Effect on the Thermal Properties of Building Mortars with Microencapsulated Phase Change Materials for Radiant Floors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of the PCM Mortar Samples
2.3. Characterization Techniques
2.3.1. Calorimetry
2.3.2. Bulk Density of mPCM Mortars
2.3.3. Microstructural Analysis
2.3.4. Thermogravimetric Analysis
2.3.5. Thermophysical Characteristics
3. Results and Discussion
3.1. Characterization of the mPCM Particles
3.1.1. Particle Size Distribution
3.1.2. DSC Characterization
3.1.3. Thermogravimetric Analysis
3.1.4. Thermophysical Characteristics
3.2. Experimental Investigations of the PCM Mortars
3.2.1. Bulk Density
3.2.2. SEM Observations
3.2.3. Thermogravimetric Analysis
3.2.4. Thermophysical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lv, Y.; Wu, H.; Liu, Y.; Huang, Y.; Xu, T.; Zhou, X.; Huang, R. Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance. Energy Build. 2018, 174, 190–198. [Google Scholar] [CrossRef]
- Wang, N.; Phelan, P.E.; Gonzalez, J.; Harris, C.; Henze, G.P.; Hutchinson, R.; Langevin, J.; Lazarus, M.A.; Nelson, B.; Pyke, C.; et al. Ten questions concerning future buildings beyond zero energy and carbon neutrality. Build. Environ. 2017, 119, 169–182. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Olesen, B.W.; Fang, L.; Wang, F. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems. Energy Build. 2015, 105, 285–293. [Google Scholar] [CrossRef]
- Zhou, G.; He, J. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl. Energy 2015, 138, 648–660. [Google Scholar] [CrossRef]
- Mazo, J.; Delgado, M.; Marin, J.M.; Zalba, B. Modeling a radiant floor system with Phase Change Material (PCM) integrated into a building simulation tool: Analysis of a case study of a floor heating system coupled to a heat pump. Energy Build. 2012, 47, 458–466. [Google Scholar] [CrossRef]
- Olesen, B.W. Thermal Comfort in a Room Heated by Different Methods. 1980. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL8130196345 (accessed on 10 August 2023).
- Haddad, K.; Purdy, J.; Laouadi, A. Comparison of the Performance of a Forced-Air and a Radiant Floor Residential Heating System Connected to Solar Collectors. J. Sol. Energy Eng. 2007, 129, 465–472. [Google Scholar] [CrossRef]
- Karabay, H.; Arıcı, M.; Sandık, M. A numerical investigation of fluid flow and heat transfer inside a room for floor heating and wall heating systems. Energy Build. 2013, 67, 471–478. [Google Scholar] [CrossRef]
- Khorasanizadeh, H.; Sheikhzadeh, G.A.; Azemati, A.A.; Shirkavand Hadavand, B. Numerical study of air flow and heat transfer in a two-dimensional enclosure with floor heating. Energy Build. 2014, 78, 98–104. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Z.; Sun, H.; Zhu, Y.; Ouyang, Q. Evaluation and comparison of thermal comfort of convective and radiant heating terminals in office buildings. Build. Environ. 2016, 106, 91–102. [Google Scholar] [CrossRef]
- Karmann, C.; Schiavon, S.; Bauman, F. Thermal comfort in buildings using radiant vs. all-air systems: A critical literature review. Build. Environ. 2017, 111, 123–131. [Google Scholar] [CrossRef]
- Rhee, K.-N.; Olesen, B.W.; Kim, K.W. Ten questions about radiant heating and cooling systems. Build. Environ. 2017, 112, 367–381. [Google Scholar] [CrossRef]
- Hu, R.; Niu, J.L. A review of the application of radiant cooling & heating systems in Mainland China. Energy Build. 2012, 52, 11–19. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, X.; Ge, J. Performance investigation of convective and radiant heat removal methods in large spaces. Energy Build. 2020, 208, 109650. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, X.-H.; Jiang, Y. Application of radiant floor cooling in large space buildings—A review. Renew. Sustain. Energy Rev. 2016, 55, 1083–1096. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Lin, K.P.; Yang, R.; Di, H.F.; Jiang, Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 2006, 38, 1262–1269. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Buddhi, D. PCM thermal storage in buildings: A state of art. Renew. Sustain. Energy Rev. 2007, 11, 1146–1166. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Doshi, A.J. Investigating the Influence of Thermal Conductivity and Thermal Storage of Lightweight Concrete Panels on the Energy and Thermal Comfort in Residential Buildings. Buildings 2023, 13, 720. [Google Scholar] [CrossRef]
