Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Architectural Design
3.2. Materials Selection and Scenarios Definition
3.3. BIM Modeling and Sustainability Analysis
3.4. Fuzzy Analytic Hierarchy Process (FAHP) Multicriteria Analysis and Sustainability Performance
4. Results
4.1. Economic Impact
4.2. Environmental Impact
4.3. Social Impact
4.4. FAHP Multicriteria Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Invidiata, A.; Lavagna, M.; Ghisi, E. Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Build. Environ. 2018, 139, 58–68. [Google Scholar] [CrossRef]
- Hammad, A.W.A.; da Costa, B.B.F.; Soares, C.A.P.; Haddad, A.N. The use of unmanned aerial vehicles for dynamic site layout planning in large-scale construction projects. Buildings 2021, 11, 602. [Google Scholar] [CrossRef]
- Islam, R.; Nazifa, T.H.; Yuniarto, A.; Uddin, A.S.M.S.; Salmiati, S.; Shadid, S. An empirical study of construction and demolition waste generation and implication of recycling. Waste Manag. 2019, 95, 10–21. [Google Scholar] [CrossRef]
- Craveiro, F.; Duarte, J.P.; Bartolo, H.; Bartolo, P.J. Additive manufacturing as an enabling technology for digital construction: A perspective on construction 4.0. Autom. Constr. 2019, 103, 251–267. [Google Scholar] [CrossRef]
- Mercader-Moyano, P.; Esquivias, P.M.; Muntean, R. Eco-Efficient analysis of a refurbishment proposal for a social housing. Sustainability 2020, 12, 6725. [Google Scholar] [CrossRef]
- United Nations (UN) Sustainable Development Goals Report. 2019. Available online: https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf (accessed on 20 December 2021).
- Carnemolla, P.; Skinner, V. Outcomes associated with providing secure, stable, and permanent housing for people who have been homeless: An international scoping review. J. Plann. Lit. 2021, 36, 508–525. [Google Scholar] [CrossRef]
- Oliveira, R.; Vicente, R.; Almeida, R.M.S.F.; Figueiredo, A. The importance of in situ characterisation for the mitigation of poor indoor environmental conditions in social housing. Sustainability 2021, 13, 9836. [Google Scholar] [CrossRef]
- Santos, L.; Pontes, I.S.; Bastos, L.P.; Melo, G.V.M.; Barata, M. Acoustic perfomance of social housings in Brazil: Assessment of light weight expanded polystyrene concrete as resilient subfloor. J. Build. Eng. 2021, 41, 102442. [Google Scholar] [CrossRef]
- Dalbem, R.; Cunha, E.G.; Vicnete, R.; Figueiredo, A.; Oliveira, R.; Silva, A.C.S.B. Optimisation of a social housing for south of Brazil: From basic performance standard to passive house concept. Energy 2019, 167, 1278–1296. [Google Scholar] [CrossRef]
- Mahecha, R.E.G.; Caldas, L.R.; Garaffa, R.; Lucena, A.F.P.; Szklo, A.; Filho, R.D.T. Constructive systems for social housing deployment in developing countries: A case study using dynamic life cycle carbon assessment and cost analusis in Brazil. Energy Build. 2020, 227, 110395. [Google Scholar] [CrossRef]
- Paidakaki, A.; Lang, R. Uncovering social sustainability in housing systems through the lens of institutional capital: A study of two housing alliances in Vienna, Austria. Sustainability 2021, 13, 9726. [Google Scholar] [CrossRef]
- Rossi, M.M.; Favretto, A.P.O.; Grassi, C.; DeCarolis, J.; Cho, S.; Hill, D.; Chvatal, K.M.S.; Ranjithan, R. Metamodels to assess the thermal perfomance of naturally ventilated, low-cost houses in Brazil. Energy Build. 2019, 204, 109457. [Google Scholar] [CrossRef]
