New Method for Solving the Inverse Thermal Conduction Problem (θ-Scheme Combined with CG Method under Strong Wolfe Line Search)
Abstract
1. Introduction
2. The Mathematical Procedure
2.1. Validation of the Procedure
2.2. Direct Procedure
2.3. Explicit Form
2.4. Implicit Form
2.5. Crank–Nicolson Form
2.6. Inverse Procedure of θ-Scheme
- Approach 1.
- For θ = 0, the θ-scheme (8) gives the explicit scheme.
- For θ = 1, the θ-scheme (8) leads to the implicit scheme.
- If θ = 0.5, the θ-scheme (14) gives the Crank–Nicolson scheme.
- Approach 2.
Numerical Results
- Example:
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
θ: | real number |
T: | temperature (°C) |
t: | temps (s) |
x: | distance (m) |
∆t: | time step |
∆x: | location step |
e or L: | wall thickness (m) |
n: | time index |
k: | thermal conductivity (w/(m*k)) |
ρ: | volumic mass (kg/m3) |
Cp: | specific heat (J/(kg*K)) |
α: | thermal diffusivity (m2/s) |
: | hot side temperature (°C) |
: | cold side temperature (°C) |
CG: | gradient conjugate |
References
- Belgherras, S.; Bekkouche, S.M.A.; Benamrane, N. Prospective analysis of the energy efficiency in a farm studio under Saharan weather conditions. Energy Build. 2017, 145, 342–353. [Google Scholar] [CrossRef]
- Lalmi, D.; Benseddik, A.; Bensaha, H.; Bouzaher, M.T.; Arrif, T.; Guermoui, M.; Rabehi, A. Evaluation and estimation of the inside greenhouse temperature, numerical study with thermal and optical aspect. Int. J. Ambient. Energy 2019, 42, 1269–1280. [Google Scholar] [CrossRef]
- Bekkouche, S.; Benouaz, T.; Hamdani, M.; Cherier, M.; Yaiche, M.; Benamrane, N. Judicious choice of the building compactness to improve thermo-aeraulic comfort in hot climate. J. Build. Eng. 2015, 1, 42–52. [Google Scholar] [CrossRef]
- Bekkouche, S.; Benouaz, T.; Cheknane, A. A modelling approach of thermal insulation applied to a Saharan building. Therm. Sci. 2009, 13, 233–244. [Google Scholar] [CrossRef]
- Carbonari, A.; Naticchia, B.; D’Orazio, M. Innovative Evaporative cooling walls, Eco-Efficient Materials for Mitigating Building Cooling Needs. In Design, Properties and Applications; Woodhead: Cambridge, UK, 2015; pp. 215–240. Available online: http://www.sciencedirect.com/science/book/9781782423805 (accessed on 13 December 2022).
- Stojanovi, B.V.; Janevski, J.N.; Mitkovi, P.B.; Stojanovi, M.B.; Ignjatovi, M.G. Thermally activated building systems in context of increasing building energy efficiency. Therm. Sci. 2014, 18, 1011–1018. [Google Scholar] [CrossRef]
- Mohamed, Z.; Djafer, D.; Chouireb, F. New Approach to Establish a Clear Sky Global Solar Irradiance Model. Int. J. Renew. Energy Res. 2017, 7, 1454–1462. [Google Scholar]
- Rabehi, A.; Guermoui, M.; Lalmi, D. Hybrid models for global solar radiation prediction: A case study. Int. J. Ambient. Energy 2018, 41, 31–40. [Google Scholar] [CrossRef]
- Khelifi, R.; Guermoui, M.; Rabehi, A.; Lalmi, D. Multi-step-ahead forecasting of daily solar radiation components in the Saharan climate. Int. J. Ambient. Energy 2018, 41, 707–715. [Google Scholar] [CrossRef]
- Fang, Z.; Li, N.; Li, B.; Luo, G.; Huang, Y. The effect of building envelope insulation on cooling energy consumption in summer. Energy Build. 2014, 77, 197–205. [Google Scholar] [CrossRef]
- Choi, I.Y.; Cho, S.H.; Kim, J.T. Energy consumption characteristics of high-rise apartment buildings according to building shape and mixed-use development. Energy Build. 2012, 46, 123–131. [Google Scholar] [CrossRef]
- Castellani, B.; Morini, E.; Filipponi, M.; Nicolini, A.; Palombo, M.; Cotana, F.; Rossi, F. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds. Sustainability 2014, 6, 6815–6829. [Google Scholar] [CrossRef]
- Venko, S.; de Ventós, D.V.; Arkar, C.; Medved, S. An experimental study of natural and mixed convection over cooled vertical room wall. Energy Build. 2014, 68, 387–395. [Google Scholar] [CrossRef]
- Tsikaloudaki, K.; Theodosiou, T.; Laskos, K.; Bikas, D. Assessing cooling energy performanceof windows for residential buildings in the Mediterranean zone. Energy Convers. Manag. 2012, 64, 335–343. [Google Scholar] [CrossRef]
