Application of a Modified Differential Quadrature Finite Element Method to Flexural Vibrations of Composite Laminates with Arbitrary Elastic Boundaries
Abstract
:1. Introduction
2. Modified DQFEM Formulation for Composite Laminates
2.1. Constitutive Relations for Composite Laminate
2.2. Arrangement of Virtual Boundary Springs
2.3. Rectangular Plate Element
3. Numerical Examples and Discussions
3.1. Convergence Characteristics
3.1.1. Varying the Number of Gauss–Lobatto Nodes
3.1.2. Effect of the Boundary Spring Stiffness on Convergence
3.2. Composite Laminates with Classical Boundary Conditions
3.2.1. Verification of Accuracy
3.2.2. Verification of Efficiency
3.3. Composite Laminates with Elastic Boundary Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sayyad, A.S.; Ghugal, Y.M. On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results. Compos. Struct. 2015, 129, 177–201. [Google Scholar] [CrossRef]
- Akhras, G.; Li, W. Static and free vibration analysis of composite plates using spline finite strips with higher-order shear deformation. Compos. Part B-Eng. 2005, 36, 496–503. [Google Scholar] [CrossRef]
- Carrera, E.; Fazzolari, F.A.; Demasi, L. Vibration analysis of anisotropic simply supported plates by using variable kinematic and Rayleigh-Ritz method. J. Vib. Acoust.-Trans. ASME 2011, 133, 061017. [Google Scholar] [CrossRef]
- Chien, R.-D.; Chen, C.-S. Nonlinear vibration of laminated plates on an elastic foundation. Thin-Walled Struct. 2006, 44, 852–860. [Google Scholar] [CrossRef]
- Gupta, U.S.; Ansari, A.H.; Sharma, S. Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation. J. Sound Vib. 2006, 297, 457–476. [Google Scholar] [CrossRef]
- Kshirsagar, S.; Bhaskar, K. Accurate and elegant free vibration and buckling studies of orthotropic rectangular plates using untruncated infinite series. J. Sound Vib. 2008, 314, 837–850. [Google Scholar] [CrossRef]
- Morozov, E.V.; Lopatin, A.V. Fundamental Frequency of Fully Clamped Composite Sandwich Plate. J. Sandw. Struct. Mater. 2010, 12, 591–619. [Google Scholar] [CrossRef]
- Muthurajan, K.G.; Sankaranarayanasamy, K.; Tiwari, S.B.; Rao, B.N. Nonlinear vibration analysis of initially stressed thin laminated rectangular plates on elastic foundations. J. Sound Vib. 2005, 282, 949–969. [Google Scholar] [CrossRef]
- Nallim, L.G.; Grossi, R.O. Natural frequencies of symmetrically laminated elliptical and circular plates. Int. J. Mech. Sci. 2008, 50, 1153–1167. [Google Scholar] [CrossRef]
- Ren, X.; Chen, W. Free vibration analysis of laminated and sandwich plates using quadrilateral element based on an improved zig-zag theory. J. Compos. Mater. 2011, 45, 2173–2187. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, W.; Ren, X. An accurate higher-order theory and C-0 finite element for free vibration analysis of laminated composite and sandwich plates. Compos. Struct. 2010, 92, 1299–1307. [Google Scholar] [CrossRef]
- Zhou, D.; Cheung, Y.K.; Au, F.T.K.; Lo, S.H. Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int. J. Solids Struct. 2002, 39, 6339–6353. [Google Scholar] [CrossRef]
- Dai, K.Y.; Liu, G.R.; Lim, K.M.; Chen, X.L. A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates. J. Sound Vib. 2004, 269, 633–652. [Google Scholar] [CrossRef]