- Lin, M.; Afshari, A.; Azar, E. A data-driven analysis of building energy use with emphasis on operation and maintenance: A case study from the UAE. J. Clean. Prod. 2018, 192, 169–178. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks—The Triple Bottom Line of 21st Century Business, 1st ed.; Capstone: Oxford, UK, 1997. [Google Scholar]
- Llatas, C.; Soust-Verdaguer, B.; Passer, A. Implementing life cycle sustainability assessment during design stages in building information modelling: From systematic literature review to a methodological approach. Build. Environ. 2020, 182, 107164. [Google Scholar] [CrossRef]
- Alwan, Z.; Jones, P.; Holgate, P. Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using building information modelling. J. Clean. Prod. 2017, 140, 349–358. [Google Scholar] [CrossRef]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. A BIM-aided construction waste minimisation framework. Autom. Constr. 2015, 59, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Najjar, M.; Figueiredo, K.; Palumbo, M.; Haddad, A. Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. J. Build. Eng. 2017, 14, 115–126. [Google Scholar] [CrossRef]
- Costa, B.B.F.; Motta, A.L.T.S. The role of public administration in promoting sustainable consumption and production. R. Tecnol. Soc. 2020, 16, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings. Int. J. Life Cycle Assess. 2014, 19, 1488–1505. [Google Scholar] [CrossRef]
- Al-atesh, E.A.; Rahmawati, Y.; Zawawi, N.A.W.A.; Elmansoury, A. Developing the green building materials selection criteria for sustainable building projects. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 5, 2112–2120. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Chin, K.; Pedrycz, W.; Chang, J.; Martínez, L.; Skibniewski, M.J. Sustainable building material selection: An integrated multi-criteria large group decision making framework. Appl. Soft Comput. 2021, 113, 107903. [Google Scholar] [CrossRef]
- Dinh, T.H.; Dinh, T.H.; Götze, U. Integration of sustainability criteria and life cycle sustainability assessment method into construction material selection in developing countries: The case of Vietnam. Int. J. Sustain. Dev. Plann. 2020, 15, 1145–1156. [Google Scholar] [CrossRef]
- Kanniyapan, G.; Nesan, L.J.; Mohammad, I.S.; Keat, T.S.; Ponniah, V. Selection criteria of building material for optimising maintainability. Constr. Build. Mater. 2019, 221, 651–660. [Google Scholar] [CrossRef]
- Mayhoub, M.M.G.; El Sayad, Z.M.T.; Ali, A.A.M.; Ibrahim, M.G. Assessment of green building materials’ attributes to achieve sustainable building façades using AHP. Buildings 2021, 11, 474. [Google Scholar] [CrossRef]
- Hatefi, S.M.; Asadi, H.; Shams, G.; Tamosaitien, J.; Turkis, Z. Model for the sustainable material selection by applying integrated dempster-shafer evidence theory and additive ratio assessment (ARAS) method. Sustainability 2021, 13, 10438. [Google Scholar] [CrossRef]
- Chen, Z.; Martínez, L.; Chang, J.; Wang, X.; Xionge, S.; Chin, K. Sustainable building material selection: A QFD- and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Eng. Appl. Artif. Intell. 2019, 85, 783–807. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A. Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom. Constr. 2013, 30, 113–125. [Google Scholar] [CrossRef]
- Lee, D.; Lee, D.; Lee, M.; Kim, M.; Kim, T. Analytic hierarchy process-based construction material selection for performance improvement of building construction: The case of a concrete system form. Materials 2020, 13, 1738. [Google Scholar] [CrossRef] [Green Version]
