Seismic Design Codes—Key Elements for Seismic Risk Perception and Reduction in Europe
Abstract
:1. Introduction
2. The Evolution of Seismic Design
3. Seismic Exposure
4. Seismic Risk Assessment
5. Perception of Seismic Risk and Risk Reduction
6. Conclusions
- The current building stock in the four analyzed countries consists mainly of buildings designed using no- or low-level seismic design;
- There is a much larger share of the population living in buildings designed using either moderate-code/high-code in Greece, Turkey and Romania, than in the case of Italy;
- In the case of Romania and Turkey, the relative percentage of the people living in buildings designed using either moderate-code/high-code is double than the percentage corresponding to the building number;
- From the entire population of more than 170 million people in the four case-study countries, about 130 million live in buildings designed using no- or low-level seismic design;
- The mean annual probability of death computed based on the EM-DAT database [1] for the population in the four analyzed countries is of the order 1.2–5.7 × 10−6, while for injuries it is 3.0 × 10−5–1.5 × 10−4. The order of magnitude of the annual death probability due to earthquakes is on average 10 times smaller than that due to air travel or a building fire;
- Three seismic events occurring in the period 1980–2022 in Europe have generated losses in excess of 10 billion Euros.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EM-DAT|The International Disasters Database. Available online: https://www.emdat.be/index.php (accessed on 17 November 2022).
- Corbane, C.; Hancilar, U.; Ehrlich, D.; De Groeve, T. Pan-European Seismic Risk Assessment: A Proof of Concept Using the Earthquake Loss Estimation Routine (ELER). Bull. Earthq. Eng. 2017, 15, 1057–1083. [Google Scholar] [CrossRef]
- Ainuddin, S.; Mukhtar, U.; Ainuddin, S. Public Perception about Enforcement of Building Codes as Risk Reduction Strategy for Seismic Safety in Quetta, Baluchistan. Int. J. Disaster Risk Reduct. 2014, 9, 99–106. [Google Scholar] [CrossRef]
- Gkimprixis, A.; Tubaldi, E.; Douglas, J. Evaluating Alternative Approaches for the Seismic Design of Structures. Bull. Earthq. Eng. 2020, 18, 4331–4361. [Google Scholar] [CrossRef]
- CEN. Eurocode 8: Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings; CEN: Bruxelles, Belgium, 2004. [Google Scholar]
- FIB. FIB Bulletin 69: Critical Comparison of Major Seismic Codes for Buildings; FIB: Lausanne, Switzerland, 2013. [Google Scholar]
- CEN. Eurocode 8: Design of Structures for Earthquake Resistance. Part 3: Assessment and Retrofitting of Buildings; CEN: Bruxelles, Belgium, 2005. [Google Scholar]
- Crowley, H.; Dabbeek, J.; Despotaki, V.; Rodrigues, D.; Martins, L.; Silva, V.; Romão, X.; Pereira, N.; Weatherhill, G.; Danciu, L. European Seismic Risk Model (ESRM20); EUCENTRE Foundation: Pavia, Italy, 2021. [Google Scholar] [CrossRef]
- Crowley, H.; Despotaki, V.; Silva, V.; Dabbeek, J.; Romão, X.; Pereira, N.; Castro, J.M.; Daniell, J.; Veliu, E.; Bilgin, H.; et al. Model of Seismic Design Lateral Force Levels for the Existing Reinforced Concrete European Building Stock. Bull. Earthq. Eng. 2021, 19, 2839–2865. [Google Scholar] [CrossRef]
- Crowley, H.; Despotaki, V.; Rodrigues, D.; Silva, V.; Toma-Danila, D.; Riga, E.; Karatzetzou, A.; Fotopoulou, S.; Zugic, Z.; Sousa, L.; et al. Exposure Model for European Seismic Risk Assessment. Earthq. Spectra 2020, 36, 252–273. [Google Scholar] [CrossRef]
- Crowley, H.; Despotaki, V.; Rodrigues, D.; Silva, V.; Costa, C.; Toma-Danila, D.; Riga, E.; Karatzetzou, A.; Fotopoulou, S.; Sousa, L.; et al. European Exposure Model Data Repository [Data set]; Zenodo: Honolulu, HI, USA, 2021. [Google Scholar] [CrossRef]
- GDP (Current US$)|Data. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?view=chart (accessed on 15 November 2022).
- Melchers, R.; Beck, A. Structural Reliability Analysis and Prediction, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-119-26610-5. [Google Scholar]
- Otway, H.J.; Battat, M.E.; Lohrding, R.K.; Turner, R.D.; Cubitt, R.L. A Risk Analysis of the Omega West Reactor; Report No.: LA-4449, 4121184; Los Alamos Scientific Laboratory of the University of California: Los Alamos, NM, USA, 1970. [Google Scholar]
- Iervolino, I.; Giorgio, M.; Cito, P. Which Earthquakes Are Expected to Exceed the Design Spectra? Earthq. Spectra 2019, 35, 1465–1483. [Google Scholar] [CrossRef]
- Pavel, F.; Vacareanu, R. Analysis of Exceedance Probabilities for Design Spectral Accelerations from Crustal Earthquakes in Romania. J. Seism. 2019, 23, 1327–1345. [Google Scholar] [CrossRef]
- CEN/TC 250/SC 8; Eurocode 8: Earthquake Resistance Design of Structures Working Draft. 2021.
