Impact of Solar Radiation on Luminaires and Energy Efficiency in Isolated Residential Photovoltaic Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling of the Sun Position
2.2. Modeling of Extraterrestrial Solar Radiation
2.3. Extraterrestrial Solar Radiation Profile in a Residential House with an Isolated Photovoltaic System
2.4. PV Power Analysis and Installation
2.5. Signal Acquisition and Processing
3. Case Studies and Results
- Optimal conditions: Temperature and solar radiation levels were at their peak at noon.
- Partial conditions: Temperature and solar radiation levels decreased after dawn.
- Nearly zero conditions: Temperature and solar radiation levels were minimal near sunset.
- Absence of conditions: There was no temperature or solar radiation during the nighttime.
3.1. Case 1: Optimal Conditions of Temperature and Solar Radiation
3.2. Case 2: Partial Conditions of Temperature and Solar Radiation
3.3. Case 3: Almost Zero Conditions of Temperature and Solar Radiation
3.4. Case 4: Absence of Temperature and Solar Radiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth around the World. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.K.; Mishra, I. United Nations Sustainable Development Goals 2030 and environmental sustainability: Race against time. Environ. Sustain. 2019, 2, 339–342. [Google Scholar] [CrossRef]
- Li, X.; Lin, A.; Young, C.-H.; Dai, Y.; Wang, C.-H. Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building. Appl. Energy 2019, 254, 113709. [Google Scholar] [CrossRef]
- Kuwahara, R.; Kim, H.; Sato, H. Evaluation of Zero-Energy Building and Use of Renewable Energy in Renovated Buildings: A Case Study in Japan. Buildings 2022, 12, 561. [Google Scholar] [CrossRef]
- Sarker, S.A.; Wang, S.; Adnan, K.M.M.; Anser, M.K.; Ayoub, Z.; Ho, T.H.; Tama, R.A.Z.; Trunina, A.; Hoque, M.M. Economic viability and so-cio-environmental impacts of solar home systems for off-grid rural electrification in Bangladesh. Energies 2020, 13, 679. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Seo, J. Light Shelf Development Using Folding Technology and Photovoltaic Modules to Increase Energy Efficiency in Building. Buildings 2022, 12, 81. [Google Scholar] [CrossRef]
- Kiwan, S.; Mosali, A.A.; Al-Ghasem, A. Smart Solar-Powered LED Outdoor Lighting System Based on the Energy Storage Level in Batteries. Buildings 2018, 8, 119. [Google Scholar] [CrossRef]
- Kaliakatsos, D.; Nicoletti, F.; Paradisi, F.; Bevilacqua, P.; Arcuri, N. Evaluation of Building Energy Savings Achievable with an Attached Bioclimatic Greenhouse: Parametric Analysis and Solar Gain Control Techniques. Buildings 2022, 12, 2186. [Google Scholar] [CrossRef]
- Pokorny, N.; Matuska, T. Glazed photovoltaic-thermal (PVT) collectors for domestic hot water preparation in multifamily building. Sustainability 2020, 12, 6071. [Google Scholar] [CrossRef]
- Eshraghi, J.; Narjabadifam, N.; Mirkhani, N.; Khosroshahi, S.S.; Ashjaee, M. A comprehensive feasibility study of applying solar energy to design a zero energy building for a typical home in Tehran. Energy Build. 2014, 72, 329–339. [Google Scholar] [CrossRef]
- Li, D.H.W.; Aghimien, E.I.; Alshaibani, K. An Analysis of Real-Time Measured Solar Radiation and Daylight and Its Energy Implications for Semi-Transparent Building-Integrated Photovoltaic Façades. Buildings 2023, 13, 386. [Google Scholar] [CrossRef]
- Vanaga, R.; Blumberga, A.; Freimanis, R.; Mols, T.; Blumberga, D. Solar facade module for nearly zero energy building. In Proceedings of the 3rd International Conference on Smart Energy Systems and 4th Generation District Heating (SES4DH), Copenahgen, Denmark, 12–13 September 2017; pp. 1025–1034. [Google Scholar]
- Bhargawa, A.; Singh, A.K. Solar Irradiance, Climatic Indicators, and Climate Change—An Empirical Analysis. Adv. Space Res. 2019, 64, 271–277. [Google Scholar] [CrossRef]
- Haghighi, Z.; Dehnavi, M.A.; Konstantinou, T.; Van Den Dobbelsteen, A.; Klein, T. Architectural photovoltaic applications: Lessons learned and perceptions from architects. Buildings 2021, 11, 62. [Google Scholar] [CrossRef]