- Janowska-Renkas, E.; Jakiel, P.; Fabianowski, D.; Matyjaszczyk, D. Optimal selection of high-performance concrete for post-tensioned girder bridge using advanced hybrid MCDA method. Materials 2021, 14, 6553. [Google Scholar] [CrossRef]
- Ruslan, A.A.B.; Al-atesh, E.A.; Rahmawati, Y.; Utomo, C.; Zawawi, N.A.W.A.; Jahja, M.; Elmansoury, A. A value-based decision-making model for selecting sustainable materials for buildings. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 6, 2279–2286. [Google Scholar] [CrossRef]
- Castro-Lacouture, D.; Sefair, J.A.; Medaglia, A.L. Optimization model for the selection of materials using LEED-based green building rating system in Colombia. Build. Environ. 2009, 44, 1162–1170. [Google Scholar] [CrossRef]
- Marzouk, M.; Azab, S.; Metawie, M. BIM-based approach for optimizing life cycle costs of sustainable buildings. J. Clean. Prod. 2018, 188, 217–226. [Google Scholar] [CrossRef]
- Nawarathna, A.; Siriwardana, M.; Alwan, Z. Embodied carbon as a material selection criterion: Insights from Sri Lankan construction sector. Sustainability 2021, 13, 202. [Google Scholar] [CrossRef]
- Takano, A.; Pal, S.K.; Kuittinen, M.; Alanne, K.; Hughes, M.; Winter, S. The effect of material selection on life cycle energy balance: A case study on a hypothetical building model in Filand. Build. Environ. 2015, 89, 192–202. [Google Scholar] [CrossRef]
- Gardner, H.; Garcia, J.; Hasik, V.; Olinzock, M.; Banawi, A.; Bilec, M.M. Materials life cycle assessment of a living building. Procedia CIRP 2019, 80, 458–463. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Visualization of environmental potentials in building construction at early design stages. Build. Environ. 2018, 140, 153–161. [Google Scholar] [CrossRef]
- Abd Rashid, A.F.; Idris, J.; Yusoff, S. Environmental impact analysis on residential building in Malaysia using life cycle assessment. Sustainability 2017, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Kloepffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Halog, A.; Cloutier, S. Systems thinking for life cycle sustainability assessment: A review of recent developments, applications, and future perspectives. Sustainability 2017, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, K.; Pierrot, R.; Hammad, A.W.A.; Haddad, A. Sustainable material choice for construction projects: A life cycle sustainability assessment framework based on BIM and fuzzy-AHP. Build. Environ. 2021, 196, 107805. [Google Scholar] [CrossRef]
- Jusselme, T.; Rey, E.; Andersen, M. An integrative approach for embodied energy: Towards an LCA-based data-driven design method. Renew. Sustain. Energy Rev. 2018, 88, 123–132. [Google Scholar] [CrossRef]
- Hollberg, A.; Ruth, J. LCA in architectural design—A parametric approach. Int. J. Life Cycle Assess. 2016, 21, 943–960. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.; Troup, L.; Fannon, D.; Eckelman, M.J. Triplee bottom line sustainability assessment of window-to-wall ratio in US office buildings. Build. Environ. 2020, 182, 107057. [Google Scholar] [CrossRef]
- Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H. Bio-based plastics—A review of environmental, social and economic impact assessments. J. Clean. Prod. 2018, 185, 476–491. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Chen, J. Social life cycle assessment revisited. Sustainability 2014, 6, 4200–4226. [Google Scholar] [CrossRef] [Green Version]
- Alshamrani, O.S.; Alshibani, A. Automated decision support system for selecting the envelope and structural systems for educational facilities. Build. Environ. 2020, 181, 106993. [Google Scholar] [CrossRef]
