Reinforced Effect on Brick Wall Using Timber Wall as a Retrofitting Method
Abstract
:1. Introduction
2. Material Properties, Description and Set-Up of the Wall Specimens
2.1. Brick and Mortar
2.2. Shear Strength of Masonry
2.3. Compressive Strength of Masonry
2.4. Wooden Material and Connection
2.5. Description of the Brick Masonry Walls
2.6. Experimental Set-Up of the Brick Wall
3. Experimental Results
3.1. Hysteretic Response and Failure
3.1.1. BW Wall
3.1.2. BW-T Wall
3.1.3. BW-TA Wall
3.1.4. Experimental Comparison Result of Walls
4. Prediction and Discussion
4.1. Unreinforced Brick Masonry Wall (BW Wall)
4.2. Reinforced Brick Masonry Wall (BW-TA Wall)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, A.; Ueda, T. In-Plane Shear Performance of Masonry Walls after Strengthening by Two Different FRPs. J. Compos. Constr. 2016, 20, 04016019. [Google Scholar] [CrossRef] [Green Version]
- Tomaževič, M. Shear Resistance of Masonry Walls and Eurocode 6: Shear versus Tensile Strength of Masonry. Mater. Struct. 2009, 42, 889–907. [Google Scholar] [CrossRef]
- Vlachakis, G.; Vlachaki, E.; Lourenço, P.B. Learning from Failure: Damage and Failure of Masonry Structures, after the 2017 Lesvos Earthquake (Greece). Eng. Fail. Anal. 2020, 117, 104803. [Google Scholar] [CrossRef]
- Wang, C.; Sarhosis, V.; Nikitas, N. Strengthening/Retrofitting Techniques on Unreinforced Masonry Structure/Element Subjected to Seismic Loads: A Literature Review. Open Constr. Build. Technol. J. 2018, 12, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Konthesingha, K.M.C.; Masia, M.J.; Petersen, R.B.; Page, A.W. Experimental Evaluation of Static Cyclic In-Plane Shear Behavior of Unreinforced Masonry Walls Strengthened with NSM FRP Strips. J. Compos. Constr. 2015, 19, 04014055. [Google Scholar] [CrossRef]
- Banerjee, S.; Nayak, S.; Das, S. Seismic Performance Enhancement of Masonry Building Models Strengthened with the Cost-Effective Materials under Bi-Directional Excitation. Eng. Struct. 2021, 242, 112516. [Google Scholar] [CrossRef]
- Giaretton, M.; Dizhur, D.; Garbin, E.; Ingham, J.M.; da Porto, F. In-Plane Strengthening of Clay Brick and Block Masonry Walls Using Textile-Reinforced Mortar. J. Compos. Constr. 2018, 22, 04018028. [Google Scholar] [CrossRef]
- Lucchini, A.; Mazzucchelli, E.S.; Mangialardo, S.; Persello, M. Façadism and CLT technology: An innovative system for masonry construction refurbishment. In Proceedings of the 40th IAHS World Congress on Housing, Funchal, Portugal, 16–19 December 2014. [Google Scholar] [CrossRef]
- Sustersic, I.; Dujic, B. Seismic Strengthening of Existing Concrete and Masonry Buildings with Crosslam Timber Panels. In Materials and Joints in Timber Structures; Aicher, S., Reinhardt, H.-W., Garrecht, H., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 713–723. ISBN 978-94-007-7810-8. [Google Scholar]
- Guerrini, G.; Damiani, N.; Miglietta, M.; Graziotti, F. Cyclic Response of Masonry Piers Retrofitted with Timber Frames and Boards. Proc. Inst. Civ. Eng.-Struct. Build. 2021, 174, 372–388. [Google Scholar] [CrossRef]
- Maduh, U.J.; Shedde, D.; Ingham, J.; Dizhur, D. In-Plane Testing of URM Wall Panels Retrofitted Using Timber Strong-Backs. In Proceedings of the Australian Earthquake Engineering Society 2019 Conference, Newcastle, Australia, 29 November–1 December 2019; p. 13. [Google Scholar]
- Dizhur, D.; Giaretton, M.; Giongo, I.; Ingham, J. Seismic Retrofit of Masonry Walls Using Timber Strong-Backs. SESOC J. 2017, 30, 30–44. [Google Scholar]
- Giongo, I.; Rizzi, E.; Riccadonna, D.; Piazza, M. On-Site Testing of Masonry Shear Walls Strengthened with Timber Panels. Proc. Inst. Civ. Eng.-Struct. Build. 2021, 174, 389–402. [Google Scholar] [CrossRef]
- Miglietta, M.; Damiani, N.; Guerrini, G.; Graziotti, F. Full-scale Shake-table Tests on Two Unreinforced Masonry Cavity-wall Buildings: Effect of an Innovative Timber Retrofit. Bull. Earthq. Eng. 2021, 19, 2561–2596. [Google Scholar] [CrossRef]
- Iuorio, O.; Dauda, J.A. Retrofitting Masonry Walls against Out-Of-Plane Loading with Timber Based Panels. Appl. Sci. 2021, 11, 5443. [Google Scholar] [CrossRef]
- Busselli, M.; Cassol, D.; Prada, A.; Giongo, I. Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings. Sustainability 2021, 13, 10379. [Google Scholar] [CrossRef]
- Ganbaatar, A.; Mori, T.; Inoue, R.; Danzandorj, S. Strength Performance of the Connection between Brick and SPF Lumber. Buildings 2022, 12, 465. [Google Scholar] [CrossRef]
- Architectural Institute of Japan. Standard for Structural Design of Timber Structures; Architectural Institute of Japan: Tokyo, Japan, 2002. [Google Scholar]
- CEN 1052-3; Methods of Test for Masonry—Part 3: Determination of Initial Shear Strength. European Standard; European Committee for Standardization: Brussels, Belgium, 2002.
