CFD Analysis of Different Ventilation Strategies for a Room with a Heated Wall
Abstract
:1. Introduction
2. Description of the System
3. CFD Model
- The flow and heat transfer were steady;
- The flow was incompressible and turbulent;
- The ambient air was at atmospheric pressure;
- -
- SIMPLEC method for the coupling of pressure and velocity;
- -
- PRESTO! method for the pressure interpolation on the mesh faces;
- -
- Second order scheme for all equations.
4. Results and Discussion
4.1. Changing G1
4.2. Changing the Total Heat Flux
4.3. Changing G2
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
specific heat capacity of air (J/kg·K) | |
gap of Channel 1 (m) | |
gap of Channel 2 (m) | |
H | room height (m) |
h | window height (m). |
height of inlet of Channel 1 (m) | |
L | cavity height (m) |
height of vertical section of Channel 1 (m) | |
length of horizontal section of Channel 1 (m) | |
length of inlet of Channel 1 (m) | |
P | pressure (Pa) |
Q | total mass flow rate per meter width (kg/s) |
mass flow rate per meter width in Channel 1 (kg/s) | |
mass flow rate per meter width in Channel 2 (kg/s) | |
heat flux in Channel 1 (W/m2) | |
heat flux in Channel 2 (W/m2) | |
total heat flux (W/m2) | |
T, T′, | temperature (mean, fluctuation, and ambient) (K) |
u, u′ | velocity (mean and fluctuation) (m/s) |
friction velocity (m/s) | |
W | room width (m) |
Non-dimensional distance from a wall | |
thermal expansion of air (1/K) | |
distance of the first node from the wall (m) | |
thermal conductivity of air (W/mK) | |
: | dynamic viscosity of air (Pa.s) |
kinematic viscosity of air (m2/s) | |
density of air (kg/m3) |
References
- Thollander, P.; Karlsson, M.; Rohdin, P.; Wollin, J.; Rosenqvist, J. Introduction to Industrial Energy Efficiency; Academic Press: New York, NY, USA, 2020. [Google Scholar]
- Miyazaki, T.; Akisawa, A.; Kashiwagi, T. The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renew. Energy 2006, 31, 987–1010. [Google Scholar] [CrossRef]
- Al Touma, A.; Ouahrani, D. Performance assessment of evaporatively-cooled window driven by solar chimney in hot and humid climates. Sol. Energy 2018, 169, 187–195. [Google Scholar] [CrossRef]
- Hong, S.; He, G.; Ge, W.; Wu, Q.; Lv, D.; Li, Z. Annual energy performance simulation of solar chimney in a cold winter and hot summer climate. Build. Simul. 2019, 12, 847–856. [Google Scholar] [CrossRef]
- Ma, Q.; Fukuda, H.; Wei, X.; Hariyadi, A. Optimizing energy performance of a ventilated composite Trombe wall in an office building. Renew. Energy 2019, 134, 1285–1294. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, G.; Yang, W.; Huang, D.; Cheng, X.; Setunge, S. Determining the influencing factors on the performance of solar chimney in buildings. Renew. Sustain. Energy 2018, 88, 223–238. [Google Scholar] [CrossRef]
- Burek, S.A.M.; Habeb, A. Air flow and thermal efficiency characteristics in solar chimneys and Trombe Walls. Energy Build. 2007, 39, 128–135. [Google Scholar] [CrossRef]
- Chen, Z.D.; Bandopadhayay, P.; Halldorsson, J.; Byrjalsen, C.; Heiselberg, P.; Li, Y. An experimental investigation of a solar chimney model with uniform wall heat flux. Build. Environ. 2003, 38, 893–906. [Google Scholar] [CrossRef]
- Gan, G. Impact of computational domain on the prediction of buoyancy-driven ventilation cooling. Build. Environ. 2010, 45, 1173–1183. [Google Scholar] [CrossRef]
- Hou, Y.; Li, H.; Li, A. Experimental and theoretical study of solar chimneys in buildings with uniform wall heat flux. Sol. Energy 2019, 193, 244–252. [Google Scholar] [CrossRef]
- Jing, H.; Chen, Z.; Li, A. Experimental study of the prediction of the ventilation flow rate through solar chimney with large gap-to-height ratios. Build. Environ. 2015, 89, 150–159. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Wang, X.; Dang, C.; Wang, Q.; Bennacer, R. Experimental study of the chimney effect in a solar hybrid double wall. Sol. Energy 2015, 115, 1–9. [Google Scholar] [CrossRef]