- Guo, W.; Liu, G.; Zhang, K.; Jin, Y.; Arıcı, M. Thermal Performance Investigation of Greenhouse Glazing Units Containing PCM with Different Thermophysical and Optical Properties. Buildings 2023, 13, 1715. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, Y.; Wang, Y.; Zou, B. Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: An experimental study. Energy Convers. Manag. 2020, 205, 112288. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y.; Ling, Z.; Fang, X.; Zhang, Z. Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs. Energy Build. 2020, 211, 109806. [Google Scholar] [CrossRef]
- Madad, A.; Mouhib, T.; Mouhsen, A. Phase Change Materials for Building Applications: A Thorough Review and New Perspectives. Buildings 2018, 8, 63. [Google Scholar] [CrossRef]
- Ho, C.J.; Chang, P.-C.; Yan, W.-M.; Amani, M. Microencapsulated n-eicosane PCM suspensions: Thermophysical properties measurement and modeling. Int. J. Heat Mass Transf. 2018, 125, 792–800. [Google Scholar] [CrossRef]
- Masood, U.; Haggag, M.; Hassan, A.; Laghari, M. A Review of Phase Change Materials as a Heat Storage Medium for Cooling Applications in the Built Environment. Buildings 2023, 13, 1595. [Google Scholar] [CrossRef]
- Lu, S.; Gao, J.; Tong, H.; Yin, S.; Tang, X.; Jiang, X. Model establishment and operation optimization of the casing PCM radiant floor heating system. Energy 2020, 193, 116814. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Gupta, N.K.; Yadav, D.; Shukla, S.K.; Kaul, S. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review. Sustain. Cities Soc. 2022, 79, 103690. [Google Scholar] [CrossRef]
- Sattari, S.; Farhanieh, B. A parametric study on radiant floor heating system performance. Renew. Energy 2006, 31, 1617–1626. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S. Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water. Energies 2019, 12, 828. [Google Scholar] [CrossRef]
- Park, J.; Kim, T. Analysis of the Thermal Storage Performance of a Radiant Floor Heating System with a PCM. Molecules 2019, 24, 1352. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. Experimental Study on the Use of Enhanced Coconut Oil and Paraffin Wax Phase Change Material in Active Heating Using Advanced Modular Prototype. J. Energy Storage 2021, 41, 102815. [Google Scholar] [CrossRef]
- Heng, W.; Wang, Z.; Wu, Y. Experimental study on phase change heat storage floor coupled with air source heat pump heating system in a classroom. Energy Build. 2021, 251, 111352. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Z.; Song, C.; Chen, Y.; Li, Y.; Liu, J. Thermal performance and optimization of a casing pipe solar energy storage floor with phase change material. Energy Build. 2021, 247, 111167. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, S.E.; Chio, S.H. Time-Lag Analysis of PCM in Floor Radiant Heating System. ASHRAE Trans. 2021, 127, 575–580. [Google Scholar]
- Shen, Y.; Liu, S.; Zeng, C.; Zhang, Y.; Li, Y.; Han, X.; Yang, L.; Yang, X.e. Experimental thermal study of a new PCM-concrete thermal storage block (PCM-CTSB). Constr. Build. Mater. 2021, 293, 123540. [Google Scholar] [CrossRef]
- Cesari, S.; Emmi, G.; Bottarelli, M. A weather forecast-based control for the improvement of PCM enhanced radiant floors. Appl. Therm. Eng. 2022, 206, 118119. [Google Scholar] [CrossRef]
- Jiang, T.; Zheng, C.; You, S.; Zhang, H.; Wu, Z.; Wang, Y.; Wei, S. Experimental and numerical study on the heat transfer performance of the radiant floor heating condenser with composite phase change material. Appl. Therm. Eng. 2022, 213, 118749. [Google Scholar] [CrossRef]
- Jin, X.; Yang, J.; Li, M.; Huang, G.; Lai, A.C.K. Experimental and numerical study on the thermal energy storage performance of a novel phase-change material for radiant floor heating systems. Build. Environ. 2022, 223, 109491. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Z.; Wu, Z.; Xu, Y. Numerical modeling and optimization of annual thermal characteristics of an office room with PCM active–passive coupling system. Energy Build. 2022, 254, 111629. [Google Scholar] [CrossRef]