- ASTM C1314-18; Test Method for Compressive Strength of Masonry Prisms. American Society for Testing and Materials (ASTM): West Conshohochen, PA, USA, 2018.
- CEN Eurocode 6-EN 1996-1-1; Design of Masonry Structures-Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures. European Committee for Standardization: Brussels, Belgium, 2005.
- Wilding, B.V.; Beyer, K. Prediction of stiffness, force and drift capacity of modern in-plane loaded URM walls: Vorhersage von Steifigkeit, Festigkeit und horizontaler Verformungskapazität von unbewehrten Mauerwerksscheiben. Mauerwerk 2018, 22, 77–90. [Google Scholar] [CrossRef]
- Turnšek, V.; Čačovič, F. Some Experimental Results on the Strength of Brick and Block Masonry Walls. In Proceedings of the 2nd International Brick and Block Masonry Conference, Stoke-on-Trend, UK, 12–15 April 1971; pp. 149–156. [Google Scholar]
- Elghazouli, A.Y.; Bompa, D.V.; Mourad, S.A.; Elyamani, A. In-Plane Lateral Cyclic Behaviour of Lime-Mortar and Clay-Brick Masonry Walls in Dry and Wet Conditions. Bull. Earthq. Eng. 2021, 19, 5525–5563. [Google Scholar] [CrossRef]
- Kišiček, T.; Stepinac, M.; Renić, T.; Hafner, I.; Lulić, L. Strengthening of Masonry Walls with FRP or TRM. JCE 2020, 72, 937–953. [Google Scholar] [CrossRef]
- Miha, T. Earthquake-Resistance Design of Masonry Buildings; Imperial College Press: London, UK, 1999; Volume I, ISBN 1-86094-066-8. [Google Scholar]
- Messali, F.; Esposito, R.; Ravenshorst, G.J.P.; Rots, J.G. Experimental Investigation of the In-Plane Cyclic Behaviour of Calcium Silicate Brick Masonry Walls. Bull. Earthq. Eng. 2020, 18, 3963–3994. [Google Scholar] [CrossRef] [Green Version]
- CEN Eurocode 8-EN 1998-3; In Design of Structures for Earthquake Resistance-Part3: Assessment and Retrofitting of Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- Tuomi, R.L.; McCutcheon, W.J. Racking Strength of Light-Frame Nailed Walls. J. Struct. Div. 1978, 104, 1131–1140. [Google Scholar] [CrossRef]
- McCutcheon, W.J. Racking Deformations in Wood Shear Walls. J. Struct. Eng. 1985, 111, 257–269. [Google Scholar] [CrossRef]
- Architectural Institute of Japan. Fundamental Theory of Timber Engineering; Architectural Institute of Japan: Tokyo, Japan, 2010. (In Japanese) [Google Scholar]
- Architectural Institute of Japan. Allowable Stress Design of Wooden Framed Houses 1; Architectural Institute of Japan: Tokyo, Japan, 2017. (In Japanese) [Google Scholar]
Properties | Density (kg/m3) | Compressive Strength (N/mm2) | Young’s Modulus (N/mm2) |
---|---|---|---|
Mean | 1926.9 [1.9%] | 10.9 [11.9%] | 3225.8 [20.4%] |
The Pre-Compression Stress | Shear Strength | Shear Modulus | Adhesion Strength | Frictional Coefficient |
---|---|---|---|---|
N/mm2 | ||||
0.2 | 0.6 [9.1%] | 63.7 [24.1%] | 0.41 | 0.68 |
0.6 | 0.8 [17.3%] | 72.4 [38.3%] | ||
0.8 | 1.0 [1.9%] | 115.3 [58.6%] |
Compression Strength (f) | Elastic Modulus (E) | The Pre-Compression Stress | G/E | |
---|---|---|---|---|
N/mm2 | Test | EC-6 | ||
14.4 [28%] | 1202.9 [31%] | 0.2 | 0.05 | 0.4 |
0.6 | 0.06 | |||
0.8 | 0.10 |