- Neves, A.M.A.; Ferreira, A.J.M.; Carrera, E.; Cinefra, M.; Roque, C.M.C.; Jorge, R.M.N.; Soares, C.M.M. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B-Eng. 2013, 44, 657–674. [Google Scholar] [CrossRef]
- Ferreira, A.J.M.; Carrera, E.; Cinefra, M.; Viola, E.; Tornabene, F.; Fantuzzi, N.; Zenkour, A.M. Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a Unified Formulation. Compos. Part B-Eng. 2014, 58, 544–552. [Google Scholar] [CrossRef]
- Liew, K.M.; Zhang, J.J.; Ng, T.Y.; Reddy, J.N. Dynamic characteristics of elastic bonding in composite laminates: A free vibration study. J. Appl. Mech.-Trans. Asme 2003, 70, 860–870. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, B. High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int. J. Numer. Methods Eng. 2009, 80, 1718–1742. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, B.; Liu, G. A differential quadrature finite element method. Int. J. Appl. Mech. 2010, 2, 207–227. [Google Scholar] [CrossRef]
- Du, Y.; Pang, F.; Sun, L.; Li, H. A unified formulation for dynamic behavior analysis of spherical cap with uniform and stepped thickness distribution under different edge constraints. Thin-Walled Struct. 2020, 146, 106445. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.; Han, C.; Jang, Y.; Han, P. A method for natural frequency calculation of the functionally graded rectangular plate with general elastic restraints. AIP Adv. 2020, 10, 085203. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Sok, K.; Pak, C.; Han, K. A modeling method for vibration analysis of cracked beam with arbitrary boundary condition. J. Ocean. Eng. Sci. 2018, 3, 367–381. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, B.; Shi, D.; Liang, Q. A semi-analytical method for vibration analysis of functionally graded carbon nanotube reinforced composite doubly-curved panels and shells of revolution. Compos. Struct. 2017, 174, 87–109. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, D.; Qin, B. A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions. Compos. Struct. 2018, 184, 211–232. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, D.; Liang, Q.; Pang, F. Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints. Appl. Math. Modell. 2017, 46, 227–262. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, D.; Liang, Q.; Pang, F. Free vibration of four-parameter functionally graded moderately thick doubly-curved panels and shells of revolution with general boundary conditions. Appl. Math. Modell. 2017, 42, 705–734. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, D.; Liang, Q.; Shi, X. A unified solution for vibration analysis of functionally graded circular, annular and sector plates with general boundary conditions. Compos. Part B-Eng. 2016, 88, 264–294. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, D.; Pang, F.; Ahad, F.e. Benchmark solution for free vibration of thick open cylindrical shells on Pasternak foundation with general boundary conditions. Meccanica 2017, 52, 457–482. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, D.; Shi, X. A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation. Meccanica 2016, 51, 1985–2017. [Google Scholar] [CrossRef]
- Mindlin, R.D. Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates. J. Appl. Mech. 1951, 18, 31–38. [Google Scholar] [CrossRef]