- Moreira, M.; Dias-de-Oliveira, J.; Amaral, C.; Neto, F.; Silva, T. Outline of the incorporation of phase change materials in radiant systems. J. Energy Storage 2023, 57, 106307. [Google Scholar] [CrossRef]
- Drissi, S.; Mo, K.H.; Falchetto, A.C.; Ling, T.-C. Understanding the compressive strength degradation mechanism of cement-paste incorporating phase change material. Cem. Concr. Compos. 2021, 124, 104249. [Google Scholar] [CrossRef]
- Gbekou, F.K.; Benzarti, K.; Boudenne, A.; Eddhahak, A.; Duc, M. Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials. Constr. Build. Mater. 2022, 352, 129056. [Google Scholar] [CrossRef]
- Eddhahak-Ouni, A.; Drissi, S.; Colin, J.; Neji, J.; Care, S. Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs). Appl. Therm. Eng. 2014, 64, 32–39. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, H.; Chen, S.; Wang, X.; Gu, Z. The Preparation and Properties of the Low Melting Point Microencapsulated Paraffin Insulation Mortar. Appl. Mech. Mater. 2011, 71–78, 4835–4838. [Google Scholar]
- Asadi, I.; Baghban, M.H.; Hashemi, M.; Izadyar, N.; Sajadi, B. Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: A review. Case Stud. Constr. Mater. 2022, 17, e01162. [Google Scholar] [CrossRef]
- Bassim Frahat, N.; Amin, M.; Mohamed Heniegal, A.; Mohamed Omar Ibrahim, O. Optimizing microencapsulated PCM ratios of sustainable cement mortar for energy savings in buildings. Constr. Build. Mater. 2023, 391, 131844. [Google Scholar] [CrossRef]
- Liang, C.; Liu, X.; Zhang, Z.; Wang, C.; Ma, Z. Utilizing waste geopolymer powder as partial cement replacement for sustainable cement mortar: Micro-macro properties and modification. J. Mater. Res. Technol. 2023, 25, 2738–2757. [Google Scholar] [CrossRef]
- Pilehvar, S.; Cao, V.D.; Szczotok, A.M.; Valentini, L.; Salvioni, D.; Magistri, M.; Pamies, R.; Kjøniksen, A.-L. Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cem. Concr. Res. 2017, 100, 341–349. [Google Scholar] [CrossRef]
- Li, M.; Shi, J. Review on micropore grade inorganic porous medium based form stable composite phase change materials: Preparation, performance improvement and effects on the properties of cement mortar. Constr. Build. Mater. 2019, 194, 287–310. [Google Scholar] [CrossRef]
- Ben Romdhane, S.; Amamou, A.; Ben Khalifa, R.; Said, N.M.; Younsi, Z.; Jemni, A. A review on thermal energy storage using phase change materials in passive building applications. J. Build. Eng. 2020, 32, 101563. [Google Scholar] [CrossRef]
- Singh Rathore, P.K.; Shukla, S.K.; Gupta, N.K. Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustain. Cities Soc. 2020, 53, 101884. [Google Scholar] [CrossRef]
- Łach, M.; Pławecka, K.; Bąk, A.; Adamczyk, M.; Bazan, P.; Kozub, B.; Korniejenko, K.; Lin, W.-T. Review of Solutions for the Use of Phase Change Materials in Geopolymers. Materials 2021, 14, 6044. [Google Scholar] [CrossRef]
- Peng, J.X.; Huang, L.; Zhao, Y.B.; Chen, P.; Zeng, L.; Zheng, W. Modeling of Carbon Dioxide Measurement on Cement Plants. Adv. Mater. Res. 2013, 610–613, 2120–2128. [Google Scholar]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Siddique, R.; Kunal; Mehta, A. 11—Utilization of industrial by-products and natural ashes in mortar and concrete development of sustainable construction materials. In Nonconventional and Vernacular Construction Materials, 2nd ed.; Harries, K.A., Sharma, B., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 247–303. [Google Scholar]
- Asaad, M.A.; Huseien, G.F.; Memon, R.P.; Ghoshal, S.K.; Mohammadhosseini, H.; Alyousef, R. Enduring performance of alkali-activated mortars with metakaolin as granulated blast furnace slag replacement. Case Stud. Constr. Mater. 2022, 16, e00845. [Google Scholar] [CrossRef]
- Frasson, B.J.; Rocha, J.C. Drying shrinkage behavior of geopolymer mortar based on kaolinitic coal gangue. Case Stud. Constr. Mater. 2023, 18, e01957. [Google Scholar] [CrossRef]
- Naenudon, S.; Vilaivong, A.; Zaetang, Y.; Tangchirapat, W.; Wongsa, A.; Sata, V.; Chindaprasirt, P. High flexural strength lightweight fly ash geopolymer mortar containing waste fiber cement. Case Stud. Constr. Mater. 2022, 16, e01121. [Google Scholar] [CrossRef]
