An Innovative Modelling Approach Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal Comfort in an Office Building
Abstract
:1. Introduction
- Test the capabilities of ML models when used for predicting the thermal comfort votes of occupants.
- Combine the use of ML models with physics-based dynamic simulation to leverage virtual sensor variables and to generate dynamic predictions of relevant thermal comfort metrics.
- Establish a comparison with traditional normative methods for the evaluation of thermal comfort.
2. Materials and Methods
2.1. Methodology Overview and Workflow
2.2. ML Framework: Thermal Comfort Experiment and Data-Driven Modelling
2.3. Physics-Based Simulation
2.4. The Co-Simulation Framework
3. Results
3.1. The Building Case Study: The Helios Building
3.2. The Thermal Comfort Experiment
3.3. Building Energy Modelling: The Baseline Model
3.4. Model Calibration Results
3.5. The Thermal Comfort Models: Training and Results
3.6. Accuracy and Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mallawaarachchi, H.; De Silva, L.; Rameezdeen, R. Modelling the relationship between green built environment and occupants’ productivity. Facilities 2017, 35, 170–187. [Google Scholar] [CrossRef]
- Van Hoof, J.; Mazej, M.; Hensen, J.L.M. Thermal comfort: Research and practice. Front. Biosci. 2010, 15, 765–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yacine, S.M.; Noureddine, Z.; Piga, B.E.A.; Morello, E.; Safa, D. Towards a new model of light quality assessment based on occupant satisfaction and lighting glare indices. Energy Procedia 2017, 122, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Lan, L.; Wargocki, P.; Lian, Z. Quantitative measurement of productivity loss due to thermal discomfort. Energy Build. 2011, 43, 1057–1062. [Google Scholar] [CrossRef]
- Lan, L.; Lian, Z.; Pan, L. The effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratings. Appl. Ergon. 2010, 42, 29–36. [Google Scholar] [CrossRef]
- Parkinson, T.; Parkinson, A.; de Dear, R. Continuous IEQ monitoring system: Context and development. Build. Environ. 2019, 149, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.S.; Rohde, L.; Jønsson, K.T.; Rasmussen, B.; Jensen, R.L.; Knudsen, H.N.; Witterseh, T.; Bekö, G. IEQ-Compass—A tool for holistic evaluation of potential indoor environmental quality. Build. Environ. 2020, 172, 106707. [Google Scholar] [CrossRef]
- Gao, G.; Li, J.; Wen, Y. DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning. IEEE Internet Things J. 2020, 7, 8472–8484. [Google Scholar] [CrossRef]
- Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [Google Scholar] [CrossRef]
- Cheng, Y.; Niu, J.; Gao, N. Thermal comfort models: A review and numerical investigation. Build. Environ. 2012, 47, 13–22. [Google Scholar] [CrossRef]
- Karjalainen, S. Thermal comfort and gender: A literature review. Indoor Air 2012, 22, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Alizadeh, M.; Sadrameli, S.M. Numerical modeling and optimization of thermal comfort in building: Central composite design and CFD simulation. Energy Build. 2018, 164, 187–202. [Google Scholar] [CrossRef]
- Croitoru, C.; Nastase, I.; Bode, F.; Meslem, A.; Dogeanu, A. Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. Renew. Sustain. Energy Rev. 2015, 44, 304–318. [Google Scholar] [CrossRef]
- Halawa, E.; Van Hoof, J. The adaptive approach to thermal comfort: A critical overview. Energy Build. 2012, 51, 101–110. [Google Scholar] [CrossRef]
- Ioannou, A.; Itard, L.; Agarwal, T. In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings. Energy Build. 2018, 170, 229–241. [Google Scholar] [CrossRef]
- Palladino, D.; Nardi, I.; Buratti, C. Artificial neural network for the thermal comfort index prediction: Development of a new simplified algorithm. Energies 2020, 13, 4500. [Google Scholar] [CrossRef]
- Menyhárt, J.; Kalmár, F. Investigation of thermal comfort responses with fuzzy logic. Energies 2019, 12, 1792. [Google Scholar] [CrossRef] [Green Version]
- Mui, K.W.; Tsang, T.W.; Wong, L.T. Bayesian updates for indoor thermal comfort models. J. Build. Eng. 2020, 29, 101117. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Currò, C.; Danza, L.; Ghellere, M.; Guazzi, G.; Lenzi, B.; Megale, V.; Meroni, I. Integrated method for personal thermal comfort assessment and optimization through users’ feedback, IoT and machine learning: A case study. Sensors 2018, 18, 1602. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, J.; He, Y.; Liu, Y.; Lin, B.; Hong, T. Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning. J. Build. Eng. 2020, 29, 101120. [Google Scholar] [CrossRef] [Green Version]
- Farhan, A.A.; Pattipati, K.; Wang, B.; Luh, P. Predicting individual thermal comfort using machine learning algorithms. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 708–713. [Google Scholar]
- Pritoni, M.; Salmon, K.; Sanguinetti, A.; Morejohn, J.; Modera, M. Occupant thermal feedback for improved efficiency in university buildings. Energy Build. 2017, 144, 241–250. [Google Scholar] [CrossRef]