- Reissner, E. The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. J. Appl. Mech. 1945, 12, A69–A77. [Google Scholar] [CrossRef]
- Bert, C.W.; Malik, M. Free vibration analysis of thin cylindrical shells by the differential quadrature method. J. Press. Vessel Technol. 1996, 118, 1–12. [Google Scholar] [CrossRef]
- Bert, C.W.; Malik, M. The differential quadrature method for irregular domains and application to plate vibration. Int. J. Mech. Sci. 1996, 38, 589–606. [Google Scholar] [CrossRef]
- Malik, M.; Bert, C. Implementing multiple boundary conditions in the DQ solution of higher-order PDEs: Application to free vibration of plates. Int. J. Numer. Methods Eng. 1996, 39, 1237–1258. [Google Scholar] [CrossRef]
- Liu, B.; Xing, Y.F.; Reddy, J.N. Exact compact characteristic equations and new results for free vibrations of orthotropic rectangular Mindlin plates. Compos. Struct. 2014, 118, 316–321. [Google Scholar] [CrossRef]
- Liew, K.M. Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method. J. Sound Vib. 1996, 198, 343–360. [Google Scholar] [CrossRef]
Notations | Definitions |
---|---|
kti (i = 1,2,3,4) | Line spring of the i-th edge |
krxi (i = 1,2) | Torsion springs restricting normal rotations of edges 1 and 3 |
kryi (i = 1,2) | Torsion springs restricting normal rotations of edges 2 and 4 |
krxi (i = 3,4) | Torsion springs restricting tangent rotations of edges 2 and 4 |
kryi (i = 3,4) | Torsion springs restricting tangent rotations of edges 1 and 3 |
Thickness Ratio h/b | CCCC | SSSS |
---|---|---|
0.001 | 103 | 102 |
0.01 | 106 | 105 |
0.1 | 108 | 107 |
0.2 | 108 | 108 |
Thickness Ratio h/b | The Stiffness k of Boundary Spring | |
---|---|---|
Clamped Boundary (C) | Simply Supported Boundary (S) | |
0.001 | 103 | 102 |
0.01 | 106 | 105 |
0.05 1 | 107 | 106 |
0.1 | 108 | 107 |
0.15 1 | 108 | 107.5 |
0.2 | 108 | 108 |
Thickness Ratio h/b | Method | Order of Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||
0.001 | Present | 14.666 | 17.614 | 24.511 | 35.532 | 39.157 | 40.768 | 44.786 | 50.323 |
p-Ritz | 14.666 | 17.614 | 24.511 | 35.532 | 39.157 | 40.768 | 44.786 | 50.297 | |
0.05 | Present | 10.953 | 14.028 | 20.388 | 23.196 | 24.978 | 29.237 | 29.369 | 36.266 |
p-Ritz | 10.953 | 14.028 | 20.388 | 23.196 | 24.978 | 29.237 | 29.369 | 36.266 | |
0.1 | Present | 7.411 | 10.393 | 13.913 | 15.429 | 15.806 | 19.572 | 21.489 | 21.620 |
p-Ritz | 7.411 | 10.393 | 13.913 | 15.429 | 15.806 | 19.572 | 21.489 | 21.620 | |
0.15 | Present | 5.548 | 8.147 | 9.904 | 11.622 | 12.025 | 14.645 | 14.911 | 16.123 |
p-Ritz | 5.548 | 8.147 | 9.904 | 11.622 | 12.025 | 14.645 | 14.911 | 16.123 | |
0.2 | Present | 4.447 | 6.642 | 7.700 | 9.185 | 9.738 | 11.399 | 11.644 | 12.466 |
p-Ritz | 4.447 | 6.642 | 7.700 | 9.185 | 9.738 | 11.399 | 11.644 | 12.466 |
Thickness Ratio h/b | Method | Order of Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||
0.001 | Present | 6.625 | 9.447 | 16.205 | 25.115 | 26.498 | 26.657 | 30.314 | 37.785 |
Exact | 6.625 | 9.447 | 16.205 | 25.115 | 26.498 | 26.657 | 30.314 | 37.785 | |
p-Ritz | 6.625 | 9.447 | 16.205 | 25.115 | 26.498 | 26.657 | 30.314 | 37.785 | |
0.05 | Present | 6.138 | 8.888 | 15.110 | 19.354 | 20.665 | 24.070 | 24.344 | 31.028 |
Exact | 6.138 | 8.888 | 15.110 | 19.354 | 20.665 | 24.070 | 24.344 | 31.028 | |