- Mathur, J.; Mathur, S. Summer-performance of inclined roof solar chimney for natural ventilation. Energy Build. 2006, 38, 1156–1163. [Google Scholar] [CrossRef]
- Nguyen, Y.Q.; Wells, J.C. Effects of wall proximity on the airflow in a vertical solar chimney for natural ventilation of dwellings. J. Build. Phys. 2020, 44, 225–250. [Google Scholar] [CrossRef]
- Nguyen, Y.Q.; Wells, J.C. A numerical study on induced flowrate and thermal efficiency of a solar chimney with horizontal absorber surface for ventilation of buildings. J. Build. Eng. 2020, 28, 101050. [Google Scholar] [CrossRef]
- Villar-Ramos, M.M.; Macias-Melo, E.V.; Aguilar-Castro, K.M.; Hernández-Pérez, I.; Arce, J.; Serrano-Arellano, J.; Díaz-Hernández, H.P.; López-Manrique, L.M. Parametric analysis of the thermal behavior of a single-channel solar chimney. Sol. Energy 2020, 209, 602–617. [Google Scholar] [CrossRef]
- Zavala-Guillén, I.; Xamán, J.; Hernández-Pérez, I.; Hernández-Lopéz, I.; Gijón-Rivera, M.; Chávez, Y. Numerical study of the optimum width of 2a diurnal double air-channel solar chimney. Energy 2018, 147, 403–417. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, H. Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades. Appl. Energy 2019, 242, 107–120. [Google Scholar] [CrossRef]
- Khanal, R.; Lei, C. Flow reversal effects on buoyancy induced air flow in a solar chimney. Sol. Energy 2012, 86, 2783–2794. [Google Scholar] [CrossRef]
- Kim, K.M.; Nguyen, D.H.; Shim, G.H.; Jerng, D.-W.; Ahn, H.S. Experimental study of turbulent air natural convection in open-ended vertical parallel plates under asymmetric heating conditions. Int. J. Heat Mass Transf. 2020, 159, 120135. [Google Scholar] [CrossRef]
- Ren, X.-H.; Liu, R.-Z.; Wang, Y.-H.; Wang, L.; Zhao, F.-Y. Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: Reversal and cooperative flow dynamics. Renew. Energy 2019, 138, 354–367. [Google Scholar] [CrossRef]
- Zamora, B.; Kaiser, A.S. Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation. Heat Mass Transf. 2009, 45, 1393–1407. [Google Scholar] [CrossRef]
- Tan, A.Y.K.; Wong, N.H. Natural ventilation performance of classroom with solar chimney system. Energy Build. 2012, 53, 19–27. [Google Scholar] [CrossRef]
- Al-Kodmany, K. Sustainability and the 21st Century Vertical City: A Review of Design Approaches of Tall Buildings. Buildings 2018, 8, 102. [Google Scholar] [CrossRef]
- Petresevics, F.; Nagy, B. FEM-Based Evaluation of the Point Thermal Transmittance of Various Types of Ventilated Façade Cladding Fastening Systems. Buildings 2022, 12, 1153. [Google Scholar] [CrossRef]
- Rahiminejad, M.; Khovalyg, D. Thermal resistance of ventilated air-spaces behind external claddings; definitions and challenges (ASHRAE 1759-RP). Sci. Technol. Built Environ. 2021, 27, 788–805. [Google Scholar] [CrossRef]
- Macias-Melo, E.; Aguilar-Castro, K.; Xamán, J.; Hernández-Pérez, I. Experimental study of convective heat transfer in a ventilated rectangular cavity. J. Build. Phys. 2018, 42, 388–415. [Google Scholar] [CrossRef]
- Vazquez-Ruiz, A.; Navarro, J.M.A.; Hinojosa, J.F.; Xamán, J.P. Effect of the solar roof chimney position on heat transfer in a room. Int. J. Mech. Sci. 2021, 209, 106700. [Google Scholar] [CrossRef]
- Hernández-López, I.; Xamán, J.; Zavala-Guillén, I.; Hernández-Pérez, I.; Moreno-Bernal, P.; Chávez, Y. Thermal performance of a solar façade system for building ventilation in the southeast of Mexico. Renew. Energy 2020, 145, 294–307. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, G.; Wu, Q.; Li, W.; Shi, L. A combined wall and roof solar chimney in one building. Energy 2022, 240, 122480. [Google Scholar] [CrossRef]
- Zhai, Z.J.; Chen, Q.Y. Performance of coupled building energy and CFD simulations. Energy Build. 2005, 37, 333–344. [Google Scholar] [CrossRef]
- Abdeen, A.; Serageldin, A.A.; Ibrahim, M.G.E.; El-Zafarany, A.; Ookawara, S.; Murata, R. Experimental, analytical, and numerical investigation into the feasibility of integrating a passive Trombe wall into a single room. Appl. Therm. Eng. 2019, 154, 751–768. [Google Scholar] [CrossRef]