- Pavel, F.; Vacareanu, R.; Pitilakis, K. Preliminary Evaluation of the Impact of Eurocode 8 Draft Revision on the Seismic Zonation of Romania. Appl. Sci. 2022, 12, 649. [Google Scholar] [CrossRef]
- Pavel, F. Collapse Rates of Reinforced Concrete Structures during Large Magnitude Earthquakes: Case Study for Romania. SN Appl. Sci. 2021, 3, 525. [Google Scholar] [CrossRef]
- Pomonis, A. The Mount Parnitha (Athens) Earthquake of September 7, 1999: A Disaster Management Perspective. Nat. Hazards 2002, 27, 171–199. [Google Scholar] [CrossRef]
- Del Gaudio, C.; De Martino, G.; Di Ludovico, M.; Manfredi, G.; Prota, A.; Ricci, P.; Verderame, G.M. Empirical Fragility Curves from Damage Data on RC Buildings after the 2009 L’Aquila Earthquake. Bull. Earthq. Eng. 2017, 15, 1425–1450. [Google Scholar] [CrossRef]
- Saatcioglu, M.; Mitchell, D.; Tinawi, R.; Gardner, N.J.; Gillies, A.G.; Ghobarah, A.; Anderson, D.L.; Lau, D. The August 17, 1999, Kocaeli (Turkey) Earthquake—Damage to Structures. Can. J. Civ. Eng. 2001, 28, 715–737. [Google Scholar] [CrossRef]
- Kam, W.Y.; Pampanin, S.; Elwood, K. Seismic Performance of Reinforced Concrete Buildings in the 22 February Christchurch (Lyttelton) Earthquake. Bull. N. Z. Soc. Earthq. Eng. 2011, 44, 239–278. [Google Scholar] [CrossRef] [Green Version]
- Ates, S.; Kahya, V.; Yurdakul, M.; Adanur, S. Damages on Reinforced Concrete Buildings Due to Consecutive Earthquakes in Van. Soil Dyn. Earthq. Eng. 2013, 53, 109–118. [Google Scholar] [CrossRef]
- Chrysanidis, T.; Mousama, D.; Tzatzo, E.; Alamanis, N.; Zachos, D. Study of the Effect of a Seismic Zone to the Construction Cost of a Five-Story Reinforced Concrete Building. Sustainability 2022, 14, 10076. [Google Scholar] [CrossRef]
- Cosenza, E.; Del Vecchio, C.; Di Ludovico, M.; Dolce, M.; Moroni, C.; Prota, A.; Renzi, E. The Italian Guidelines for Seismic Risk Classification of Constructions: Technical Principles and Validation. Bull. Earthq. Eng. 2018, 16, 5905–5935. [Google Scholar] [CrossRef]
- Ministry of Business, Innovation and Employment. Regulations under the Building (Earthquake-prone Buildings) Amendment Act 2016; Ministry of Business, Innovation and Employment: Wellington, New Zealand, 2016. [Google Scholar]
- Taylan, A. Factors Influencing Homeowners’ Seismic Risk Mitigation Behavior: A Case Study in Zeytinburnu District of Istanbul. Int. J. Disaster Risk Reduct. 2015, 13, 414–426. [Google Scholar] [CrossRef]
- Fischer, E.; Biondo, A.E.; Greco, A.; Martinico, F.; Pluchino, A.; Rapisarda, A. Objective and Perceived Risk in Seismic Vulnerability Assessment at an Urban Scale. Sustainability 2022, 14, 9380. [Google Scholar] [CrossRef]
- Zhang, Y.; Fung, J.F.; Johnson, K.J.; Sattar, S. Review of Seismic Risk Mitigation Policies in Earthquake-Prone Countries: Lessons for Earthquake Resilience in the United States. J. Earthq. Eng. 2022, 26, 6208–6235. [Google Scholar] [CrossRef]
- Morelli, S.; Pazzi, V.; Nardini, O.; Bonati, S. Framing Disaster Risk Perception and Vulnerability in Social Media Communication: A Literature Review. Sustainability 2022, 14, 9148. [Google Scholar] [CrossRef]
- Pavel, F.; Vacareanu, R.; Douglas, J.; Radulian, M.; Cioflan, C.; Barbat, A. An Updated Probabilistic Seismic Hazard Assessment for Romania and Comparison with the Approach and Outcomes of the SHARE Project. Pure Appl. Geophys. 2016, 173, 1881–1905. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.I.; Khan, S.U.; Rana, I.A.; Ali, B.; Rahman, A. ur Determinants of People’s Seismic Risk Perception: A Case Study of Malakand, Pakistan. Int. J. Disaster Risk Reduct. 2021, 55, 102078. [Google Scholar] [CrossRef]
- Khan, S.U.; Qureshi, M.I.; Rana, I.A.; Maqsoom, A. An Empirical Relationship between Seismic Risk Perception and Physical Vulnerability: A Case Study of Malakand, Pakistan. Int. J. Disaster Risk Reduct. 2019, 41, 101317. [Google Scholar] [CrossRef]