- Yang, W.; Chon, S.; Choe, C.; Yang, J. Materials selection method using TOPSIS with some popular normalization methods. Eng. Res. Express 2021, 3, 015020. [Google Scholar] [CrossRef]
- Gupta, S.; Soni, U.; Kumar, G. Green supplier selection using multi-criterion decision making under fuzzy environment: A case study in automotive industry. Comput. Ind. Eng. 2019, 136, 663–680. [Google Scholar] [CrossRef]
- Patil, A.N.; Shivkumar, K.M.; Patel, M.; Jatti, S.P.; Rivankar, S.N. Fuzzy TOPSIS and grey relation analysis integration for supplier selection in fiber industry. Int. J. Supply Oper. Manag. 2020, 7, 373–383. [Google Scholar] [CrossRef]
- Chen, C. A novel multicriteria decision-making model for building material supplier selection based on Entropy-AHP weighted TOPSIS. Entropy 2020, 22, 259. [Google Scholar] [CrossRef] [Green Version]
- Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An integrated framework for sustainable supplier selection and evaluation in supply chains. J. Clean. Prod. 2017, 140, 1686–1698. [Google Scholar] [CrossRef]
- Taherdoost, H.; Brard, A. Analyzing the process of supplier selection criteria and methods. Proced. Manufac. 2019, 32, 1024–1034. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Havle, C.A.; Feyzioglu, O. An integrated SWOT based fuzzy AHP and fuzzy MARCOS methodology for digital transformation strategy analysis in airline industry. J. Air Transp. Manag. 2021, 97, 102142. [Google Scholar] [CrossRef]
- Bhadra, D.; Dhar, N.R. Selection of the natural fiber for sustainable applications in aerospace cabin interior using fuzzy MCDM model. Materialia 2022, 21, 101270. [Google Scholar] [CrossRef]
- Li, H.; Lin, Y.; Wang, Y.; Liu, J.; Liang, S.; Guo, S.; Qiang, T. Multi-criteria analysis of a people-oriented urban pedestrian road system using an integrated fuzzy AHP and DEA approach: A case study in Harbin, China. Symmetry 2021, 13, 2214. [Google Scholar] [CrossRef]
- Alyamani, R.; Long, S.; Nurunnabi, M. Evaluating decision making in sustainable project selection between literature and practice. Sustainability 2021, 13, 8216. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process, 1st ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Naseem, M.H.; Yang, J.; Xiang, Z. Prioritizing the solutions to reverse logistics barriers for the E-commerce industry in Pakistan based on a fuzzy AHP-TOPSIS approach. Sustainability 2021, 13, 12743. [Google Scholar] [CrossRef]
- Tsai, C.K.; Phumchusri, N. Fuzzy analytical hierarchy process for supplier selection: A case study in an electronic component manufacturer. Eng. J. 2021, 25, 73–86. [Google Scholar] [CrossRef]
- Fuse, K.; Dalsaniya, A.; Modi, D.; Vora, J.; Pimenov, D.Y.; Giasin, K.; Prajapati, P.; Chaudhari, R.; Wojciechowski, S. Integration of fuzzy AHP and fuzzy TOPSIS methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM. Materials 2021, 14, 7408. [Google Scholar] [CrossRef]
- Sherif, S.U.; Asokan, P.; Sasikumar, P.; Mathiyazhagan, K.; Jerald, J. An integrated decision making approach for the selection of battery recycling plant location under sustainable environment. J. Clean. Prod. 2022, 330, 129784. [Google Scholar] [CrossRef]
- Tornyeviadzi, H.M.; Neba, F.A.; Mohammed, H.; Seidu, R. Nodal vulnerability assessment of water distribution networks: An integrated fuzzy AHP-TOPSIS approach. Int. J. Crit. Infrastruct. Prot. 2021, 34, 100434. [Google Scholar] [CrossRef]
