Impact of Induced Seismicity on the Housing Market: Evidence from Pohang
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Review of Hedonic Pricing Model
2.2. Empirical Review of Seismic Risk and Property Values
3. Research Methods
3.1. Site Selection
3.2. Analytical Model
3.3. Data Collection
3.4. Variable Setting
4. Finding and Discussion
4.1. Descriptive Statistics
4.2. Regression Results
4.3. Difference-in-Differences Model
4.4. Preference for Anti-Seismic Building
4.5. Robustness Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.-H.; Ree, J.-H.; Kim, Y.; Kim, S.; Kang, S.Y.; Seo, W. Assessing whether the 2017 M w 5.4 Pohang earthquake in South Korea was an induced event. Science 2018, 360, 1007–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-H.; Seo, W.; Han, J.; Kwon, J.; Kang, S.Y.; Ree, J.-H.; Kim, S.; Liu, K. The 2017 ML 5.4 Pohang earthquake sequence, Korea, recorded by a dense seismic network. Tectonophysics 2019, 774, 228306. [Google Scholar] [CrossRef]
- Bernknopf, R.L.; Brookshire, D.S.; Thayer, M.A. Earthquake and volcano hazard notices: An economic evaluation of changes in risk perceptions. J. Environ. Econ. Manag. 1990, 18, 35–49. [Google Scholar] [CrossRef]
- Beron, K.J.; Murdoch, J.C.; Thayer, M.A.; Vijverberg, W.P.M. An Analysis of the Housing Market before and after the 1989 Loma Prieta Earthquake. Land Econ. 1997, 73, 101. [Google Scholar] [CrossRef]
- Naoi, M.; Seko, M.; Sumita, K. Earthquake risk and housing prices in Japan: Evidence before and after massive earthquakes. Reg. Sci. Urban Econ. 2009, 39, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Court, A.T. Hedonic price indexes with automotive examples. In The Dynamics of Automobile Demand; General Motors Corporation: New York, NY, USA, 1939; pp. 99–117. [Google Scholar]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Politi. Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Xiao, Y. Hedonic Housing Price Theory Review. In Urban Morphology and Housing Market; Springer: Berlin/Heidelberg, Germany, 2017; pp. 11–40. [Google Scholar]
- Liao, W.-C.; Wang, X. Hedonic house prices and spatial quantile regression. J. Hous. Econ. 2012, 21, 16–27. [Google Scholar] [CrossRef]
- Torres-Pruñonosa, J.; García-Estévez, P.; Prado-Román, C. Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing. Mathematics 2021, 9, 783. [Google Scholar] [CrossRef]
- Peterson, S.; Flanagan, A. Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal. J. Real Estate Res. 2009, 31, 147–164. [Google Scholar] [CrossRef]
- Selim, H. Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Syst. Appl. 2009, 36, 2843–2852. [Google Scholar] [CrossRef]
- Hong, J.; Choi, H.; Kim, W.-S. A house price valuation based on the random forest approach: The mass appraisal of residential property in South Korea. Int. J. Strat. Prop. Manag. 2020, 24, 140–152. [Google Scholar] [CrossRef]
- Seo, D.; Chung, Y.S.; Kwon, Y. Price Determinants of Affordable Apartments in Vietnam: Toward the Public–Private Partnerships for Sustainable Housing Development. Sustainability 2018, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Jayantha, W.M.; Oladinrin, O.T. Bibliometric analysis of hedonic price model using CiteSpace. Int. J. Hous. Mark. Anal. 2019, 13, 357–371. [Google Scholar] [CrossRef]