- Dawood, E.T.; Mohammed, W.T.; Plank, J. Performance of sustainable mortar using calcined clay, fly ash, limestone powder and reinforced with hybrid fibers. Case Stud. Constr. Mater. 2022, 16, e00849. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Lee, J.; Chang, S.J.; Kim, S. Thermal and structural behavior of thermal inertia-reinforced mortars for building envelope applications. Constr. Build. Mater. 2023, 384, 131452. [Google Scholar] [CrossRef]
- Li, M.; Mu, B. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review. Appl. Energy 2019, 242, 695–715. [Google Scholar] [CrossRef]
- Shafigh, P.; Asadi, I.; Mahyuddin, N.B. Concrete as a thermal mass material for building applications—A review. J. Build. Eng. 2018, 19, 14–25. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castellón, C.; Nogués, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007, 39, 113–119. [Google Scholar] [CrossRef]
- Shadnia, R.; Zhang, L.; Li, P. Experimental study of geopolymer mortar with incorporated PCM. Constr. Build. Mater. 2015, 84, 95–102. [Google Scholar] [CrossRef]
- Sanfelix, S.G.; Santacruz, I.; Szczotok, A.M.; Belloc, L.M.O.; De la Torre, A.G.; Kjøniksen, A.-L. Effect of microencapsulated phase change materials on the flow behavior of cement composites. Constr. Build. Mater. 2019, 202, 353–362. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Aguayo, M.; Das, S.; Maroli, A.; Kabay, N.; Mertens, J.C.E.; Rajan, S.D.; Sant, G.; Chawla, N.; Neithalath, N. The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations. Cem. Concr. Compos. 2016, 73, 29–41. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Rodriguez, J.F.; Carmona, M.; Al-Manasir, N.; Kjøniksen, A.-L. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Convers. Manag. 2017, 133, 56–66. [Google Scholar] [CrossRef]
- Lecompte, T.; Le Bideau, P.; Glouannec, P.; Nortershauser, D.; Le Masson, S. Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material. Energy Build. 2015, 94, 52–60. [Google Scholar] [CrossRef]
- Alassaad, F.; Touati, K.; Levacher, D.; Sebaibi, N. Impact of phase change materials on lightened earth hygroscopic, thermal and mechanical properties. J. Build. Eng. 2021, 41, 102417. [Google Scholar] [CrossRef]
- Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M. The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials. Cem. Concr. Compos. 2009, 31, 731–743. [Google Scholar] [CrossRef]
Component | SSC | Sand | Water | W/C Ratio |
---|---|---|---|---|
Dosage (g) | 50 | 150 | 25 | 0.5 |
Designation | SSC (g) | Sand (g) | mPCM (g) | Water (g) | W/C Ratio | mPCM Ratio (wt.%) |
---|---|---|---|---|---|---|
SSC0 | 50 | 150 | 0 | 25 | 0.5 | 0 |
SSC5 | 50 | 142.5 | 7.5 | 30 | 0.6 | 3.26 |
SSC10 | 50 | 135 | 15 | 35 | 0.7 | 6.38 |
SSC15 | 50 | 127.5 | 22.5 | 40 | 0.8 | 9.38 |
SSC20 | 50 | 120 | 30 | 45 | 0.9 | 12.24 |
SSC25 | 50 | 112.5 | 37.5 | 50 | 1.0 | 15 |
SSC30 | 50 | 105 | 45 | 55 | 1.1 | 17.31 |
λ24 (W m−1 K−1) | α24 (m2 s−1) | λ40 (W m−1 K−1) | α40 (m2 s−1) | |
---|---|---|---|---|
Test 1 | 0.092 | 0.03 | 0.092 | 0.05 |
Test 2 | 0.092 | 0.03 | 0.081 | 0.10 |
Test 3 | 0.092 | 0.03 | 0.082 | 0.11 |
Average | 0.092 | 0.03 | 0.085 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Xu, G.; Tao, Z. Effect on the Thermal Properties of Building Mortars with Microencapsulated Phase Change Materials for Radiant Floors. Buildings 2023, 13, 2476. https://doi.org/10.3390/buildings13102476
Li G, Xu G, Tao Z. Effect on the Thermal Properties of Building Mortars with Microencapsulated Phase Change Materials for Radiant Floors. Buildings. 2023; 13(10):2476. https://doi.org/10.3390/buildings13102476
Chicago/Turabian StyleLi, Guo, Guoqiang Xu, and Zhiyi Tao. 2023. "Effect on the Thermal Properties of Building Mortars with Microencapsulated Phase Change Materials for Radiant Floors" Buildings 13, no. 10: 2476. https://doi.org/10.3390/buildings13102476
APA StyleLi, G., Xu, G., & Tao, Z. (2023). Effect on the Thermal Properties of Building Mortars with Microencapsulated Phase Change Materials for Radiant Floors. Buildings, 13(10), 2476. https://doi.org/10.3390/buildings13102476