- Naranjo-Mendoza, C.; Oyinlola, M.A.; Wright, A.J.; Greenough, R.M. Experimental study of a domestic solar-assisted ground source heat pump with seasonal underground thermal energy storage through shallow boreholes. Appl. Therm. Eng. 2019, 162, 114218. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Abdelkareem, M.A.; Al-Alami, A.H.; Ramadan, M.; Mushtaha, E.; Wilberforce, T.; Olabi, A.G. State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems. Buildings 2021, 11, 383. [Google Scholar] [CrossRef]
- Michalak, P. Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings. Energies 2021, 14, 4371. [Google Scholar] [CrossRef]
- Cho, D.; Valenzuela, J. Optimization of residential off-grid PV-battery systems. Sol. Energy 2020, 208, 766–777. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I. A new integrated solar energy based system for residential houses. Energy Convers. Manag. 2020, 221, 113112. [Google Scholar] [CrossRef]
- Li, H.; Song, Y.; Zhu, M.; Jiao, Y. Experimental Interharmonic Sensitivity Evaluation of LED Lamps Based on the Luminous Flux Flicker Model. Energies 2022, 15, 2990. [Google Scholar] [CrossRef]
- Drapela, J.; Halpin, M.; Langella, R.; Meyer, J.; Mueller, D.; Sharma, H.; Testam, A.; Watson, N.R.; Zech, D. Issues and challenges related to interharmonic distortion limits. In Proceedings of the 19th International Conference on Harmonics and Quality of Power (ICHQP), Dubai, United Arab Emirates, 6–7 July 2020; pp. 1–6. [Google Scholar]
- Sangwongwanich, A.; Yang, Y.; Sera, D.; Blaabjerg, F. Mission profile-oriented control for reliability and lifetime of photovoltaic inverters. IEEE Trans. Ind. Appl. 2019, 56, 601–610. [Google Scholar] [CrossRef]
- Ravindran, V.; Busatto, T.; Ronnberg, S.K.; Meyer, J.; Bollen, M.H.J. Time-Varying Interharmonics in Different Types of Grid-Tied PV Inverter Systems. IEEE Trans. Power Deliv. 2019, 35, 483–496. [Google Scholar] [CrossRef]
- Elvira-Ortiz, D.A.; Morinigo-Sotelo, D.; Duque-Perez, O.; Osornio-Rios, R.A.; Romero-Troncoso, R.J. Study of the harmonic and interharmonic content in electrical signals from photovoltaic generation and their relationship with environ-mental factors. J. Renew. Sustain. Energy 2019, 11, 043502. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Yang, Y.; Sera, D.; Soltani, H.; Blaabjerg, F. Analysis and Modeling of Interharmonics from Grid-Connected Photovoltaic Systems. IEEE Trans. Power Electron. 2018, 33, 8353–8364. [Google Scholar] [CrossRef]
- Moradi, A.; Zare, F.; Kumar, D.; Sharma, R. The Influence of Background Voltage Interharmonics on Amplifying Current Distortions in Distribution Networks. In Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 14–17 December 2022; pp. 1–6. [Google Scholar]
- Gudiño-Ochoa, A.; Jalomo-Cuevas, J.; Molinar-Solís, J.E.; Ochoa-Ornelas, R. Analysis of Interharmonics Generation in Induction Motors Driven by Variable Frequency Drives and AC Choppers. Energies 2023, 16, 5538. [Google Scholar] [CrossRef]
- Mao, M.; Xu, Z.; Li, J.; Li, H. A Phase-Shifting DC-Link Voltage Control Strategy for Parallel Inverters to Suppress Interharmonics in PV Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3163–3172. [Google Scholar] [CrossRef]
- Drapela, J.; Langella, R.; Testa, A.; Grappè, J. A real life light flicker case-study with LED lamps. In Proceedings of the 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018; pp. 1–6. [Google Scholar]
- Kim, T.; Rylander, M.; Powers, E.J.; Grady, W.M.; Arapostathis, A. LED Lamp Flicker Caused by Interharmonics. In Proceedings of the 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008; pp. 1920–1925. [Google Scholar]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. Impact of power converters and battery lifetime on economic prof-itability of residential photovoltaic systems. IEEE Open J. Ind. Appl. 2022, 3, 224–236. [Google Scholar] [CrossRef]