- Chung, Y.S.; Seo, D.; Kim, J. Price Determinants and GIS Analysis of the Housing Market in Vietnam: The Cases of Ho Chi Minh City and Hanoi. Sustainability 2018, 10, 4720. [Google Scholar] [CrossRef] [Green Version]
- McMillen, D.P. Changes in the distribution of house prices over time: Structural characteristics, neighborhood, or coefficients? J. Urban Econ. 2008, 64, 573–589. [Google Scholar] [CrossRef]
- Kain, J.F.; Quigley, J.M. Measuring the value of housing quality. J. Am. Stat. Assoc. 1970, 65, 532–548. [Google Scholar] [CrossRef]
- Sirmans, G.S.; Macdonald, L.; MacPherson, D.A.; Zietz, E.N. The Value of Housing Characteristics: A Meta Analysis. J. Real Estate Financ. Econ. 2006, 33, 215–240. [Google Scholar] [CrossRef]
- Fuerst, F.; McAllister, P.; Nanda, A.; Wyatt, P. Does energy efficiency matter to home-buyers? An investigation of EPC ratings and transaction prices in England. Energy Econ. 2015, 48, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Kohlhase, J.E. The impact of toxic waste sites on housing values. J. Urban Econ. 1991, 30, 1–26. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Yu, Z.; Tian, G. Amenity, accessibility and housing values in metropolitan USA: A study of Salt Lake County, Utah. Cities 2016, 59, 113–125. [Google Scholar] [CrossRef]
- Hanushek, E.; Yilmaz, K. Household Location and Schools in Metropolitan Areas with Heterogeneous Suburbs; Tiebout, Alonso, and Government Policy; National Bureau of Economic Research: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Heikkila, E.; Gordon, P.; Kim, J.I.; Peiser, R.B.; Richardson, H.W.; Dale-Johnson, D. What Happened to the CBD-Distance Gradient? Land Values in a Policentric City. Environ. Plan. A Econ. Space 1989, 21, 221–232. [Google Scholar] [CrossRef]
- Henneberry, J. Transport investment and house prices. J. Prop. Valuat. Invest. 1998, 16, 144–158. [Google Scholar] [CrossRef]
- Landau, U.; Prashker, J.N.; Hirsh, M. The Effect of Temporal Constraints on Household Travel Behavior. Environ. Plan. A Econ. Space 1981, 13, 435–448. [Google Scholar] [CrossRef]
- Evans, A. Urban Economics: An Introduction/Alan W. Evans; B. Blackwell: Oxford, UK; New York, NY, USA, 1985. [Google Scholar]
- Hwang, S.; Thill, J.-C. Delineating urban housing submarkets with fuzzy clustering. Environ. Plan. B Plan. Des. 2009, 36, 865–882. [Google Scholar] [CrossRef]
- Bowes, D.R.; Ihlanfeldt, K.R. Identifying the Impacts of Rail Transit Stations on Residential Property Values. J. Urban Econ. 2001, 50, 1–25. [Google Scholar] [CrossRef]
- Debrezion, G.; Pels, E.; Rietveld, P. The impact of rail transport on real estate prices: An empirical analysis of the Dutch housing market. Urban Stud. 2011, 48, 997–1015. [Google Scholar] [CrossRef]
- Chwiałkowski, C.; Zydroń, A. The Impact of Urban Public Transport on Residential Transaction Prices: A Case Study of Poznań, Poland. ISPRS Int. J. Geo Inf. 2022, 11, 74. [Google Scholar] [CrossRef]
