Inspection-Nerf: Rendering Multi-Type Local Images for Dam Surface Inspection Task Using Climbing Robot and Neural Radiance Field
Abstract
:1. Introduction
- We propose a double-branches multilayer perceptron (MLP) Nerf structure, which can render multi-type images of all local viewpoints of inspection trajectory. And as we know, we are the first research to introduce radiance fields to big concrete surface scene inspection areas;
- When there are enough training images in a single scene, our model can also be used as a scene storage container, and the main information of 200 m2 of surface data can be retained using only 388 MB of storage space;
- We propose a ranged semantic depth error to measure the depth accuracy of semantic information within a defined distance during multitask rendering.
2. Related Works
2.1. Global Concrete Surface Inspection Related Approaches
2.2. Neural Radiance Field
3. Data Collection and Preparation
3.1. Data Collection by Climbing Robot
3.2. Global Model Generation
3.3. Global-to-Local Coordinate Mapping
4. Methods
4.1. Nerf Principle
4.2. Inspection-Nerf Structure
4.3. Bounding Box Sampling
4.4. Loss Function
5. Experiments
5.1. Data Preparation
5.2. Model Implement
5.3. Metrics and Result
5.4. Sparse Images Sequence Training Experiment
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
Nerf | Neural radiance field |
PSNR | Peak signal-to-noise ratio |
LPIPS | Learned perceptual image patch similarity |
SFM | Structure from motion |
SLAM | Simultaneous location and mapping |
MLP | Multilayer perceptron |
CSSC | Concrete surface spalling and cracks |
SDF | Signed distance field |
RSDE | Ranged semantic depth error |
Appendix A. Supplementary Comparison of Multi-Model Rendering Results
References
- Shi-Qiang, H. Development and prospect of defect detection technology for concrete dams. Dam Saf. 2016, 4, 1. [Google Scholar]
- Khaloo, A.; Lattanzi, D.; Jachimowicz, A.; Devaney, C. Utilizing UAV and 3D computer vision for visual inspection of a large gravity dam. Front. Built Environ. 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Ghahremani, K.; Khaloo, A.; Mohamadi, S.; Lattanzi, D. Damage detection and finite-element model updating of structural components through point cloud analysis. J. Aerosp. Eng. 2018, 31, 04018068. [Google Scholar] [CrossRef]
- Khaloo, A.; Lattanzi, D. Automatic detection of structural deficiencies using 4D Hue-assisted analysis of color point clouds. In Dynamics of Civil Structures; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2, pp. 197–205. [Google Scholar]
- Angeli, S.; Lingua, A.M.; Maschio, P.; Piantelli, L.; Dugone, D.; Giorgis, M. Dense 3D model generation of a dam surface using UAV for visual inspection. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Patras, Greece, 6–8 June 2018; pp. 151–162. [Google Scholar]
- Buffi, G.; Manciola, P.; Grassi, S.; Barberini, M.; Gambi, A. Survey of the Ridracoli Dam: UAV–based photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomat. Nat. Hazards Risk 2017, 8, 1562–1579. [Google Scholar] [CrossRef] [Green Version]
- Ridolfi, E.; Buffi, G.; Venturi, S.; Manciola, P. Accuracy analysis of a dam model from drone surveys. Sensors 2017, 17, 1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, A.; Oliveira, J.F.; Pereira, J.M.; De Araújo, B.R.; Boavida, J. 3D modelling of laser scanned and photogrammetric data for digital documentation: The Mosteiro da Batalha case study. J. Real-Time Image Process. 2014, 9, 673–688. [Google Scholar] [CrossRef]
- Sakagami, N.; Yumoto, Y.; Takebayashi, T.; Kawamura, S. Development of dam inspection robot with negative pressure effect plate. J. Field Robot. 2019, 36, 1422–1435. [Google Scholar] [CrossRef]
- Hong, K.; Wang, H.; Zhu, B. Small Defect Instance Reconstruction Based on 2D Connectivity-3D Probabilistic Voting. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021; pp. 1448–1453. [Google Scholar]
- Yeum, C.M.; Dyke, S.J.; Ramirez, J. Visual data classification in post-event building reconnaissance. Eng. Struct. 2018, 155, 16–24. [Google Scholar] [CrossRef]
- Gao, Y.; Mosalam, K.M. Deep transfer learning for image-based structural damage recognition. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 748–768. [Google Scholar] [CrossRef]
- Li, R.; Yuan, Y.; Zhang, W.; Yuan, Y. Unified vision-based methodology for simultaneous concrete defect detection and geolocalization. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 527–544. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, B.; Mosalam, K.M. Deep leaf-bootstrapping generative adversarial network for structural image data augmentation. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 755–773. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Li, W.; Liu, Z.; Yang, G.; Xiao, J. Deep concrete inspection using unmanned aerial vehicle towards cssc database. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 24–28. [Google Scholar]