- Luo, M.; Xie, J.; Yan, Y.; Ke, Z.; Yu, P.; Wang, Z.; Zhang, J. Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II. Energy Build. 2020, 210, 109776. [Google Scholar] [CrossRef]
- Wu, Z.; Li, N.; Peng, J.; Cui, H.; Liu, P.; Li, H.; Li, X. Using an ensemble machine learning methodology-Bagging to predict occupants’ thermal comfort in buildings. Energy Build. 2018, 173, 117–127. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, W.; Wen, Y. Thermal comfort modeling for smart buildings: A fine-grained deep learning approach. IEEE Internet Things J. 2019, 6, 2540–2549. [Google Scholar] [CrossRef]
- Kim, J.; Zhou, Y.; Schiavon, S.; Raftery, P.; Brager, G. Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning. Build. Environ. 2018, 129, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-bozorgi, P.; Gao, X. Automation in Construction A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Aivaliotis, P.; Georgoulias, K.; Arkouli, Z.; Makris, S. Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP 2019, 81, 417–422. [Google Scholar] [CrossRef]
- Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research—A data-driven literature review. Renew. Sustain. Energy Rev. 2018, 82, 2664–2679. [Google Scholar] [CrossRef]
- Drgoňa, J.; Picard, D.; Kvasnica, M.; Helsen, L. Approximate model predictive building control via machine learning. Appl. Energy 2018, 218, 199–216. [Google Scholar] [CrossRef]
- Chaudhuri, T.; Soh, Y.C.; Li, H.; Xie, L. Machine learning based prediction of thermal comfort in buildings of equatorial Singapore. In Proceedings of the 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 23–26 July 2017; pp. 72–77. [Google Scholar]
- Liu, S.; Schiavon, S.; Das, H.P.; Jin, M.; Spanos, C.J. Personal thermal comfort models with wearable sensors. Build. Environ. 2019, 162, 106281. [Google Scholar] [CrossRef] [Green Version]
- Shahinmoghadam, M.; Natephra, W.; Motamedi, A. BIM- and IoT-based virtual reality tool for real-time thermal comfort assessment in building enclosures. Build. Environ. 2021, 199, 107905. [Google Scholar] [CrossRef]
- Chong, A.; Poh Lam, K. A Comparison of MCMC Algorithms for the Bayesian Calibration of Building Energy Models. In Proceedings of the 15th International Conference of IBPSA—Building Simulation 2017, San Francisco, CA, USA, 7–9 August 2017; pp. 494–503. [Google Scholar]
- ASHRAE Guideline 14-2014 Measurement of Energy, Demand, and Water Savings; ASHRAE: Atlanta, GA, USA, 2014; Volume 4, pp. 1–150.
- Jain, N.; Burman, E.; Mumovic, D.; Davies, M. Operational Performance: Building Performance Modelling and Calibration for Evaluation of Energy in-Use; CIBSE TM63: London, UK, 2020. [Google Scholar]
Vote Range | −3 | −2 | −1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
Mean | 22.56 | 23.07 | 23.50 | 24.63 | 27.1 | 28.21 | 29.7 |
Standard deviation | 0.56 | 1.35 | 1.68 | 2.04 | 2.21 | 2.08 | 0.93 |
Room | Variable | MAE (°C, PPM) | RMSE (°C, PPM) |
---|---|---|---|
3072 | Air temperature (°C) | 4.12 | 2.41 |
3072 | CO2 (PPM) | 126.13 | 83.01 |
3071 | Air temperature (°C) | 3.61 | 1.16 |
3071 | CO2 (PPM) | 186.12 | 169.93 |
3033 | Air temperature (°C) | 1.33 | 0.725 |
3033 | CO2 (PPM) | 219.2 | 140.7 |
3092 | Air temperature (°C) | 1.38 | 0.425 |
3092 | CO2 (PPM) | 105.15 | 20.98 |
Room | Variable | MAE (°C, PPM) | RMSE (°C, PPM) |
---|---|---|---|
3072 | Air temperature (°C) | 2.45 | 2.12 |
3072 | CO2 (PPM) | 67.20 | 53.78 |
3071 | Air temperature (°C) | 0.65 | 0.51 |
3071 | CO2 (PPM) | 129.45 | 122.13 |
3033 | Air temperature (°C) | 0.74 | 0.59 |
3033 | CO2 (PPM) | 67.01 | 53.19 |
3092 | Air temperature (°C) | 1.17 | 0.33 |
3092 | CO2 (PPM) | 156.84 | 34.17 |
ML Classifier | Accuracy |
---|---|
K-Neighbours Classifier | 62% |
Decision Tree Classifier | 56% |
Random Forest Classifier | 69% |
Logistic Regression | 62% |
Gradient Boosting Classifier | 66% |
ML Classifier | Accuracy |
---|---|
K-Neighbors Classifier | 78% |
Decision Tree Classifier | 79% |
Random Forest Classifier | 84% |
Logistic Regression | 77% |
Gradient Boosting Classifier | 81% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardioli, G.; Filho, R.; Bernaud, P.; Ntimos, D. An Innovative Modelling Approach Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal Comfort in an Office Building. Buildings 2022, 12, 475. https://doi.org/10.3390/buildings12040475
Tardioli G, Filho R, Bernaud P, Ntimos D. An Innovative Modelling Approach Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal Comfort in an Office Building. Buildings. 2022; 12(4):475. https://doi.org/10.3390/buildings12040475
Chicago/Turabian StyleTardioli, Giovanni, Ricardo Filho, Pierre Bernaud, and Dimitrios Ntimos. 2022. "An Innovative Modelling Approach Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal Comfort in an Office Building" Buildings 12, no. 4: 475. https://doi.org/10.3390/buildings12040475