- Haddad, A.N.; da Costa, B.B.F.; Andrade, L.S.; Hammad, A.; Soares, C.A.P. Application of fuzzy-TOPSIS method in supporting supplier selection with focus on HSE criteria: A case study in the oil and gas industry. Infrastructures 2021, 6, 105. [Google Scholar] [CrossRef]
- Kahraman, C.; Onar, S.C.; Oztaysi, B. Fuzzy multicriteria decision-making: A literature review. Int. J. Comput. Intell. Syst. 2015, 8, 637–666. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Chen, Y.; Wang, G. Using a fuzzy analytic hierarchy process to formulate an effectual tea assessment system. Sustainability 2020, 12, 6131. [Google Scholar] [CrossRef]
- Nazam, M.; Xu, J.; Rao, Z.; Ahmad, J.; Hashim, M. A fuzzy AHP-TOPSIS framework for the risk assessment of green supply chain implementation in the textile industry. Int. J. Supply Oper. Manag. 2015, 2, 548–568. [Google Scholar] [CrossRef]
- Akkaya, G.; Turanoglu, B.; Öztas, S. An integrated fuzzy AHP and fuzzy MOORA approach to the problem of industrial engineering sector choosing. Expert Syst. Appl. 2015, 42, 9565–9573. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Feng, Y.; Wang, D.; Peng, Y.; Jia, H. Green decoration materials selection under interior environment characteristics: A grey-correlational based hybrid MCDM method. Renew. Sustain. Energy Rev. 2018, 81, 682–692. [Google Scholar] [CrossRef]
- Singh, A.K.; Avikal, S.; Kumar, N.; Kumar, M.; Thakura, P. A fuzzy-AHP and M-TOPSIS based approach for selection of composite materials used in structural applications. Mater. Today Proc. 2020, 26, 3119–3123. [Google Scholar] [CrossRef]
- Ogrodnik, K. Multi-criteria analysis of design solutions in architecture and engineering: Review of applications and a case study. Buildings 2019, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Mathiyazhagan, K.; Gnanavelbabu, A.; Prabhuraj, B.L. A sustainable assessment model for material selection in construction industries perspective using hybrid MCDM approaches. J. Adv. Manag. Res. 2019, 16, 234–259. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, G.; Hu, X. Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach. Mater. Des. 2009, 30, 1209–1215. [Google Scholar] [CrossRef]
- Akadiri, P.O. Understanding barriers affecting the selection of sustainable materials in building projects. J. Build. Eng. 2015, 4, 86–93. [Google Scholar] [CrossRef]
- Luz, S.M.; Caldeira-Pires, A.; Ferrão, P.M.C. Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components. Resour. Conserv. Recycl. 2010, 54, 1135–1144. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Zhang, J.; Qian, Y. Coal-based synthetic natural gas (SNG) for municipal heating in China: Analysis of haze pollutants and greenhouse gases (GHGs) emissions. J. Clean. Prod. 2016, 112, 1350–1359. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, M. Do green wooden composites using lignin-based binder have environmentally benign alternatives? A preliminary LCA case study in China. Int. J. Life Cycle Assess. 2016, 22, 1318–1326. [Google Scholar] [CrossRef]
- Sadat, S.A.; Fini, M.V.; Hashemi-Dezaki, H.; Nazififard, M. Barrier analysis of solar PV energy development in the context of Iran using fuzzy AHP-TOPSIS method. Sustain. Energy Technol. Assess. 2021, 47, 101549. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making, scaling, and number crunching. Decis. Sci. J. 1989, 20, 404–409. [Google Scholar] [CrossRef]
- Ayag, Z. A fuzzy AHP-based simulation approach to concept evaluation in a NPD environment. IEE Trans. 2005, 37, 827–842. [Google Scholar] [CrossRef]