- Tsikaloudaki, K.; Laskos, K.; Theodosiou, T.; Bikas, D. The energy performance of windows in Mediterranean regions. Energy Build. 2015, 92, 180–187. [Google Scholar] [CrossRef]
- Guermoui, M.; Abdelaziz, R.; Gairaa, K.; Djemoui, L.; Benkaciali, S. New temperature-based predicting model for global solar radiation using support vector regression. Int. J. Ambient. Energy 2019, 43, 1397–1407. [Google Scholar] [CrossRef]
- Djemoui, L.; Bensaha, H.; Benseddik, A.; Zarrit, R.; Guermoui, M.; Rabehi, A.; Bouzaher, M.T. Comparative study of geometrical configuration at the thermal performances of an agricultural greenhouse. E3S Web Conf. 2018, 61, 00003. [Google Scholar] [CrossRef]
- Tsanasa, A.; Xifarab, A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 2012, 49, 560–567. [Google Scholar] [CrossRef]
- Lalmi, D.; Bezari, S.; Bensaha, H.; Guermouai, M.; Rabehi, A.; Abdelouahab, B.; Hadef, R. Analysis of thermal performance of an agricultural greenhouse heated by a storage system. Model. Meas. Control B 2018, 87, 15–20. [Google Scholar] [CrossRef]
- Lü, X.; Lu, T.; Kibert, C.J. Martti Viljanen a Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach. Appl. Energy 2015, 144, 261–275. [Google Scholar] [CrossRef]
- Djeffal, R.; Lalmi, D.; Hebbir, N.; Bekkouche, S.M.A.; Younsi, Z. Estimation of Real Seasons in a Semi-Arid Region, Ghardaia, Case Study. Int. J. Sustain. Dev. Plan. 2021, 16, 1005–1017. [Google Scholar] [CrossRef]
- Djeffal, R.; Bekkouche, S.M.A.; Samai, M.; Younsi, Z.; Mihoub, R.; Benkhelifa, A. Effect of Phase Change Material eutectic plates on the electric consumption of a designed refrigeration system. Instrum. Mes. Métrologie 2020, 19, 1–8. [Google Scholar] [CrossRef]
Methods | Explicit Form | Implicit Form | Crank–Nicolson Form |
---|---|---|---|
Elapsed time (s) | 0.671737 | 0.501063 | 0.567344 |
iteration of convergence | 300 | 150 | 145 |
Epsilon | Initial Temperature | Inverse | Regulated Inverse | Inverse Error | Regulated Inverse Error | |
---|---|---|---|---|---|---|
Ε = 0.0000001 | T0 input | 4 °C | 40.0000 | 40.0000 | 0.0000000638 | 0.0000000166 |
Te input | 25.0000 | 25.0000 | −0.0000003608 | −0.0000001838 | ||
Ε = 0.0001 | T0 input | 10 °C | 40.0000 | 40.0000 | −0.0000000216 | −0.0000157 |
Te input | 25.0000 | 25.0002 | 0.0000001495 | 0.0002190 | ||
Ε = 0.001 | T0 input | 5 °C | 40.0000 | 39.9999 | −0.0000000216 | −0.0000924 |
Te input | 25.0000 | 24.9993 | 0.0000001495 | −0.0007431 |
Number of Iterations | Temperature Hot Inverses | Temperature Cold Inverses | Absolute Error |
---|---|---|---|
2 | 39.9999563 | 24.9998974 | 1 × 10−5 (0.0423,0.7978) |
50 | 39.9999987 | 24.9999998 | 1 × 10−5 (0.0956,−0.6285) |
100 | 40.0000001 | 25.0000003 | 1 × 10−5 (−0.0381,0.2515) |
150 | 40.0000000 | 25.0000000 | 1 × 10−6 (0.1404,−0.9407) |
200 | 40.0000000 | 25.0000000 | 1 × 10−6 (0.1423,−0.9518) |
250 | 40.0000000 | 25.0000000 | 1 × 10−5 (0.0533,−0.3558) |
300 | 40.0000000 | 25.0000000 | 1 × 10−7 (−0.1730,0.1357) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djeffal, R.; Lalmi, D.; El Amine Bekkouche, S.M.; Bechouat, T.; Younsi, Z. New Method for Solving the Inverse Thermal Conduction Problem (θ-Scheme Combined with CG Method under Strong Wolfe Line Search). Buildings 2023, 13, 243. https://doi.org/10.3390/buildings13010243
Djeffal R, Lalmi D, El Amine Bekkouche SM, Bechouat T, Younsi Z. New Method for Solving the Inverse Thermal Conduction Problem (θ-Scheme Combined with CG Method under Strong Wolfe Line Search). Buildings. 2023; 13(1):243. https://doi.org/10.3390/buildings13010243
Chicago/Turabian StyleDjeffal, Rachid, Djemoui Lalmi, Sidi Mohammed El Amine Bekkouche, Tahar Bechouat, and Zohir Younsi. 2023. "New Method for Solving the Inverse Thermal Conduction Problem (θ-Scheme Combined with CG Method under Strong Wolfe Line Search)" Buildings 13, no. 1: 243. https://doi.org/10.3390/buildings13010243
APA StyleDjeffal, R., Lalmi, D., El Amine Bekkouche, S. M., Bechouat, T., & Younsi, Z. (2023). New Method for Solving the Inverse Thermal Conduction Problem (θ-Scheme Combined with CG Method under Strong Wolfe Line Search). Buildings, 13(1), 243. https://doi.org/10.3390/buildings13010243