Characteristics and Mechanism of Fire Spread between Full-Scale Wooden Houses from Internal Fires
Abstract
:1. Introduction
1.1. Introduction to Fire Spread of Wooden Houses
1.2. Literature for Wooden Houses Research
1.3. Brief Description of This Experiment
2. Materials and Methods
2.1. Construction and Test Environment of the Wooden Houses
2.2. Arrangement of the Test Points
2.3. Test Procedure
2.4. Statistical Analysis
3. Test Results and Discussion
3.1. Analysis of the Fire Spread Patterns in the Igniting House
3.1.1. Analysis of the Visual Characteristics
3.1.2. Temperature Changing Rule
3.1.3. Principal Component Analysis and Validation
3.2. Analysis of Fire Spread Rule in Wooden Houses
3.2.1. Analysis of the Visual Characteristics
3.2.2. Effect of Fireproof Materials
3.2.3. Effect of Slope
3.2.4. Effect of Distance
3.2.5. Principal Component Analysis Results and Validation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Previous Fire Spread Tests for Fireproof Paint
Appendix A.1.1. In the Treatment of Chinese Fir Board (Nominal Density of 500 kg/m3, Nominal Density of 15 mm)
Appendix A.1.2. In the Treatment of Other Materials
- Bafta: 0.15 g paint per gram
- Wool fabric: 0.12 g paint per gram
- Polyamide: 0.12 g paint per gram
- Polyester: 0.27 g paint per gram
- Paper: 0.06 g paint per gram
Location | Number of Thermocouples | Sum | |
---|---|---|---|
Inside the House 1 | Room 1 | D, N, X, B, 1-1-1, 1-1-2, 1-1-3, 1-1-4 | 8 |
Room 2 | 1-2 | 1 | |
Room 3 | 1-3 | 1 | |
Room 4 | 1-4 | 1 | |
Hall | T | 1 | |
Staircase | L | 1 | |
Second floor | L2, E1, E2, E3 | 4 | |
Outside the House 1 and House 4 | S-1, S-2, S-3, S-4, S-5, S-6 | 6 | |
Inside the House 2 | Q2, 2-1, R1 | 3 | |
On the wall of House 2 | Q1 | 1 | |
Inside the House 3 | 3-1, R2 | 2 | |
Inside the House 4 | 4-1, R3 | 2 | |
Total numbers | 31 |
Appendix A.2. Principal Component Analysis and Validation
Points | Statistics | Deviation | Standard Error | Inferior Limit | Upper Limit | |
---|---|---|---|---|---|---|
R112 | Average | 356.63 | 0.56 | 75.71 | 212.80 | 507.03 |
Standard deviation | 371.01 | −11.06 | 53.512 | 240.99 | 457.53 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
R12 | Average value | 132.05 | 0.98 | 46.17 | 47.68 | 232.26 |
Standard deviation | 225.76 | −10.89 | 54.87 | 61.47 | 299.22 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
T | Average value | 219.85 | 1.40 | 71.73 | 86.43 | 375.76 |
Standard deviation | 355.68 | −11.51 | 61.94 | 195.57 | 434.16 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
1 | Average value | 44.79 | 0.07 | 4.69 | 36.65 | 54.88 |
Standard deviation | 22.84 | −1.14 | 5.49 | 9.75 | 31.69 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
Q2 | Average value | 30.06 | 0.01 | 0.29 | 29.55 | 30.72 |
Standard deviation | 1.43 | −0.08 | 0.39 | 0.44 | 2.01 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
G4 | Average value | 0.29 | 0.01 | 0.14 | 0.10 | 0.61 |
Standard deviation | 0.67 | <−0.10 | 0.31 | 0.03 | 1.06 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
G5 | Average value | 0.12 | 0.01 | 0.01 | 0.11 | 0.13 |
Standard deviation | 0.02 | <−0.01 | 0.01 | 0 | 0.04 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
G1 | Average value | 5.24 | 0.05 | 3.03 | 0.56 | 12.21 |
