 | 0.08 | 0.02 | 0.02 | 0.66 |
Coal aggregate | 2/20 | 1.39 | 20.22 | 7.05 | 1.58 | 2.10 | 0.71 | 1.01 | 0.02 | 0.40 | 0.57 |
Raw Earth | L10CA | L15CA | L20CA | L | 10CA | 15CA | 20CA | |
---|---|---|---|---|---|---|---|---|
Lime (%) | - | 4.0 | 4.0 | 4.0 | 4.0 | - | - | - |
CA (%) | - | 10.0 | 15.0 | 20.0 | - | 10.0 | 15.0 | 20.0 |
Earth (%) | 74.5 | 63.5 | 58.0 | 52.5 | 71.52 | 67.0 | 63.3 | 61.6 |
Water (%) | 25.5 | 22.5 | 23.0 | 23.5 | 24.48 | 23.0 | 21.7 | 18.4 |
Materials | Price |
---|---|
Price of CA in Morocco (2021) | 0.11 USD/kg |
Price of Raw Earth Brick in Morocco | 0.21 USD/brick |
Price of Earth Brick + 5% Cement in Morocco | 0.37 USD/brick |
4% of Lime | 0.05 USD/brick |
L20CA CEB | 0.33 USD/CEB |
L15CA CEB | 0.31 USD/CEB |
L10CA CEB | 0.30 USD/CEB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahdili, M.; El Abbassi, F.-E.; Sakami, S.; Aamouche, A. Mechanical and Thermal Behavior of Compressed Earth Bricks Reinforced with Lime and Coal Aggregates. Buildings 2022, 12, 1730. https://doi.org/10.3390/buildings12101730
Lahdili M, El Abbassi F-E, Sakami S, Aamouche A. Mechanical and Thermal Behavior of Compressed Earth Bricks Reinforced with Lime and Coal Aggregates. Buildings. 2022; 12(10):1730. https://doi.org/10.3390/buildings12101730
Chicago/Turabian StyleLahdili, Mohamed, Fatima-Ezzahra El Abbassi, Siham Sakami, and Ahmed Aamouche. 2022. "Mechanical and Thermal Behavior of Compressed Earth Bricks Reinforced with Lime and Coal Aggregates" Buildings 12, no. 10: 1730. https://doi.org/10.3390/buildings12101730