p-Ritz | 6.138 | 8.888 | 15.110 | 19.354 | 20.665 | 24.070 | 24.344 | 31.028 | |
0.1 | Present | 5.166 | 7.757 | 12.915 | 13.049 | 14.376 | 17.788 | 19.502 | 21.051 |
Exact | 5.166 | 7.757 | 12.915 | 13.049 | 14.376 | 17.788 | 19.502 | 21.051 | |
p-Ritz | 5.166 | 7.757 | 12.915 | 13.049 | 14.376 | 17.788 | 19.502 | 21.051 | |
0.15 | Present | 4.275 | 6.667 | 9.488 | 10.824 | 10.826 | 13.804 | 14.665 | 15.590 |
Exact | 4.275 | 6.667 | 9.488 | 10.824 | 10.826 | 13.804 | 14.665 | 15.590 | |
p-Ritz | 4.275 | 6.667 | 9.488 | 10.824 | 10.826 | 13.804 | 14.665 | 15.590 | |
0.2 | Present | 3.594 | 5.769 | 7.397 | 8.688 | 9.145 | 11.208 | 11.223 | 12.117 |
Exact | 3.594 | 5.769 | 7.397 | 8.688 | 9.145 | 11.208 | 11.223 | 12.117 | |
p-Ritz | 3.594 | 5.769 | 7.397 | 8.688 | 9.145 | 11.208 | 11.223 | 12.117 |
Thickness Ratio h/b | Method | Order of Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||
0.05 | Present | 6.890 | 11.246 | 18.664 | 19.619 | 21.801 | 26.689 | 28.260 | 34.348 |
Exact | 6.890 | 11.246 | 18.664 | 19.619 | 21.801 | 26.689 | 28.260 | 34.348 | |
p-Ritz | 6.890 | 11.246 | 18.664 | 19.619 | 21.801 | 26.689 | 28.260 | 34.348 | |
0.1 | Present | 5.871 | 9.454 | 13.340 | 14.878 | 15.340 | 19.229 | 21.231 | 21.275 |
Exact | 5.871 | 9.454 | 13.340 | 14.878 | 15.340 | 19.229 | 21.231 | 21.275 | |
p-Ritz | 5.871 | 9.454 | 13.340 | 14.878 | 15.340 | 19.229 | 21.231 | 21.275 | |
0.15 | Present | 4.275 | 6.667 | 9.488 | 10.824 | 10.826 | 13.804 | 14.665 | 15.590 |
Exact | 4.275 | 6.667 | 9.488 | 10.824 | 10.826 | 13.804 | 14.665 | 15.590 | |
p-Ritz | 4.275 | 6.667 | 9.488 | 10.824 | 10.826 | 13.804 | 14.665 | 15.590 | |
0.2 | Present | 4.137 | 6.474 | 7.664 | 9.159 | 9.643 | 11.377 | 11.625 | 12.448 |
Exact | 4.137 | 6.474 | 7.664 | 9.159 | 9.643 | 11.377 | 11.625 | 12.448 | |
p-Ritz | 4.137 | 6.474 | 7.664 | 9.159 | 9.643 | 11.377 | 11.625 | 12.448 |
Thickness ratio h/b | Method | Order of Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||
0.05 | Present | 5.734 | 5.933 | 7.398 | 11.918 | 19.124 | 19.284 | 19.603 | 20.087 |
Exact | 5.734 | 5.933 | 7.397 | 11.917 | 19.124 | 19.284 | 19.602 | 20.086 | |
p-Ritz | 5.734 | 5.933 | 7.397 | 11.918 | 19.124 | 19.284 | 19.602 | 20.086 | |
0.1 | Present | 4.781 | 4.935 | 6.320 | 10.345 | 12.851 | 12.959 | 13.677 | 16.070 |
Exact | 4.781 | 4.935 | 6.319 | 10.345 | 12.851 | 12.959 | 13.677 | 16.070 | |
p-Ritz | 4.781 | 4.935 | 6.319 | 10.345 | 12.851 | 12.959 | 13.677 | 16.070 | |
0.2 | Present | 3.213 | 3.311 | 4.619 | 7.195 | 7.273 | 7.599 | 8.004 | 10.043 |
Exact | 3.213 | 3.311 | 4.619 | 7.195 | 7.272 | 7.599 | 8.004 | 10.043 | |
p-Ritz | 3.213 | 3.311 | 4.619 | 7.195 | 7.272 | 7.599 | 8.004 | 10.043 |
Thickness Ratio h/b | Method | Order of Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||
0.05 | Present | 5.785 | 6.657 | 10.301 | 17.279 | 19.165 | 19.655 | 21.520 | 25.971 |
Exact | 5.785 | 6.657 | 10.301 | 17.279 | 19.165 | 19.655 | 21.519 | 25.970 | |
0.1 | Present | 4.821 | 5.641 | 8.976 | 12.879 | 13.304 | 14.614 | 15.144 | 19.121 |
Exact | 4.821 | 5.641 | 8.976 | 12.879 | 13.304 | 14.614 | 15.144 | 19.121 | |
0.2 | Present | 3.240 | 4.017 | 6.654 | 7.216 | 7.642 | 9.323 | 10.195 | 11.077 |
Exact | 3.240 | 4.017 | 6.654 | 7.216 | 7.642 | 9.323 | 10.195 | 11.077 |