Standard deviation | 14.74 | −1.52 | 5.75 | 1.08 | 22.58 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
G2 | Average value | 0.84 | <0.01 | 0.24 | 0.47 | 1.40 |
Standard deviation | 1.18 | −0.12 | 0.45 | 0.10 | 1.80 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
G3 | Average value | 0.52 | <0.01 | 0.09 | 0.39 | 0.73 |
Standard deviation | 0.44 | −0.05 | 0.17 | 0.07 | 0.68 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
S1 | Average value | 31.72 | −0.01 | 0.15 | 31.41 | 32.00 |
Standard deviation | 0.72 | −0.02 | 0.10 | 0.50 | 0.88 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
S2 | Average value | 29.79 | <0.01 | 0.20 | 29.43 | 30.21 |
Standard deviation | 0.99 | −0.03 | 0.14 | 0.64 | 1.22 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
S3 | Average value | 30.08 | <−0.01 | 0.14 | 29.80 | 30.37 |
Standard deviation | 0.70 | −0.02 | 0.07 | 0.52 | 0.80 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
S4 | Average value | 30.25 | <0.01 | 0.12 | 30.02 | 30.50 |
Standard deviation | 0.57 | −0.01 | 0.06 | 0.42 | 0.66 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
S5 | Average value | 43.40 | <0.01 | 1.81 | 39.82 | 47.07 |
Standard deviation | 8.93 | −0.22 | 0.82 | 7.06 | 10.28 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
S6 | Average value | 55.53 | <0.01 | 3.42 | 48.83 | 62.24 |
Standard deviation | 16.97 | −0.45 | 1.80 | 12.80 | 19.92 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
R1 | Average value | 74.48 | 0.15 | 17.02 | 44.37 | 111.60 |
Standard deviation | 83.25 | −4.99 | 22.00 | 28.67 | 115.98 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
R2 | Average value | 28.62 | <0.01 | 0.04 | 28.53 | 28.70 |
Standard deviation | 0.21 | −0.01 | 0.05 | 0.12 | 0.28 | |
Case number | 23 | 0 | 0 | 23 | 23 | |
R3 | Average value | 60.51 | 0.13 | 12.11 | 39.22 | 87.05 |
Standard deviation | 59.00 | −3.59 | 16.16 | 20.77 | 84.62 | |
Case number | 23 | 0 | 0 | 23 | 23 |
Appendix A.3. Principal Component Analysis and Validation
Points | Statistics | Deviation | Standard Error | Inferior Limit | Upper Limit | |
---|---|---|---|---|---|---|
D | Average | 262.31 | −2.65 | 53.74 | 165.11 | 368.37 |
Standard deviation | 335.60 | −10.61 | 50.20 | 220.97 | 408.14 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
N | Average value | 250.54 | −2.28 | 44.26 | 166.79 | 339.38 |
Standard deviation | 279.74 | −7.99 | 33.04 | 201.12 | 330.23 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
X | Average value | 314.05 | −2.77 | 54.76 | 210.00 | 427.83 |
Standard deviation | 344.22 | −11.10 | 47.37 | 235.27 | 415.66 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
B | Average value | 324.40 | −2.03 | 47.03 | 230.22 | 418.31 |
Standard deviation | 297.74 | −7.38 | 27.38 | 230.42 | 339.12 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
R111 | Average value | 86.48 | −0.34 | 14.33 | 59.12 | 114.66 |
Standard deviation | 90.44 | −2.20 | 12.46 | 60.02 | 109.63 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
R112 | Average value | 117.78 | −1.00 | 22.48 | 75.21 | 162.56 |
Standard deviation | 139.10 | −3.23 | 14.52 | 101.41 | 158.28 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
R113 | Average value | 310.65 | −2.75 | 59.01 | 196.78 | 429.91 |