- Chen, Y.; Yazdani, M.; Mojtahedi, M.; Newton, S. The impact on neighbourhood residential property valuations of a newly proposed public transport project: The Sydney Northwest Metro case study. Transp. Res. Interdiscip. Perspect. 2019, 3, 100070. [Google Scholar] [CrossRef]
- Vichiensan, V.; Wasuntarasook, V.; Hayashi, Y.; Kii, M.; Prakayaphun, T. Urban Rail Transit in Bangkok: Chronological Development Review and Impact on Residential Property Value. Sustainability 2021, 14, 284. [Google Scholar] [CrossRef]
- Munoz-Raskin, R. Walking accessibility to bus rapid transit: Does it affect property values? The case of Bogotá, Colombia. Transp. Policy 2010, 17, 72–84. [Google Scholar] [CrossRef]
- Gibbons, S.; Machin, S. Valuing English primary schools. J. Urban Econ. 2003, 53, 197–219. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, J.A.; Hefner, F. House Price Impact of School District Choice; South Carolina Center for Applied Real Estate Education and Research: Columbia, SC, USA, 1998. [Google Scholar]
- Anderson, S.T.; West, S.E. Open space, residential property values, and spatial context. Reg. Sci. Urban Econ. 2006, 36, 773–789. [Google Scholar] [CrossRef] [Green Version]
- Lutzenhiser, M.; Netusil, N.R. The effect of open spaces on a home’s sale price. Contemp. Econ. Policy 2001, 19, 291–298. [Google Scholar] [CrossRef]
- Nowak, D.J.; McPherson, E.G. Quantifying the impact of trees: The Chicago urban forest climate project. Unasylva 1993, 173, 39–44. [Google Scholar]
- Tyrväinen, L. The amenity value of the urban forest: An application of the hedonic pricing method. Landsc. Urban Plan. 1997, 37, 211–222. [Google Scholar] [CrossRef]
- Graves, P.; Murdoch, J.C.; Thayer, M.A.; Waldman, D. The Robustness of Hedonic Price Estimation: Urban Air Quality. Land Econ. 1988, 64, 220. [Google Scholar] [CrossRef]
- Smith, V.K.; Huang, J.-C. Can Markets Value Air Quality? A Meta-Analysis of Hedonic Property Value Models. J. Politi. Econ. 1995, 103, 209–227. [Google Scholar] [CrossRef]
- Michael, H.J.; Boyle, K.J.; Bouchard, R. Water Quality Affects Property Prices: A Case Study of Selected Maine Lakes. Maine Agricultural and Forest Experiment Station Report Number 398; University of Maine: Orono, MA, USA, 1996. [Google Scholar]
- Steinnes, D.N. Measuring the economic value of water quality. Ann. Reg. Sci. 1992, 26, 171–176. [Google Scholar] [CrossRef]
- Brookshire, D.S.; Thayer, M.A.; Tschirhart, J.; Schulze, W.D. A Test of the Expected Utility Model: Evidence from Earthquake Risks. J. Polit. Econ. 1985, 93, 369–389. [Google Scholar] [CrossRef]
- Hidano, N.; Hoshino, T.; Sugiura, A. The effect of seismic hazard risk information on property prices: Evidence from a spatial regression discontinuity design. Reg. Sci. Urban Econ. 2015, 53, 113–122. [Google Scholar] [CrossRef]
- McCluskey, J.J.; Rausser, G.C. Estimation of Perceived Risk and Its Effect on Property Values. Land Econ. 2001, 77, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M.; Saito, M.; Yamaga, H. Earthquake risk and housing rents: Evidence from the Tokyo Metropolitan Area. Reg. Sci. Urban Econ. 2007, 37, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Cheung, R.; Wetherell, D.; Whitaker, S. Induced earthquakes and housing markets: Evidence from Oklahoma. Reg. Sci. Urban Econ. 2018, 69, 153–166. [Google Scholar] [CrossRef]