Thickness Ratio h/b | Method | Order of Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||
0.05 | Present | 6.429 | 9.983 | 16.848 | 19.459 | 21.172 | 25.460 | 26.159 | 32.661 |
Exact | 6.429 | 9.983 | 16.847 | 19.459 | 21.172 | 25.460 | 26.159 | 32.661 | |
0.1 | Present | 5.450 | 8.587 | 13.165 | 13.914 | 14.832 | 18.510 | 20.413 | 21.123 |
Exact | 5.450 | 8.587 | 13.165 | 13.914 | 14.832 | 18.510 | 20.412 | 21.123 | |
0.2 | Present | 3.835 | 6.140 | 7.513 | 8.931 | 9.401 | 11.282 | 11.429 | 12.286 |
Exact | 3.835 | 6.140 | 7.513 | 8.931 | 9.401 | 11.282 | 11.429 | 12.286 |
Thickness Ratio h/b | Method | Order of Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||
0.05 | Present | 5.8293 | 7.1375 | 11.5836 | 19.1261 | 19.1837 | 19.8523 | 22.1823 | 27.2341 |
Exact | 5.8293 | 7.1375 | 11.5836 | 19.1261 | 19.1837 | 19.8523 | 22.1823 | 27.2341 | |
0.1 | Present | 4.8650 | 6.0724 | 9.8872 | 12.8983 | 13.4994 | 15.6061 | 15.6911 | 19.8715 |
Exact | 4.8650 | 6.0724 | 9.8872 | 12.8983 | 13.4994 | 15.6061 | 15.6911 | 19.8715 | |
0.2 | Present | 3.2877 | 4.3135 | 7.0132 | 7.2389 | 7.7982 | 9.5741 | 10.4079 | 11.0930 |
Exact | 3.2877 | 4.3135 | 7.0132 | 7.2389 | 7.7982 | 9.5741 | 10.4079 | 11.0930 |
Thickness Ratio h/b | B.C. | Order of Frequency | |||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | ||
0.01 | CCCC | 14.4339 | 17.3892 | 24.2667 | 35.1818 | 37.7770 | 39.3875 |
E1E1E1E1 | 14.4271 | 17.3823 | 24.2583 | 35.1684 | 37.7253 | 39.3352 | |
E2E2E2E2 | 14.4336 | 17.3890 | 24.2665 | 35.1817 | 37.7762 | 39.3867 | |
E3E3E3E3 | 14.4268 | 17.3820 | 24.2581 | 35.1682 | 37.7245 | 39.3344 | |
0.1 | CCCC | 7.4108 | 10.3927 | 13.9129 | 15.4287 | 15.8056 | 19.5720 |
E1E1E1E1 | 6.7022 | 9.5265 | 11.9340 | 13.8435 | 13.8624 | 17.2335 | |
E2E2E2E2 | 7.3785 | 10.3671 | 13.9005 | 15.4083 | 15.7924 | 19.5584 | |
E3E3E3E3 | 6.6796 | 9.5084 | 11.9316 | 13.8306 | 13.8579 | 17.2287 | |
0.2 | CCCC | 4.4466 | 6.6419 | 7.6996 | 9.1852 | 9.7378 | 11.3991 |
E1E1E1E1 | 3.5877 | 5.2085 | 5.9962 | 7.1819 | 7.5080 | 9.0682 | |
E2E2E2E2 | 4.4054 | 6.6109 | 7.6925 | 9.1741 | 9.7175 | 11.3933 | |
E3E3E3E3 | 3.5673 | 5.1971 | 5.9838 | 7.1720 | 7.5030 | 9.0614 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, W.; Li, X.; He, L. Application of a Modified Differential Quadrature Finite Element Method to Flexural Vibrations of Composite Laminates with Arbitrary Elastic Boundaries. Buildings 2022, 12, 1380. https://doi.org/10.3390/buildings12091380
Xiang W, Li X, He L. Application of a Modified Differential Quadrature Finite Element Method to Flexural Vibrations of Composite Laminates with Arbitrary Elastic Boundaries. Buildings. 2022; 12(9):1380. https://doi.org/10.3390/buildings12091380
Chicago/Turabian StyleXiang, Wei, Xin Li, and Lina He. 2022. "Application of a Modified Differential Quadrature Finite Element Method to Flexural Vibrations of Composite Laminates with Arbitrary Elastic Boundaries" Buildings 12, no. 9: 1380. https://doi.org/10.3390/buildings12091380
APA StyleXiang, W., Li, X., & He, L. (2022). Application of a Modified Differential Quadrature Finite Element Method to Flexural Vibrations of Composite Laminates with Arbitrary Elastic Boundaries. Buildings, 12(9), 1380. https://doi.org/10.3390/buildings12091380