Standard deviation | 375.38 | −6.98 | 23.74 | 311.73 | 404.59 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
R114 | Average value | 187.86 | −1.61 | 38.05 | 114.45 | 259.38 |
Standard deviation | 239.63 | −4.34 | 19.48 | 189.59 | 264.50 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
R12 | Average value | 266.33 | −2.04 | 54.68 | 163.47 | 370.59 |
Standard deviation | 344.25 | −6.09 | 30.72 | 267.89 | 387.57 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
R14 | Average value | 145.88 | −0.97 | 29.93 | 89.22 | 203.47 |
Standard deviation | 188.68 | −4.27 | 22.72 | 132.36 | 221.88 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
R13 | Average value | 184.71 | −0.78 | 51.86 | 90.33 | 294.16 |
Standard deviation | 323.33 | −9.97 | 57.55 | 184.45 | 413.93 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
L | Average value | 243.00 | −2.88 | 55.53 | 134.22 | 358.23 |
Standard deviation | 360.46 | −9.12 | 46.43 | 249.06 | 426.73 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
T | Average value | 318.63 | −3.34 | 64.80 | 194.88 | 446.98 |
Standard deviation | 415.31 | −7.93 | 32.63 | 335.43 | 461.11 | |
Case number | 39 | 0 | 0 | 39 | 39 | |
L2 | Average value | 264.16 | −3.05 | 55.37 | 157.41 | 377.83 |
Standard deviation | 350.73 | −7.89 | 33.36 | 268.41 | 396.39 | |
Case number | 39 | 0 | 0 | 39 | 39 |
References
- Chen, L.; Tang, F.; Pang, H. Ceiling heat flux and downward received radiation heat flux induced by weak and relative strong fire plume in ventilation tunnels. Appl. Therm. Eng. 2020, 169, 114924. [Google Scholar] [CrossRef]
- Bedon, C.; Fragiacomo, M. Fire Resistance of In-Plane Compressed Log-House Timber Walls with Partial Thermal Insulation. Buildings 2018, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Khidmat, R.P.; Fukuda, H. Kustiani Design Optimization of Hyperboloid Wooden House Concerning Structural, Cost, and Daylight Performance. Buildings 2022, 12, 110. [Google Scholar] [CrossRef]
- Chorlton, B.; Gales, J. Fire performance of cultural heritage and contemporary timbers. Eng. Struct. 2019, 201, 109739. [Google Scholar] [CrossRef]
- Lange, D.; Boström, L.; Schmid, J.; Albrektsson, J. The Reduced Cross Section Method Applied to Glulam Timber Exposed to Non-standard Fire Curves. Fire Technol. 2015, 51, 1311–1340. [Google Scholar] [CrossRef]
- Allaire, F.; Mallet, V.; Filippi, J.-B. Novel method for a posteriori uncertainty quantification in wildland fire spread simulation. Appl. Math. Model. 2021, 90, 527–546. [Google Scholar] [CrossRef]
- Zhao, S. GisFFE—An integrated software system for the dynamic simulation of fires following an earthquake based on GIS. Fire Saf. J. 2010, 45, 83–97. [Google Scholar] [CrossRef]
- Huang, X.; Sun, J.; Ji, J.; Zhang, Y.; Wang, Q.; Zhang, Y. Flame spread over the surface of thermal insulation materials in different environments. Chin. Sci. Bull. 2011, 56, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.C.; Kennedy, M.C.; Harrison, S.C.; Churchill, D.; Pass, J.; Fischer, P.W. Effects of post-fire management on dead woody fuel dynamics and stand structure in a severely burned mixed-conifer forest, in northeastern Washington State, USA. For. Ecol. Manag. 2020, 470, 118190. [Google Scholar] [CrossRef]