- Ferreira, S.; Liu, H.; Brewer, B. The housing market impacts of wastewater injection induced seismicity risk. J. Environ. Econ. Manag. 2018, 92, 251–269. [Google Scholar] [CrossRef]
- Troy, A.; Romm, J. Assessing the price effects of flood hazard disclosure under the California natural hazard disclosure law (AB 1195). J. Environ. Plan. Manag. 2004, 47, 137–162. [Google Scholar] [CrossRef]
- Bin, O.; Polasky, S. Effects of flood hazards on property values: Evidence before and after Hurricane Floyd. Land Econ. 2004, 80, 490–500. [Google Scholar] [CrossRef]
- Skantz, T.; Strickland, T. House Prices and a Flood Event: An Empirical Investigation of Market Efficiency. J. Real Estate Res. 1987, 2, 75–83. [Google Scholar] [CrossRef]
- Kousky, C. Learning from Extreme Events: Risk Perceptions after the Flood. Land Econ. 2010, 86, 395–422. [Google Scholar] [CrossRef]
- Atreya, A.; Ferreira, S.; Kriesel, W. Forgetting the Flood? An Analysis of the Flood Risk Discount over Time. Land Econ. 2013, 89, 577–596. [Google Scholar] [CrossRef]
- Bin, O.; Landry, C.E. Changes in implicit flood risk premiums: Empirical evidence from the housing market. J. Environ. Econ. Manag. 2012, 65, 361–376. [Google Scholar] [CrossRef]
- Carbone, J.C.; Hallstrom, D.G.; Smith, V.K. Can natural experiments measure behavioral responses to environmental risks? Environ. Resour. Econ. 2006, 33, 273–297. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
Category | Variables | Unit | Description |
---|---|---|---|
Dependent variable | Price | local currency (10,000 won) | Transaction price (inflation adjusted) |
Structural effect | Unit area | square meter | Size of unit area |
Rooms | quantity | Number of rooms | |
Restrooms | quantity | Number of restrooms | |
Floor | floor level | Level of floor | |
Elapsed year | year | Difference between transaction year and completion year | |
Size of the complex | quantity | Number of households in the apartment complex | |
Hallway type | dummy | Category: stair-type, aisle-type, complex-type | |
Heating type | dummy | Category: central, unit, district | |
Anti-seismic system | dummy | Existence of anti-seismic system (constructed after 2005) | |
Floor area ratio | ratio | (Building area/land area) ∗ 100 | |
Building coverage | ratio | (Total floor area/land area) ∗ 100 | |
Average parking lot | quantity | Average number of parking units per household | |
Highest top floor level | floor level | Highest top floor level in the complex | |
Locational effect | Accessibility to kindergarten | meter | Distance to the closest kindergarten |
Accessibility to elementary school | meter | Distance to the closest elementary school | |
Accessibility to middle school | meter | Distance to the closest middle school | |
Accessibility to high school | meter | Distance to the closest high school | |
Accessibility to university | meter | Distance to the closest university | |
Accessibility to CBD | meter | Distance to the largest corporation |
Variables | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|