- Guo, C.; Bian, C.; Liu, Q.; You, Y.; Li, S.; Wang, L. A new method of evaluating energy efficiency of public buildings in China. J. Build. Eng. 2022, 46, 103776. [Google Scholar] [CrossRef]
- Karam, A.; Hussein, M.; Reinau, K.H. Analysis of the barriers to implementing horizontal collaborative transport using a hybrid fuzzy Delphi-AHP approach. J. Clean. Prod. 2021, 321, 128943. [Google Scholar] [CrossRef]
- Pan, N. Fuzzy AHP approach for selecting the suitable bridge construction method. Autom. Constr. 2008, 17, 958–965. [Google Scholar] [CrossRef]
- Basbagill, J.; Flager, F.; Lepech, M.; Fischer, M. Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build. Environ. 2013, 60, 81–92. [Google Scholar] [CrossRef]
- Constantini, A.; Duma, D.C.; Martelli, B.; Antonacci, M.; Galletti, M.; Tisbenim, S.R.; Bellavista, P.; Di Modica, G.; Nehls, D.; Ahouangonou, J.; et al. A Cloud-Edge Orchestration Platform for the Innocative Industrial Scenarios of the Iotwins Project. In Computational Science and Its Applications—ICCSA 2021, Proceedings of the 21st International Conference, Cagliari, Italy, 13–16 September 2021; Lecture Notes in Computer Science; Goos, G., Hartmanis, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; p. 12950. [Google Scholar] [CrossRef]
Structure | Painting | Roofing | |
---|---|---|---|
Scenario 1 | Pre-cast concrete | PVA water-based | Ceramic |
Scenario 2 | Pre-cast concrete | PVA water-based | Fiber cement |
Scenario 3 | Pre-cast concrete | Acrylic | Fiber cement |
Scenario 4 | Cast-in-place concrete | PVA water-based | Ceramic |
Scenario 5 | Cast-in-place concrete | PVA water-based | Fiber cement |
Scenario 6 | Cast-in-place concrete | Acrylic | Fiber cement |
Scenario 7 | Structural Masonry | PVA water-based | Ceramic |
Scenario 8 | Structural Masonry | PVA water-based | Fiber cement |
Scenario 9 | Structural Masonry | Acrylic | Fiber cement |
Linguistic Scale | Evaluation Criterion | Triangular Fuzzy Number (TFN) | TFN Reciprocal Scale |
---|---|---|---|
Equally Important (E) | 1 | (1,1,1) | (1,1,1) |
Intermediate Value (I1) | 2 | (1,2,3) | (1/3,1/2,1) |
Moderately Important (M) | 3 | (2,3,4) | (1/4,1/3,1/2) |
Intermediate Value (I2) | 4 | (3,4,5) | (1/5,1/4,1/3) |
Strongly Important (S) | 5 | (4,5,6) | (1/6,1/5,1/4) |
Intermediate Value (I3) | 6 | (5,6,7) | (1/7,1/6,1/5) |
Very Strongly Important (VS) | 7 | (6,7,8) | (1/8,1/7,1/6) |
Intermediate Value (I4) | 8 | (7,8,9) | (1/9,1/8,1/7) |
Absolutely Important (A) | 9 | (9,9,9) | (1/9,1/9,1/9) |
Scenario | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Cost (USD) | 26,290.95 | 26,308.86 | 27,651.14 | 28,645.64 | 28,663.55 | 30,005.83 | 29,294.15 | 29,312.07 | 30,654.35 |
Scenario | Environmental Metrics | |||||||
---|---|---|---|---|---|---|---|---|
Env-1 (kgSO2eq) | Env-2 (kgNeq) | Env-3 (kgCO2eq) | Env-4 (CFC-11qe) | Env-5 (kgO3eq) | Env-6 (MJ) | Env-7 (MJ) | Env-8 (kg) | |
1 | 5.98 × 106 | 3.81 × 105 | 4.80 × 109 | 9.96 × 10−6 | 1.22 × 108 | 4.51 × 1010 | 4.24 × 1010 | 2.72 × 109 |
2 | 5.98 × 106 | 3.88 × 105 | 4.76 × 109 | 2.68 × 10−6 | 1.23 × 108 | 4.37 × 1010 | 4.09 × 1010 | 2.75 × 109 |
3 | 6.28 × 106 | 3.85 × 105 | 4.75 × 109 | 4.45 × 10−6 | 1.20 × 108 | 4.35 × 1010 | 4.08 × 1010 | 2.71 × 109 |
4 | 6.12 × 106 | 3.84 × 105 | 4.82 × 109 | 8.38 × 10−6 | 1.24 × 108 | 4.55 × 1010 | 4.28 × 1010 | 2.73 × 109 |
5 | 6.11 × 106 | 3.91 × 105 | 4.78 × 109 | 1.09 × 10−6 | 1.24 × 108 | 4.40 × 1010 | 4.13 × 1010 | 2.76 × 109 |