- Jones, N.; Peck, G.; McKenna, S.T.; Glockling, J.L.D.; Harbottle, J.; Stec, A.A.; Hull, T.R. Burning behaviour of rainscreen façades. J. Hazard. Mater. 2021, 403, 123894. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, M.; Log, T. Experience gained from 15 years of fire protection plans for Nordic wooden towns in Norway. Saf. Sci. 2021, 146, 105535. [Google Scholar] [CrossRef]
- Martín-Garín, A.; Millán-García, J.A.; Terés-Zubiaga, J.; Oregi, X.; Rodríguez-Vidal, I.; Baïri, A. Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope. Buildings 2021, 11, 410. [Google Scholar] [CrossRef]
- Himoto, K.; Suzuki, K. Computational framework for assessing the fire resilience of buildings using the multi-layer zone model. Reliab. Eng. Syst. Saf. 2021, 216, 108023. [Google Scholar] [CrossRef]
- Cicione, A.; Walls, R.; Sander, Z.; Flores, N.; Narayanan, V.; Stevens, S.; Rush, D. The Effect of Separation Distance Between Informal Dwellings on Fire Spread Rates Based on Experimental Data and Analytical Equations. Fire Technol. 2021, 57, 873–909. [Google Scholar] [CrossRef]
- Cicione, A.; Walls, R.; Kahanji, C. Experimental study of fire spread between multiple full scale informal settlement dwellings. Fire Saf. J. 2019, 105, 19–27. [Google Scholar] [CrossRef]
- Friedlander, S.K. Smoke, Dust and Haze: Fundamentals of Aerosol Behavior; Wiley-Interscience: New York, NY, USA, 1977; p. 317. [Google Scholar]
- Hasemi, Y. Full-Scale Burn Test of Wooden Three-Story Apartment Building. Fire Sci. Technol. 1997, 17, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Slocum, M.G.; Beckage, B.; Platt, W.J.; Orzell, S.L.; Taylor, W. Effect of Climate on Wildfire Size: A Cross-Scale Analysis. Ecosystems 2010, 13, 828–840. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Li, L.; Xu, Q. Thermo-mechanical behaviour of dovetail timber joints under fire exposure. Fire Saf. J. 2019, 107, 75–88. [Google Scholar] [CrossRef]
- Li, M.; Hasemi, Y.; Nozoe, Y.; Nagasawa, M. Study on strategy for fire safety planning based on local resident cooperation in a preserved historical mountain village in Japan. Int. J. Disaster Risk Reduct. 2021, 56, 102081. [Google Scholar] [CrossRef]
- Maraveas, C.; Miamis, K.; Matthaiou, C.E. Performance of Timber Connections Exposed to Fire: A Review. Fire Technol. 2013, 51, 1401–1432. [Google Scholar] [CrossRef]
- Stubbs, D.C.; Humphreys, L.H.; Goldman, A.; Childtree, A.M.; Kush, J.S.; Scarborough, D.E. An experimental investigation into the wildland fire burning characteristics of loblolly pine needles. Fire Saf. J. 2021, 126, 103471. [Google Scholar] [CrossRef]
- Zekri, N.; Zekri, L.; Lallemand, C.; Pizzo, Y.; Kaiss, A.; Clerc, J.; Porterie, B. Fire spread and percolation in polydisperse com-partment structures. J. Phys. Conf. Ser. 2012, 395, 12010. [Google Scholar] [CrossRef]
- Bilyaz, S.; Buffington, T.; Ezekoye, O.A. The effect of fire location and the reverse stack on fire smoke transport in high-rise buildings. Fire Saf. J. 2021, 126, 103446. [Google Scholar] [CrossRef]