Price | 19,015 | 8524.59 | 1898.52 | 56,098.19 |
Unit area (m2) | 83.08 | 26.42 | 17.33 | 243.25 |
Rooms | 3.05 | 0.53 | 1.00 | 7.00 |
Restrooms | 1.75 | 0.45 | 1.00 | 3.00 |
Floor level | 10.16 | 6.83 | 1.00 | 47.00 |
Elapsed years | 12.08 | 6.58 | 0.00 | 31.00 |
Floor area ratio | 257.32 | 54.57 | 73.00 | 408.00 |
Building coverage ratio | 24.056 | 12.42 | 6.00 | 84.00 |
Complex size | 725.89 | 537.27 | 10.00 | 2130.00 |
Average parking lot | 1.12 | 0.32 | 0.08 | 2.43 |
Highest of top floor | 20.89 | 8.15 | 5.00 | 48.00 |
Distance to kindergarten | 413.59 | 238.97 | 11.82 | 1231.43 |
Distance to elementary school | 475.90 | 246.80 | 31.61 | 1213.95 |
Distance to middle school | 914.70 | 630.95 | 93.57 | 3283.47 |
Distance to high school | 1084.98 | 753.08 | 109.07 | 11,000.91 |
Distance to university | 2871.09 | 2661.24 | 111.07 | 18,077.66 |
Distance to CBD | 6712.02 | 2341.55 | 2127.90 | 22,010.46 |
Number of samples | 4201 |
Variables | Types | Number | Proportion (%) |
---|---|---|---|
Hallway type | Stair-type | 3729 | 88.76 |
Aisle-type | 133 | 3.17 | |
Complex-type | 339 | 8.07 | |
Total | 4.201 | 100.00 | |
Heating type | Unit | 3899 | 92.81 |
Central | 177 | 4.21 | |
District | 125 | 2.98 | |
Total | 4.201 | 100.00 | |
Anti-seismic system | Anti-seismic | 2348 | 55.89 |
Non | 1853 | 44.11 | |
Total | 4.201 | 100.00 |
Independent Variable | Result |
---|---|
Unit area (log) | 0.74943 (36.00) ** |
Floor level | 0.00263 (5.81) ** |
Elapsed year | −0.02570 (−30.21) ** |
Number of rooms | 0.00542 (0.58) |
Number of restrooms | 0.10573 (11.39) ** |
Hall type: complex (dummy) | 0.13331 (7.82) ** |
Hall type: aisle (dummy) | −0.12680 (−11.96) ** |
Heating type: unit (dummy) | 0.37154 (22.86) ** |
Heating type: district (dummy) | −0.06104 (−2.98) ** |
Floor-area ratio | −0.00108 (−16.50) ** |
Building coverage ratio | −0.00083 (−2.80) ** |
Average parking lot | 0.20811 (14.10) ** |
Anti-seismic system (dummy) | 0.03726 (3.20) ** |
Number of households in the complex | 0.00000 (0.11) |
Highest top floor level in the complex | 0.00602 (9.74) ** |
Distance to kindergarten | −0.00008 (−4.83) ** |
Distance to elementary school | −0.00014 (−8.89) ** |
Distance to middle school | −0.00007 (−12.08) ** |
Distance to high school | 0.00005 (11.32) ** |
Distance to university | −0.00003 (−22.56) ** |
Distance to CBD | −0.00004 (−28.71) ** |
Post-event dummy | −0.03909 (−7.08) ** |
Constant | 6.94361 (114.68) ** |
MAE | 0.1446 |
MSE | 0.0294 |
RMSE | 0.1716 |
R-squared | 0.8903 |
Number of observations | 4201 |
Independent Variable | Result | ||
---|---|---|---|
Unit area (log) | 0.75927 (40.43) ** | ||
Floor level | 0.00223 (5.55) ** | ||
Elapsed year | −0.02321 (−29.26) ** | ||
Number of rooms | −0.00053 (−0.06) | ||
Number of restrooms | 0.09926 (11.99) ** | ||
Hall type: complex (dummy) | 0.03595 (2.25) * | ||
Hall type: aisle (dummy) | −0.04477 (−4.48) ** | ||
Heating type: unit (dummy) | 0.26234 (17.35) ** | ||
Heating type: district (dummy) | −0.11341 (−5.67) ** | ||
Floor area ratio | −0.0071 (−11.13) ** | ||
Building coverage ratio | 0.00037 (1.33) | ||
Average parking lot | 0.15729 (11.64) ** | ||