6 | 6.41 × 106 | 3.88 × 105 | 4.77 × 109 | 2.86 × 10−6 | 1.22 × 108 | 4.39 × 1010 | 4.11 × 1010 | 2.71 × 109 |
7 | 1.02 × 107 | 6.92 × 105 | 6.13 × 109 | −5.75 × 10−6 | 1.98 × 108 | 6.59 × 1010 | 6.16 × 1010 | 4.22 × 109 |
8 | 1.02 × 107 | 7.00 × 105 | 6.09 × 109 | −1.30 × 10−8 | 1.99 × 108 | 6.44 × 1010 | 6.02 × 1010 | 4.24 × 109 |
9 | 1.04 × 107 | 6.96 × 105 | 6.09 × 109 | −1.15 × 10−8 | 1.97 × 108 | 6.43 × 1010 | 6.00 × 1010 | 4.20 × 109 |
Scenario | Environmental Metrics | |||||||
---|---|---|---|---|---|---|---|---|
Env-1 (kgSO2eq) | Env-2 (kgNeq) | Env-3 (kgCO2eq) | Env-4 (CFC-11qe) | Env-5 (kgO3eq) | Env-6 (MJ) | Env-7 (MJ) | Env-8 (kg) | |
1 | 1.82 × 106 | 1.42 × 105 | 4.15 × 108 | 1.94 × 10−8 | 4.01 × 107 | 8.74 × 109 | 7.44 × 109 | 1.30 × 109 |
2 | 1.88 × 106 | 1.45 × 105 | 4.11 × 108 | −9.03 × 10−10 | 4.18 × 107 | 8.70 × 109 | 7.37 × 109 | 1.34 × 109 |
3 | 1.77 × 106 | 6.27 × 104 | 1.58 × 108 | 5.31 × 10−6 | 1.09 × 107 | 3.47 × 109 | 2.76 × 109 | 7.06 × 108 |
4 | 1.82 × 106 | 1.42 × 105 | 4.15 × 108 | 1.94 × 10−8 | 4.01 × 107 | 8.74 × 109 | 7.44 × 109 | 1.30 × 109 |
5 | 1.88 × 106 | 1.45 × 105 | 4.11 × 108 | −9.03 × 10−10 | 4.18 × 107 | 8.70 × 109 | 7.37 × 109 | 1.34 × 109 |
6 | 1.77 × 106 | 6.27 × 104 | 1.58 × 108 | 5.31 × 10−6 | 1.09 × 107 | 3.47 × 109 | 2.76 × 109 | 7.06 × 108 |
7 | 1.61 × 106 | 1.25 × 105 | 3.63 × 108 | 1.94 × 10−8 | 3.49 × 107 | 7.70 × 109 | 6.52 × 109 | 1.19 × 109 |
8 | 1.66 × 106 | 1.28 × 105 | 3.59 × 108 | 2.64 × 10−12 | 3.66 × 107 | 7.67 × 109 | 6.45 × 109 | 1.23 × 109 |
9 | 1.58 × 106 | 5.77 × 104 | 1.43 × 108 | 4.54 × 10−6 | 1.03 × 107 | 3.20 × 109 | 2.51 × 109 | 6.84 × 108 |
Scenario | Environmental Metrics | |||||||
---|---|---|---|---|---|---|---|---|
Env-1 (kgSO2eq) | Env-2 (kgNeq) | Env-3 (kgCO2eq) | Env-4 (CFC-11qe) | Env-5 (kgO3eq) | Env-6 (MJ) | Env-7 (MJ) | Env-8 (kg) | |
1 | 1.26 × 106 | 7.70 × 104 | 2.73 × 108 | 8.58 × 10−10 | 2.40 × 107 | 4.45 × 109 | 4.16 × 109 | - |
2 | 1.24 × 106 | 7.61 × 104 | 2.69 × 108 | 8.51 × 10−10 | 2.37 × 107 | 4.39 × 109 | 4.10 × 109 | - |
3 | 1.24 × 106 | 7.71 × 104 | 2.69 × 108 | 8.52 × 10−10 | 2.37 × 107 | 4.39 × 109 | 4.10 × 109 | - |
4 | 1.26 × 106 | 7.71 × 104 | 2.73 × 108 | 8.59 × 10−10 | 2.41 × 107 | 4.45 × 109 | 4.17 × 109 | - |
5 | 1.24 × 106 | 7.62 × 104 | 2.69 × 108 | 8.52 × 10−10 | 2.37 × 107 | 4.39 × 109 | 4.11 × 109 | - |
6 | 1.24 × 106 | 7.72 × 104 | 2.70 × 108 | 8.52 × 10−10 | 2.37 × 107 | 4.39 × 109 | 4.11 × 109 | - |
7 | 2.02 × 106 | 1.14 × 105 | 4.39 × 108 | 8.52 × 10−10 | 3.92 × 107 | 7.26 × 109 | 6.79 × 109 | - |
8 | 2.00 × 106 | 1.13 × 105 | 4.36 × 108 | 8.45 × 10−10 | 3.88 × 107 | 7.20 × 109 | 6.73 × 109 | - |
9 | 2.00 × 106 | 1.14 × 105 | 4.36 × 108 | 8.45 × 10−10 | 3.88 × 107 | 7.20 × 109 | 6.74 × 109 | - |
Scenario | Environmental Metrics | |||||||
---|---|---|---|---|---|---|---|---|
Env-1 (kgSO2eq) | Env-2 (kgNeq) | Env-3 (kgCO2eq) | Env-4 (CFC-11qe) | Env-5 (kgO3eq) | Env-6 (MJ) | Env-7 (MJ) | Env-8 (kg) | |
1 | 9.16 × 106 | 6.08 × 105 | 5.55 × 109 | 2.50 × 10−8 | 1.91 × 108 | 5.87 × 1010 | 5.45 × 1010 | 4.13 × 109 |
2 | 9.17 × 106 | 6.16 × 105 | 5.50 × 109 | −1.83 × 10−6 | 1.92 × 108 | 5.71 × 1010 | 5.29 × 1010 | 4.19 × 109 |
3 | 9.37 × 106 | 5.32 × 105 | 5.24 × 109 | 5.26 × 10−6 | 1.59 × 108 | 5.17 × 1010 | 4.28 × 1010 | 3.51 × 109 |
4 | 9.28 × 106 | 6.10 × 105 | 5.56 × 109 | 2.39 × 10−8 | 1.92 × 108 | 5.90 × 1010 | 5.48 × 1010 | 4.14 × 109 |
5 | 9.30 × 106 | 6.18 × 105 | 5.51 × 109 | −2.88 × 10−6 | 1.93 × 108 | 5.74 × 1010 | 5.32 × 1010 | 4.20 × 109 |