- Gerzhova, N.; Blanchet, P.; Dagenais, C.; Côté, J.; Ménard, S. Heat Transfer Behavior of Green Roof Systems Under Fire Condition: A Nu-merical Study. Buildings 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Manzello, S.L. Understanding structure ignition vulnerabilities using mock-up sections of attached wood fencing assemblies. Fire Mater. 2019, 43, 675–684. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L.; Sun, X. Temperature profile of thermal flow underneath an inclined ceiling induced by a wall-attached fire. Int. J. Therm. Sci. 2019, 141, 133–140. [Google Scholar] [CrossRef]
- Zhang, X.; Tao, H.; Zhang, Z.; Liu, J.; Liu, A.; Xu, W.; Liu, X. Flame extension area of unconfined thermal ceiling jets induced by rectangular-source jet fire impingement. Appl. Therm. Eng. 2018, 132, 801–807. [Google Scholar] [CrossRef]
- Anderson, K.; Reuter, G.; Flannigan, M.D. Fire-growth modelling using meteorological data with random and systematic per-turbations. Int. J. Wildland Fire 2007, 16, 174. [Google Scholar] [CrossRef]
- Anderson, K. A climatologically based long-range fire growth model. Int. J. Wildland Fire 2010, 19, 879–894. [Google Scholar] [CrossRef]
- Ding, L.; Ji, J.; Khan, F.; Li, X.; Wan, S. Quantitative fire risk assessment of cotton storage and a criticality analysis of risk control strategies. Fire Mater. 2020, 44, 165–179. [Google Scholar] [CrossRef]
- Lönnermark, A.; Ingason, H. Fire Spread and Flame Length in Large-Scale Tunnel Fires. Fire Technol. 2006, 42, 283–302. [Google Scholar] [CrossRef]
- Ciri, U.; Garimella, M.M.; Bernardoni, F.; Bennett, R.L.; Leonardi, S. Uncertainty quantification of forecast error in coupled fire–atmosphere wildfire spread simulations: Sensitivity to the spatial resolution. Int. J. Wildland Fire 2021, 30, 790. [Google Scholar] [CrossRef]
- Raposo, J.R.; Viegas, D.X.; Xie, X.; Almeida, M.; Figueiredo, A.R.; Porto, L.; Sharples, J. Analysis of the physical processes associated with junction fires at laboratory and field scales. Int. J. Wildland Fire 2018, 27, 52–68. [Google Scholar] [CrossRef]
- Schulz, J.; Kent, D.; Crimi, T.; Glockling, J.L.D.; Hull, T.R. A Critical Appraisal of the UK’s Regulatory Regime for Combustible Façades. Fire Technol. 2021, 57, 261–290. [Google Scholar] [CrossRef]
- Borodinecs, A.; Geikins, A.; Barone, E.; Jacnevs, V.; Prozuments, A. Solution of Bullet Proof Wooden Frame Construction Panel with a Built-In Air Duct. Buildings 2021, 12, 30. [Google Scholar] [CrossRef]
- De Koker, N.; Walls, R.S.; Cicione, A.; Sander, Z.R.; Löffel, S.; Claasen, J.J.; Fourie, S.J.; Croukamp, L.; Rush, D. 20 Dwelling Large-Scale Experiment of Fire Spread in Informal Settlements. Fire Technol. 2020, 56, 1599–1620. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. Empirical Modeling of Fire Spread Rate in No-Wind and No-Slope Conditions. For. Sci. 2018, 64, 358–370. [Google Scholar] [CrossRef]
- Suh, H.-W.; Im, S.-M.; Park, T.-H.; Kim, H.-J.; Kim, H.-S.; Choi, H.-K.; Chung, J.-H.; Bae, S.-C. Fire Spread of Thermal Insulation Materials in the Ceiling of Piloti-Type Structure: Comparison of Numerical Simulation and Experimental Fire Tests Using Small- and Real-Scale Models. Sustainability 2019, 11, 3389. [Google Scholar] [CrossRef] [Green Version]
- Gamba, A.; Charlier, M.; Franssen, J.-M. Propagation tests with uniformly distributed cellulosic fire load. Fire Saf. J. 2020, 117, 103213. [Google Scholar] [CrossRef]