Material | Compressive Strength | Tensile Strength | Bending Strength | Shear Strength | Elastic Modulus |
---|---|---|---|---|---|
N/mm2 | |||||
SPF | 17.4 | 11.4 | 21.6 | 1.8 | 9600 |
Plywood | 3.5 | 5.0 | 6.5 | 1.4 | 5500 |
Bolt | Yield Load | Slip Modulus | Ductility Ratio |
---|---|---|---|
kN | kN/mm | ||
M12 | 11.2 | 30.5 | 1.9 |
Wall Index | Dimension (mm) | Pre-Compression Stress (N/mm2) | Ratio of Height to Length |
---|---|---|---|
BW | 1090 × 1060 × 100 1090 × 1060 × 201 1090 × 1060 × 201 | 0.2 | 0.97 |
BW-T | |||
BW-TA |
Cycle № | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Rotation | 1/2000 | 1/1000 | 1/500 | 1/300 | 1/200 | 1/150 | 1/100 | 1/75 | 1/50 |
Displacement (mm) | 0.5 | 1.0 | 1.9 | 3.2 | 4.8 | 6.4 | 9.6 | 12.9 | 19.3 |
Properties | Unit | BW | BW-T | BW-TA |
---|---|---|---|---|
Pre-compression stress | N/mm2 | 0.2 | ||
Elastic modulus | N/mm2 | 2509 | 2790 | 3312 |
Loading Direction | Wall | Pcr | γcr | Pmax | γmax | Ke |
---|---|---|---|---|---|---|
kN | (10−3 rad) | kN | (10−3 rad) | (kN/mm) | ||
Positive | BW | 11.6 | 2.0 | 19.2 | 20.1 | 9.2 |
BW-T | 13.5 | 3.3 | 18.3 | 20.2 | 6.9 | |
BW-TA | 13.0 | 3.3 | 22.5 | 20.3 | 7.2 | |
Negative | BW | −10.5 | −2.0 | −15.7 | −20.0 | 8.6 |
BW-T | −11.6 | −3.3 | −14.3 | −20.1 | 7.8 | |
BW-TA | −16.9 | −5.0 | −24.6 | −13.4 | 7.7 |
Formula | Failure | Shear and Flexural Capacity | Shear Load |
---|---|---|---|
(1) | Sliding | ||
(2) | Diagonal | ||
(3) | Flexural |
Failure | Near Collapse Drift | |
---|---|---|
Shear | (5) | |
Flexural | (6) |
Parameter | Formula | |
---|---|---|
Yield moment | (7) | |
Ultimate moment | (8) | |
Elastic stiffness | (9) | |
Plasticity ratio | (10) |
Joint | Fastener Type | k (kN/cm) | δv (cm) | δu (cm) | ΔP (kN) | GB (kN/cm2) |
---|---|---|---|---|---|---|
Timber to 12 mm plywood | CN65 nail | 8.26 | 0.25 | 2.17 | 2.05 | 40 |
Wall | State | Drift Angle | Horizontal Load | Stiffness | ||
---|---|---|---|---|---|---|
Yield | Ultimate | Yield | Ultimate | |||
(×10−3) | kN | kN/mm | ||||
Timber | Test | - | 18.3 | - | 7.38 | 1.7 |
Prediction | 15.1 | 68.9 | 38.7 | 42.8 | 2.6 | |
BW-TA | Test | 3.3 | 20.2 | 14.6 | 20.3 | 7.5 |
Prediction-1 | 2.6 | 4.6 | 24.5 | 30.3 | 9.5 | |
Prediction-2 | 2.4 | 3.5 | 18.1 | 20.3 | 8.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganbaatar, A.; Mori, T.; Matsumoto, S.; Inoue, R. Reinforced Effect on Brick Wall Using Timber Wall as a Retrofitting Method. Buildings 2022, 12, 978. https://doi.org/10.3390/buildings12070978
Ganbaatar A, Mori T, Matsumoto S, Inoue R. Reinforced Effect on Brick Wall Using Timber Wall as a Retrofitting Method. Buildings. 2022; 12(7):978. https://doi.org/10.3390/buildings12070978
Chicago/Turabian StyleGanbaatar, Ariunaa, Takuro Mori, Shinya Matsumoto, and Ryo Inoue. 2022. "Reinforced Effect on Brick Wall Using Timber Wall as a Retrofitting Method" Buildings 12, no. 7: 978. https://doi.org/10.3390/buildings12070978
APA StyleGanbaatar, A., Mori, T., Matsumoto, S., & Inoue, R. (2022). Reinforced Effect on Brick Wall Using Timber Wall as a Retrofitting Method. Buildings, 12(7), 978. https://doi.org/10.3390/buildings12070978