- Kuang, W.Y.; Illankoon, C.; Vithanage, S.C. Grid-Connected Solar Photovoltaic (PV) System for Covered Linkways. Buildings 2022, 12, 2131. [Google Scholar] [CrossRef]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. Reliability Evaluation of PV Systems with Integrated Battery Energy Storage Systems: DC-Coupled and AC-Coupled Configurations. Electronics 2019, 8, 1059. [Google Scholar] [CrossRef]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. A systematic approach for lifetime evaluation of PV-battery systems. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 2295–2300. [Google Scholar]
- Bouguerra, S.; Yaiche, M.R.; Gassab, O.; Sangwongwanich, A.; Blaabjerg, F. The Impact of PV Panel Positioning and Degradation on the PV Inverter Lifetime and Reliability. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 3114–3126. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Yang, Y.; Sera, D.; Blaabjerg, F. Lifetime evaluation of grid-connected PV inverters considering panel degradation rates and installation sites. IEEE Trans. Power Electron. 2017, 33, 1225–1236. [Google Scholar] [CrossRef]
- Soulayman, S. Comments on solar azimuth angle. Renew. Energy 2018, 123, 294–300. [Google Scholar] [CrossRef]
- Abood, A.A. A comprehensive solar angles simulation and calculation using matlab. Int. J. Energy Environ. 2015, 6, 367. [Google Scholar]
- Widén, J.; Munkhammar, J. Solar Radiation Theory; Uppsala University: Uppsala, Sweden, 2019; ISBN 9789150627602. [Google Scholar]
- Hao, D.; Qi, L.; Tairab, A.M.; Ahmed, A.; Azam, A.; Luo, D.; Pan, Y.; Zhang, Z.; Yan, J. Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renew. Energy 2022, 188, 678–697. [Google Scholar] [CrossRef]
- Kabulov, R.R.; Matchanov, N.A.; Umarov, B.R. Features of load current–voltage characteristics of a monocrystalline silicon solar cell at various levels of solar illumination. Appl. Sol. Energy 2017, 53, 297–298. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Maximum nominal power (Pmax) | 314 W |
Open circuit voltage (Voc) | 47.16 VDC |
Maximum voltage of power (Vmp) | 39.41 VDC |
Short circuit current (Isc) | 8.41 Amp |
Maximum current of power (Imp) | 7.97 Amp |
Nominal Operative Temperature Cell (NOTC) | Irradiance 800 W/m2, Environmental temperature 20 °C, Wind Velocity 1 m/s |
Parameter | Value |
---|---|
Voltage | 12 VDC |
Starting capacity (AC) | 937 Amp |
Cold Cranking Capacity (CCA) | 750 Amp |
BCI | 34/78 |
Wet Weight (kg) | 18.371 kg |
Parameter | Value |
---|---|
Nominal system voltage | 12/24 VDC auto |
Nominal charge current | 30 Amp |
Nominal discharge current | 30 Amp |
Battery voltage range | 8–32 VDC |
Open circuit maximum voltage cell | 100 VDC |
MPPT range voltage | 2–72 VDC |
Maximum voltage of power on the cell | 390 W/12 VDC |
780 W/24 VDC |
Case Studies | Storge Energy on Battery (Volt/Amp) | The Most Significant Interharmonic (Hz/Amp) | Extraterrestrial Solar Radiation (W/m2) |
---|---|---|---|
1 | 14.3/8.3 | 95.85/0.03 | 1200 |
2 | 13.1/3.6 | 183.3/0.037 | 600 |
3 | 12.5/2.9 | 187.5/0.04 | 250 |
4 | 12/1.7 | 149.9/0.01 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalomo-Cuevas, J.; Colmenero Fonseca, F.; Cárcel-Carrasco, J.; Pérez, S.S.; Gudiño-Ochoa, A. Impact of Solar Radiation on Luminaires and Energy Efficiency in Isolated Residential Photovoltaic Systems. Buildings 2023, 13, 2655. https://doi.org/10.3390/buildings13102655
Jalomo-Cuevas J, Colmenero Fonseca F, Cárcel-Carrasco J, Pérez SS, Gudiño-Ochoa A. Impact of Solar Radiation on Luminaires and Energy Efficiency in Isolated Residential Photovoltaic Systems. Buildings. 2023; 13(10):2655. https://doi.org/10.3390/buildings13102655
Chicago/Turabian StyleJalomo-Cuevas, Jaime, Fabiola Colmenero Fonseca, Javier Cárcel-Carrasco, Sergio Sandoval Pérez, and Alberto Gudiño-Ochoa. 2023. "Impact of Solar Radiation on Luminaires and Energy Efficiency in Isolated Residential Photovoltaic Systems" Buildings 13, no. 10: 2655. https://doi.org/10.3390/buildings13102655
APA StyleJalomo-Cuevas, J., Colmenero Fonseca, F., Cárcel-Carrasco, J., Pérez, S. S., & Gudiño-Ochoa, A. (2023). Impact of Solar Radiation on Luminaires and Energy Efficiency in Isolated Residential Photovoltaic Systems. Buildings, 13(10), 2655. https://doi.org/10.3390/buildings13102655