- Spearpoint, M.; Quintiere, J. Predicting the piloted ignition of wood in the cone calorimeter using an integral model—Effect of species, grain orientation and heat flux. Fire Saf. J. 2001, 36, 391–415. [Google Scholar] [CrossRef]
- Rackauskaite, E.; Bonner, M.; Restuccia, F.; Anez, N.F.; Christensen, E.G.; Roenner, N.; Wegrzynski, W.; Turkowski, P.; Tofilo, P.; Heidari, M.; et al. Fire Experiment Inside a Very Large and Open-Plan Compartment: X-ONE. Fire Technol. 2021, 58, 905–939. [Google Scholar] [CrossRef]
- Nishino, T.; Tanaka, T.; Hokugo, A. An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation. Fire Saf. J. 2012, 54, 167–180. [Google Scholar] [CrossRef]
- Poulsen, A.; Bwalya, A.; Jomaas, G. Evaluation of the Onset of Flashover in Room Fire Experiments. Fire Technol. 2013, 49, 891–905. [Google Scholar] [CrossRef]
- Daşdemir, O.; Aydın, F.; Ertuğrul, M. Factors Affecting the Behavior of Large Forest Fires in Turkey. Environ. Manag. 2021, 67, 162–175. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, H.; Peng, L.; Zheng, Z.; Zeng, W.; Bi, K.; Cheng, C.; Chow, W. Thermal Characteristics of Vertically Spreading Cable Fires in Confined Compartments. Fire Technol. 2019, 55, 1849–1875. [Google Scholar] [CrossRef]
- Nishino, T.; Kagiya, K. A multi-layer zone model including flame spread over linings for simulation of room-corner fire behavior in timber-lined rooms. Fire Saf. J. 2019, 110, 102906. [Google Scholar] [CrossRef]
- Viegas, D.X. Slope and wind effects on fire propagation. Int. J. Wildland Fire 2004, 13, 143–156. [Google Scholar] [CrossRef]
Point Number | Principal Component 1 | Principal Component 2 |
---|---|---|
1-3 | 0.966 | |
1-1-1 | 0.957 | |
1-4 | 0.956 | |
1-2 | 0.873 | 0.475 |
1-1-4 | 0.864 | 0.497 |
1-1-2 | 0.825 | 0.478 |
T | 0.709 | 0.669 |
X | 0.955 | |
N | 0.930 | |
D | 0.921 | |
B | 0.914 | |
L | 0.408 | 0.821 |
L2 | 0.648 | 0.719 |
1-1-3 | 0.657 | 0.718 |
Point Number | Principal Component 1 | Principal Component 2 | Principal Component 3 |
---|---|---|---|
G2 | 0.952 | ||
G4 | 0.947 | ||
G1 | 0.945 | 0.315 | |
G3 | 0.920 | 0.320 | |
Q2 | 0.806 | 0.567 | |
Q1 | 0.739 | 0.653 | |
1-2 | 0.723 | 0.606 | |
G5 | 0.456 | ||
S5 | 0.932 | ||
S3 | 0.893 | 0.324 | |
S4 | 0.333 | 0.871 | |
1-1 | 0.496 | 0.852 | |
S6 | 0.321 | 0.834 | |
S2 | 0.506 | 0.769 | |
T | 0.540 | 0.741 | |
S1 | 0.944 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Xiang, K.; Yan, F.; Liu, Q.; Sun, X.; Li, Y.; Du, P. Characteristics and Mechanism of Fire Spread between Full-Scale Wooden Houses from Internal Fires. Buildings 2022, 12, 575. https://doi.org/10.3390/buildings12050575
Yuan S, Xiang K, Yan F, Liu Q, Sun X, Li Y, Du P. Characteristics and Mechanism of Fire Spread between Full-Scale Wooden Houses from Internal Fires. Buildings. 2022; 12(5):575. https://doi.org/10.3390/buildings12050575
Chicago/Turabian StyleYuan, Shasha, Kun Xiang, Feng Yan, Qing Liu, Xuan Sun, Yinqing Li, and Peng Du. 2022. "Characteristics and Mechanism of Fire Spread between Full-Scale Wooden Houses from Internal Fires" Buildings 12, no. 5: 575. https://doi.org/10.3390/buildings12050575
APA StyleYuan, S., Xiang, K., Yan, F., Liu, Q., Sun, X., Li, Y., & Du, P. (2022). Characteristics and Mechanism of Fire Spread between Full-Scale Wooden Houses from Internal Fires. Buildings, 12(5), 575. https://doi.org/10.3390/buildings12050575