Anti-seismic system (dummy) | 0.08592 (7.98) ** | ||
Number of households in the complex | −0.00001 (−1.52) | ||
Highest top floor level in the complex | 0.00926 (15.96) ** | ||
Distance to kindergarten | −0.00012 (−7.26) ** | ||
Distance to elementary school | −0.00010 (−7.27) ** | ||
Distance to middle school | −0.00007 (−12.87) ** | ||
Distance to high school | −0.00002 (−3.42) ** | ||
Distance to university | −0.00004 (−13.97) ** | ||
Distance to CBD | 0.00002 (8.47) ** | ||
Distance from the epicenter | Dummy variables | 3~6 km | 0.15022 (5.96) ** |
6~9 km | 0.32366 (11.41) ** | ||
9~12 km | 0.51681 (16.61) ** | ||
12~15 km | 0.42549 (13.73) ** | ||
15~18 km | 0.39000 (9.54) ** | ||
Over 18 km | 0.36520 (8.80) ** | ||
Post-event dummies | 0~3 km | −0.21939 (−6.49) ** | |
3~6 km | −0.07200 (−8.31) ** | ||
6~9 km | −0.07421 (−6.94) ** | ||
9~12 km | −0.01685 (−1.69) | ||
12~15 km | 0.00748 (0.60) | ||
15~18 km | 0.00143 (0.07) | ||
Over 18 km | −0.00364 (−0.11) | ||
Constant | 6.13508 (89.23) ** | ||
MAE | 0.1316 | ||
MSE | 0.0231 | ||
RMSE | 0.1523 | ||
R-squared | 0.9139 | ||
Number of observations | 4201 |
Independent Variable | Result | ||
---|---|---|---|
Unit area (log) | 0.75988 (40.59) ** | ||
Floor level | 0.00223 (5.59) ** | ||
Elapsed year | −0.02339 (−29.55) ** | ||
Number of rooms | −0.00136 (−0.16) | ||
Number of restrooms | 0.09803 (11.87) ** | ||
Hall type: complex (dummy) | 0.03631 (2.28) * | ||
Hall type: aisle (dummy) | −0.04304 (−4.32) ** | ||
Heating type: unit (dummy) | 0.26106 (17.31) ** | ||
Heating type: district (dummy) | −0.11647 (−5.84) ** | ||
Floor area ratio | −0.00072 (−11.25) ** | ||
Building coverage ratio | 0.00039 (1.42) | ||
Average parking lot | 0.15494 (11.49) ** | ||
Anti-seismic (dummy) | 0.06291 (5.42) ** | ||
Anti-seismic system (post-event dummy) | 0.05459 (5.21) ** | ||
Number of households in the complex | −0.00001 (−1.35) | ||
Highest top floor level in the complex | 0.00924 (15.98) ** | ||
Distance to kindergarten | −0.00012 (−7.13) ** | ||
Distance to elementary school | −0.00011 (−7.41) ** | ||
Distance to middle school | −0.00007 (−12.92) ** | ||
Distance to high school | −0.00002 (−3.31) ** | ||
Distance to university | −0.00004 (−14.11) ** | ||
Distance to CBD | 0.00002 (8.46) ** | ||
Distance from the epicenter | Dummy variables | 3~6 km | 0.16040 (6.37) ** |
6~9 km | 0.32952 (11.64) ** | ||
9~12 km | 0.52202 (16.82) ** | ||
12~15 km | 0.43853 (14.14) ** | ||
15~18 km | 0.39263 (9.64) ** | ||
Over 18 km | 0.36406 (8.80) ** | ||
Post-event dummies | 0~3 km | −0.23098 (−6.84) ** | |
3~6 km | −0.10975 (−9.74) ** | ||
6~9 km | −0.09600 (−8.38) ** | ||
9~12 km | −0.03840 (−3.56) ** | ||
12~15 km | −0.03890 (−2.54) * | ||
15~18 km | −0.01896 (−0.87) | ||
Over 18 km | −0.00910 (−0.28) | ||
Constant | 6.14818 (89.64) ** | ||
MAE | 0.1305 | ||
MSE | 0.023 | ||
RMSE | 0.1518 | ||
R-squared | 0.9145 | ||
Number of observations | 4201 |
Independent Variable | Result 1 | Result 2 | ||
---|---|---|---|---|
Unit area (log) | 0.76049 (32.19) ** | 0.76025 (32.20) ** | ||
Floor level | 0.00193 (3.79) ** | 0.00194 (3.81) ** | ||
Elapsed year | −0.02108 (−20.81) ** | −0.02114 (−20.87) ** | ||