- Savadori, L.; Ronzani, P.; Sillari, G.; Di Bucci, D.; Dolce, M. Communicating Seismic Risk Information: The Effect of Risk Comparisons on Risk Perception Sensitivity. Front. Commun. 2022, 7, 59. [Google Scholar] [CrossRef]
- Shabestari, K.T.; Yamazaki, F. A Proposal of Instrumental Seismic Intensity Scale Compatible with MMI Evaluated from Three-Component Acceleration Records. Earthq. Spectra 2001, 17, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Yasumoto, S.; Sekiya, N. Earthquake Probability in the National Seismic Hazard Maps for Japan and People’s Risk Perceptions: The Search for More Effective Expression. Earth Planets Space 2022, 74, 82. [Google Scholar] [CrossRef]
- Calotescu, I.; Pavel, F.; Vacareanu, R. Earthquake Risk Awareness in Bucharest, Romania: Public Survey. In Proceedings of the Seismic Hazard and Risk Assessment; Vacareanu, R., Ionescu, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 297–311. [Google Scholar]
- Nicoll, K.; Cova, T.J.; Siebeneck, L.K.; Martineau, E. Assessing “Preparedness Elevated”: Seismic Risk Perception and Household Adjustment in Salt Lake City, Utah. J. Geogr. Nat. Disast. 2016, 6, 1000168. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.; Gkimprixis, A. Risk Targeting in Seismic Design Codes: The State of the Art, Outstanding Issues and Possible Paths Forward. In Proceedings of the Seismic Hazard and Risk Assessment; Vacareanu, R., Ionescu, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 211–223. [Google Scholar]
- Talebi, M.; Zare, M.; Noroozinejad Farsangi, E.; Soghrat, M.R.; Maleki, V.; Esmaeili, S. Development of Risk-Targeted Seismic Hazard Maps for the Iranian Plateau. Soil Dyn. Earthq. Eng. 2021, 141, 106506. [Google Scholar] [CrossRef]
- Vacareanu, R.; Pavel, F.; Craciun, I.; Coliba, V.; Arion, C.; Aldea, A.; Neagu, C. Risk-Targeted Maps for Romania. J. Seism. 2018, 22, 407–417. [Google Scholar] [CrossRef]
- Douglas, J.; Ulrich, T.; Negulescu, C. Risk-Targeted Seismic Design Maps for Mainland France. Nat. Hazards 2013, 65, 1999–2013. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.P.; Luco, N.; Hooper, J.D.; Crouse, C.B. Risk-Targeted Alternatives to Deterministic Ground Motion Caps in U.S. Seismic Provisions. Earthq. Spectra 2020, 36, 904–923. [Google Scholar] [CrossRef]
Country | Seismic Design Code Change (Low-Code to Moderate/High-Code) | Major Damaging Earthquakes |
---|---|---|
Greece | 1984 | 1981, 1986, 1995. 1999, 2014, 2015, 2017, 2020 |
Italy | 1996 | 1976, 1980, 2002, 2009, 2016 |
Romania | 1978 | 1977, 1986, 1990 |
Turkey | 1997 | 1976, 1983, 1992, 1998, 1999, 2003, 2011, 2020 |
Country | Number of Buildings (mill.) | Population (mill.) | Total Replacement Cost (bill. Euro) | GDP (bill. Euro) |
---|---|---|---|---|
Greece | 3.35 | 10.71 | 609 | 207.6 |
Italy | 12.19 | 60.30 | 5263 | 2015.9 |
Romania | 5.51 | 19.35 | 337 | 272.7 |
Turkey | 9.16 | 83.43 | 822 | 782.7 |
Country | Average No. of Deaths | Average No. of Injured People | Average No. of Affected People |
---|---|---|---|
Greece | 14 | 100 | 16,836 |
Italy | 92 | 178 | 13,289 |
Romania | 23 | 167 | 5456 |
Turkey | 473 | 1287 | 97,712 |
Country | Average Economic Losses (mill. Euro) |
---|---|
Greece | 326 |
Italy | 2507 |
Romania | 213 |
Turkey | 952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavel, F. Seismic Design Codes—Key Elements for Seismic Risk Perception and Reduction in Europe. Buildings 2023, 13, 158. https://doi.org/10.3390/buildings13010158
Pavel F. Seismic Design Codes—Key Elements for Seismic Risk Perception and Reduction in Europe. Buildings. 2023; 13(1):158. https://doi.org/10.3390/buildings13010158
Chicago/Turabian StylePavel, Florin. 2023. "Seismic Design Codes—Key Elements for Seismic Risk Perception and Reduction in Europe" Buildings 13, no. 1: 158. https://doi.org/10.3390/buildings13010158
APA StylePavel, F. (2023). Seismic Design Codes—Key Elements for Seismic Risk Perception and Reduction in Europe. Buildings, 13(1), 158. https://doi.org/10.3390/buildings13010158