6 | 9.50 × 106 | 5.34 × 105 | 5.25 × 109 | 4.20 × 10−6 | 1.60 × 108 | 5.20 × 1010 | 4.85 × 1010 | 3.52 × 109 |
7 | 1.37 × 107 | 9.30 × 105 | 6.85 × 109 | 2.04 × 10−8 | 2.75 × 108 | 7.99 × 1010 | 7.41 × 1010 | 5.76 × 109 |
8 | 1.37 × 107 | 9.38 × 105 | 6.80 × 109 | −6.40 × 10−6 | 2.76 × 108 | 7.83 × 1010 | 7.25 × 1010 | 5.82 × 109 |
9 | 1.38 × 107 | 8.66 × 105 | 6.57 × 109 | −3.50 × 10−7 | 2.48 × 108 | 7.37 × 1010 | 6.84 × 1010 | 5.24 × 109 |
Scenario | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Social Impact USD | 14,020.96 | 14,030.52 | 14,746.36 | 15,259.90 | 15,286.27 | 16,002.11 | 15,622.57 | 15,632.13 | 16,347.97 |
Metric | Eco-1 | Env-1 | Env-2 | Env-3 | Env-4 | Env-5 | Env-6 | Env-7 | Env-8 | Soc-1 |
---|---|---|---|---|---|---|---|---|---|---|
Eco-1 | (1,1,1) | (6,7,8) | (6,7,8) | (6,7,8) | (6,7,8) | (6,7,8) | (6,7,8) | (6,7,8) | (6,7,8) | (2,3,4) |
Env-1 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Env-2 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Env-3 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Env-4 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Env-5 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Env-6 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Env-7 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Env-8 | (1/8,1/7,1/6) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1,1,1) | (1/4,1/3,1/2) |
Soc-1 | (1/4,1/3,1/2) | (2,3,4) | (2,3,4) | (2,3,4) | (2,3,4) | (2,3,4) | (2,3,4) | (2,3,4) | (2,3,4) | (1,1,1) |
Criteria | Metric | Fuzzy Weight | Metric Weight | Criteria Weight | ||
---|---|---|---|---|---|---|
l | m | u | ||||
Economic | Eco-1: Cost | 0.385 | 0.397 | 0.401 | 39.41% | 39.41% |
Environmental | Env-1: Sum of acidification | 0.052 | 0.055 | 0.061 | 5.58% | 44.64% |
Env-2: Sum of eutrophication | 0.052 | 0.055 | 0.061 | 5.58% | ||
Env-3: Sum of global warming | 0.052 | 0.055 | 0.061 | 5.58% | ||
Env-4: Sum of ozone depletion | 0.052 | 0.055 | 0.061 | 5.58% | ||
Env-5: Sum of smog formation | 0.052 | 0.055 | 0.061 | 5.58% | ||
Env-6: Sum of primary energy | 0.052 | 0.055 | 0.061 | 5.58% | ||
Env-7: Sum of non-renewable energy | 0.052 | 0.055 | 0.061 | 5.58% | ||
Env-8: Sum of mass total cost | 0.052 | 0.055 | 0.061 | 5.58% | ||
Social | Soc-1: Community investment | 0.130 | 0.162 | 0.187 | 15.95% | 15.95% |
Position (↑ Sustainable) | Scenario | SI |
---|---|---|
1st | 3 | 0.091 |
2nd | 6 | 0.058 |
3rd | 1 | −0.062 |
4th | 4 | −0.065 |
5th | 7 | −0.082 |
6th | 9 | −0.091 |
7th | 2 | −0.116 |
8th | 5 | −0.148 |
9th | 8 | −0.267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filho, M.V.A.P.M.; da Costa, B.B.F.; Najjar, M.; Figueiredo, K.V.; de Mendonça, M.B.; Haddad, A.N. Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis. Buildings 2022, 12, 181. https://doi.org/10.3390/buildings12020181
Filho MVAPM, da Costa BBF, Najjar M, Figueiredo KV, de Mendonça MB, Haddad AN. Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis. Buildings. 2022; 12(2):181. https://doi.org/10.3390/buildings12020181
Chicago/Turabian StyleFilho, Marcus V. A. P. M., Bruno B. F. da Costa, Mohammad Najjar, Karoline V. Figueiredo, Marcos Barreto de Mendonça, and Assed N. Haddad. 2022. "Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis" Buildings 12, no. 2: 181. https://doi.org/10.3390/buildings12020181
APA StyleFilho, M. V. A. P. M., da Costa, B. B. F., Najjar, M., Figueiredo, K. V., de Mendonça, M. B., & Haddad, A. N. (2022). Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis. Buildings, 12(2), 181. https://doi.org/10.3390/buildings12020181