Number of rooms | −0.01518 (−1.40) | −0.01517 (−1.40) | ||
Number of restrooms | 0.10722 (9.82) ** | 0.10663 (9.77) ** | ||
Hall type: complex (dummy) | 0.02362 (1.16) | 0.02385 (1.17) | ||
Hall type: aisle (dummy) | −0.01285 (−0.98) | −0.01236 (−0.94) | ||
Heating type: unit (dummy) | 0.24879 (13.24) ** | 0.24877 (13.25) ** | ||
Heating type: district (dummy) | −0.11353 (−4.44) ** | −0.11484 (−4.49) ** | ||
Floor area ratio | −0.00090 (−10.60) ** | −0.00091 (−10.66) ** | ||
Building coverage ratio | −0.00037 (−1.01) | −0.00036 (−0.98) | ||
Average parking lot | 0.18099 (9.99) ** | 0.18096 (9.99) ** | ||
Anti-seismic system (dummy) | 0.10424 (7.48) ** | 0.09325 (6.19) ** | ||
Anti-seismic system (post-event dummy) | 0.02682 (1.92) | |||
Number of households in the complex | −0.00003 (−3.40) ** | −0.00003 (−3.39) ** | ||
Highest top floor level in the complex | 0.01060 (14.41) ** | 0.01063 (14.46) ** | ||
Distance to kindergarten | −0.00013 (−5.90) ** | −0.00013 (−5.84) ** | ||
Distance to elementary school | −0.00011 (−5.56) ** | −0.00011 (−5.63) ** | ||
Distance to middle school | −0.00007 (−9.85) ** | −0.00007 (−9.87) ** | ||
Distance to high school | −0.00001 (−2.26) * | −0.00001 (−2.25) * | ||
Distance to university | −0.00004 (−12.23) ** | −0.00004 (−12.26) ** | ||
Distance to CBD | 0.00002 (5.88) ** | 0.00002 (5.87) ** | ||
Distance from the epicenter | Dummy variables | 3~6 km | 0.13952 (3.75) ** | 0.14465 (3.88) ** |
6~9 km | 0.34346 (8.36) ** | 0.34590 (8.43) ** | ||
9~12 km | 0.54820 (12.21) ** | 0.54986 (12.25) ** | ||
12~15 km | 0.43721 (9.88) ** | 0.44345 (10.00) ** | ||
15~18 km | 0.45401 (8.00) ** | 0.45424 (8.01) ** | ||
Over 18 km | 0.48719 (8.51) ** | 0.48646 (8.50) ** | ||
Post-event dummies | 0~3 km | −0.17240 (−3.59) ** | −0.17886 (−3.72) ** | |
3~6 km | −0.02277 (−1.99) * | −0.04215 (−2.76) ** | ||
6~9 km | −0.03957 (−2.92) ** | −0.04970 (−3.42) ** | ||
9~12 km | −0.03029 (−2.32) * | −0.03987 (−2.85) ** | ||
12~15 km | 0.01933 (1.23) | −0.00409 (−0.21) | ||
15~18 km | 0.00635 (0.22) | −0.00233 (−0.08) | ||
Over 18 km | 0.02681 (0.65) | 0.02476 (0.60) | ||
Constant | 6.16482 (67.36) ** | 6.17118 (67.42) ** | ||
MAE | 0.1349 | 0.1345 | ||
MSE | 0.0202 | 0.0201 | ||
RMSE | 0.1421 | 0.142 | ||
R-squared | 0.9220 | 0.9221 | ||
Number of observations | 2224 | 2224 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Jo, H.; Seo, D.; You, S. Impact of Induced Seismicity on the Housing Market: Evidence from Pohang. Buildings 2022, 12, 286. https://doi.org/10.3390/buildings12030286
Hong J, Jo H, Seo D, You S. Impact of Induced Seismicity on the Housing Market: Evidence from Pohang. Buildings. 2022; 12(3):286. https://doi.org/10.3390/buildings12030286
Chicago/Turabian StyleHong, Jengei, Hyunjae Jo, Ducksu Seo, and Songhee You. 2022. "Impact of Induced Seismicity on the Housing Market: Evidence from Pohang" Buildings 12, no. 3: 286. https://doi.org/10.3390/buildings12030286
APA StyleHong, J., Jo, H., Seo, D., & You, S. (2022). Impact of Induced Seismicity on the Housing Market: Evidence from Pohang. Buildings, 12(3), 286. https://doi.org/10.3390/buildings12030286