- Zhang, C.; Chang, C.c.; Jamshidi, M. Simultaneous pixel-level concrete defect detection and grouping using a fully convolutional model. Struct. Health Monit. 2021, 20, 2199–2215. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, M.R.; Masri, S.F. Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures. Autom. Constr. 2012, 22, 567–576. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Yang, G.; Chang, Y.; Liu, Z.; Jiang, B.; Xiaol, J. Deep neural network based visual inspection with 3d metric measurement of concrete defects using wall-climbing robot. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 2849–2854. [Google Scholar]
- Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Insa-Iglesias, M.; Jenkins, M.D.; Morison, G. 3D visual inspection system framework for structural condition monitoring and analysis. Autom. Constr. 2021, 128, 103755. [Google Scholar] [CrossRef]
- Hoskere, V.; Narazaki, Y.; Spencer Jr, B.F. Physics-Based Graphics Models in 3D Synthetic Environments as Autonomous Vision-Based Inspection Testbeds. Sensors 2022, 22, 532. [Google Scholar] [CrossRef]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Yu, A.; Li, R.; Tancik, M.; Li, H.; Ng, R.; Kanazawa, A. Plenoctrees for real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 5752–5761. [Google Scholar]
- Wang, P.; Liu, L.; Liu, Y.; Theobalt, C.; Komura, T.; Wang, W. Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv 2021, arXiv:2106.10689. [Google Scholar] [CrossRef]
- Martin-Brualla, R.; Radwan, N.; Sajjadi, M.S.; Barron, J.T.; Dosovitskiy, A.; Duckworth, D. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7210–7219. [Google Scholar]
- Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with a multiresolution hash encoding. arXiv 2022, arXiv:2201.05989. [Google Scholar] [CrossRef]
- Zhi, S.; Laidlow, T.; Leutenegger, S.; Davison, A.J. In-place scene labelling and understanding with implicit scene representation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15838–15847. [Google Scholar]
- Barron, J.T.; Mildenhall, B.; Tancik, M.; Hedman, P.; Martin-Brualla, R.; Srinivasan, P.P. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 5855–5864. [Google Scholar]
- Turki, H.; Ramanan, D.; Satyanarayanan, M. Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 12922–12931. [Google Scholar]
- Gottschalk, S.A. Collision Queries Using Oriented Bounding Boxes; The University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2000. [Google Scholar]
- Zhang, K.; Riegler, G.; Snavely, N.; Koltun, V. Nerf++: Analyzing and improving neural radiance fields. arXiv 2020, arXiv:2010.07492. [Google Scholar] [CrossRef]
- Cai, P.; Indhumathi, C.; Cai, Y.; Zheng, J.; Gong, Y.; Lim, T.S.; Wong, P. Collision detection using axis aligned bounding boxes. In Simulations, Serious Games and Their Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–14. [Google Scholar]
PSNR↑ | LPIPS↓ | RSDE↓ | |
---|---|---|---|
Baseline_0.001 | 33.419 ↑↑ | 0.2042 | 0.086 |
Inspection_0.001 | 33.372 ↑ | 0.1967 ↓ | 0.059 |
Inspection_0.01 | 33.116 | 0.1965 ↓↓ | 0.027 ↓↓ |
Inspection_0.01_sparsity | 33.196 | 0.1983 | 0.031 ↓ |
Original_Nerf | 27.3025 | 0.5188 | 0.0924 |
Inspection_num_level = 11 | 32.9191 | 0.2245 | 0.0287 |
PSNR | RSDE | LPIPS | Recall | F1 Score | ||||
---|---|---|---|---|---|---|---|---|
All | Val | All | Val | All | Val | |||
Original | 33.993 | 33.12 | 0.0270 | 0.1965 | 0.8827 | 0.8818 | 0.7857 | 0.7850 |
90% | 33.700 | 33.02 | 0.0279 | 0.2061 | 0.8583 | 0.8560 | 0.7952 | 0.7937 |
80% | 33.074 | 32.91 | 0.0301 | 0.2353 | 0.8331 | 0.8330 | 0.7573 | 0.7529 |
50% | 32.9024 | 27.88 | 0.0521 | 0.3378 | 0.6292 | 0.6353 | 0.6560 | 0.6590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, K.; Wang, H.; Yuan, B. Inspection-Nerf: Rendering Multi-Type Local Images for Dam Surface Inspection Task Using Climbing Robot and Neural Radiance Field. Buildings 2023, 13, 213. https://doi.org/10.3390/buildings13010213
Hong K, Wang H, Yuan B. Inspection-Nerf: Rendering Multi-Type Local Images for Dam Surface Inspection Task Using Climbing Robot and Neural Radiance Field. Buildings. 2023; 13(1):213. https://doi.org/10.3390/buildings13010213
Chicago/Turabian StyleHong, Kunlong, Hongguang Wang, and Bingbing Yuan. 2023. "Inspection-Nerf: Rendering Multi-Type Local Images for Dam Surface Inspection Task Using Climbing Robot and Neural Radiance Field" Buildings 13, no. 1: 213. https://doi.org/10.3390/buildings13010213
APA StyleHong, K., Wang, H., & Yuan, B. (2023). Inspection-Nerf: Rendering Multi-Type Local Images for Dam Surface Inspection Task Using Climbing Robot and Neural Radiance Field. Buildings, 13(1), 213. https://doi.org/10.3390/buildings13010213