- Altaç, Z.; Uğurlubilek, N. Assessment of turbulence models in natural convection from two- and three-dimensional rectangular enclosures. Int. J. Therm. Sci. 2016, 107, 237–246. [Google Scholar] [CrossRef]
- Lechowska, A.; Szczepanik-Ścisło, N.; Schnotale, J.; Stelmach, M.; Pyszczek, T. CFD modelling of transient thermal performance of solar chimney used for passive ventilation in a building. IOP Conf. Ser. Mater. Sci. Eng. 2018, 415, 012049. [Google Scholar] [CrossRef]
- Nielsen, P.V. Fifty years of CFD for room air distribution. Build. Environ. 2015, 91, 78–90. [Google Scholar] [CrossRef]
- Szczepanik, N.; Schnotale, J. CFD simulations and measurements of carbon dioxide transport in a passive house. In Proceedings of the 24th IIR International Congress of Refrigeration, Yokohama, Japan, 16–22 August 2015. [Google Scholar]
- Hinojosa, J.F.; Orozco, D.A.; Xaman, J. Experimental and Numerical Study of a Ventilated Room with Located Heat Sources. J. Energy Eng. 2020, 146, 04020024. [Google Scholar] [CrossRef]
- Zamora, B.; Kaiser, A.S. Optimum wall-to-wall spacing in solar chimney shaped channels in natural convection by numerical investigation. Appl. Therm. Eng. 2009, 29, 762–769. [Google Scholar] [CrossRef]
- Gagliano, A.; Patania, F.; Nocera, F.; Ferlito, A.; Galesi, A. Thermal performance of ventilated roofs during summer period. Energy Build. 2012, 49, 611–618. [Google Scholar] [CrossRef]
- Pasut, W.; De Carli, M. Evaluation of various CFD modelling strategies in predicting airflow and temperature in a naturally ventilated double skin façade. Appl. Therm. Eng. 2012, 37, 267–274. [Google Scholar] [CrossRef]
- DeBlois, J.; Bilec, M.; Schaefer, L. Simulating home cooling load reductions for a novel opaque roof solar chimney configuration. Appl. Energy 2013, 112, 142–151. [Google Scholar] [CrossRef]
- Tong, S.; Li, H. An efficient model development and experimental study for the heat transfer in naturally ventilated inclined roofs. Build. Environ. 2014, 81, 296–308. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Sreejaya, K.V.; Chikere, A.O. Experimental and numerical analysis of the influence of inlet configuration on the performance of a roof top solar chimney. Energy Build. 2018, 159, 89–98. [Google Scholar] [CrossRef]
- Nguyen, Y.Q. An experiment on an energy-saving air cooling system combining a solar chimney and an indirect evaporative cooling method in real weather conditions of Hochiminh city. J. Sci. Technol. Univ. Danang-Vietnam 2015, 9, 69–73. [Google Scholar]
Dimension | Value (m) | Dimension | Value (m) |
---|---|---|---|
H | 2.0 | G2 | 0.05–0.2 |
W | 1.9 | hi | 0.1 |
L1 | 2.1 | li | 0.1 |
L2 | 1.0 | h | 0.4 |
G1 | 0.05–0.2 |
Test | No. of Cells | Max. Mesh Size (mm) | Min. Mesh Size (mm) | Q (kg/s) | Difference (%) | |
---|---|---|---|---|---|---|
1 | 16,460 | 90 | 1.1 | 3.9 | 0.05121 | 1.26 |
2 | 42,820 | 57 | 0.55 | 2.25 | 0.05118 | 1.32 |
3 | 120,665 | 42 | 0.29 | 1.3 | 0.05153 | 0.64 |
4 | 152,250 | 38 | 0.23 | 1.1 | 0.05169 | 0.32 |
5 | 184,620 | 35 | 0.2 | 0.95 | 0.05186 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, Y.Q.; Nguyen, V.T.; Tran, L.T.; Wells, J.C. CFD Analysis of Different Ventilation Strategies for a Room with a Heated Wall. Buildings 2022, 12, 1300. https://doi.org/10.3390/buildings12091300
Nguyen YQ, Nguyen VT, Tran LT, Wells JC. CFD Analysis of Different Ventilation Strategies for a Room with a Heated Wall. Buildings. 2022; 12(9):1300. https://doi.org/10.3390/buildings12091300
Chicago/Turabian StyleNguyen, Y Quoc, Viet T. Nguyen, Long T. Tran, and John C. Wells. 2022. "CFD Analysis of Different Ventilation Strategies for a Room with a Heated Wall" Buildings 12, no. 9: 1300. https://doi.org/10.3390/buildings12091300
APA StyleNguyen, Y. Q., Nguyen, V. T., Tran, L. T., & Wells, J. C. (2022). CFD Analysis of Different Ventilation Strategies for a Room with a Heated Wall. Buildings, 12(9), 1300. https://doi.org/10.3390/buildings12091300