Outdoor Microclimate in Courtyard Buildings: Impact of Building Perimeter Configuration and Tree Density
Abstract
:1. Introduction
1.1. How to Mitigate Urban Heat Stress
1.2. Heat Stress in Dense Urban Patterns
1.3. Assessment of Outdoor Comfort in Courtyards
2. Goals
3. Materials and Methods
- (A)
- The building perimeter configuration, including both gap positioning and their capacity to influence airflows.
- (B)
- Vegetation distribution, especially focusing on tree density.
- (A)
- from a courtyard building with multiple accesses (Aa—all possible gaps are left open) to a continuous courtyard building (Ad—all gaps filled), passing through intermediate situations in which some gaps are only ‘screened’ to align the frontages and others are filled with proper volumes;
- (B)
- from no trees (B1) to a high tree density (50–70% of the courtyard surface) (B3).
4. Case Study
- (1)
- gaps filled with new buildings hosting additional dwellings, which do not allow airflow crossing;
- (2)
- gaps screened with automated parking volumes whose façades in perforated metal grids partially allow airflow crossing.
- a.
- Current state of the building block with existing gaps (scenarios Aa B2)
- b.
- All possible gaps are screened (scenario Ab B2)
- c.
- Some gaps are screened, and others are filled with new volumes (scenario Ac B2)
- d.
- All gaps are filled with new volumes (scenario Ad B2)
- 1.
- no trees (0 tree), scenario Ad B1;
- 2.
- average tree density (approximately 30% of the surface covered by trees), scenario Ad B2;
- 3.
- high tree density (approximately 60% of the surface covered by trees), scenario Ad B3.
5. Results and Discussion
5.1. Outdoor Microclimate Maps, Variable (A) Perimeter Configuration Effect with Average Tree Density
5.2. Outdoor Microclimate Maps, Variable (B): Tree Density Effect
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Mitigation of Climate Change—Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Spano, D.; Armiento, M.; Aslam, M.F.; Bacciu, V.; Bigano, A.; Bosello, F.; Breil, M.; Buonocore, M.; Butenschön, M.; Cadau, M.; et al. G20 Climate Risk Atlas: Impacts, Policy, Economics; European Union: Brussels, Belgium, 2021. [Google Scholar]
- Oke, T.R. City Size and the Urban Heat Island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- IPCC Working Group I. IPCC Fourth Assessment Report: Climate Change 2007; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Ma, X.; Peng, S. Assessing the Quantitative Relationships between the Impervious Surface Area and Surface Heat Island Effect during Urban Expansion. PeerJ 2021, 9, e11854. [Google Scholar] [CrossRef]
- Almeida, C.R.d.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Hsieh, C.-M.; Huang, H.-C. Mitigating Urban Heat Islands: A Method to Identify Potential Wind Corridor for Cooling and Ventilation. Comput. Environ. Urban Syst. 2016, 57, 130–143. [Google Scholar] [CrossRef]
- Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of Urban Geometry on Outdoor Thermal Comfort and Air Quality from Field Measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Gál, T.; Sümeghy, Z. Mapping the Roughness Parameters in Large Urban Area for Urban Climate Applications. Acta Climatol. Chronol. 2007, 27–36. [Google Scholar]
- Emmanuel, R. An Urban Approach to Climate Sensitive Design: Strategies for the Tropics; Taylor & Francis: Abingdon, UK, 2012. [Google Scholar]
- Mohammad Harmay, N.S.; Choi, M. The Urban Heat Island and Thermal Heat Stress Correlate with Climate Dynamics and Energy Budget Variations in Multiple Urban Environments. Sustain. Cities Soc. 2023, 91, 104422. [Google Scholar] [CrossRef]
- Na, W.; Jang, J.-Y.; Lee, K.E.; Kim, H.; Jun, B.; Kwon, J.-W.; Jo, S.-N. The Effects of Temperature on Heat-Related Illness According to the Characteristics of Patients during the Summer of 2012 in the Republic of Korea. J. Prev. Med. Public Health 2013, 46, 19–27. [Google Scholar] [CrossRef]
- Nanayakkara, S.; Wang, W.; Cao, J.; Wang, J.; Zhou, W. Analysis of Urban Heat Island Effect, Heat Stress and Public Health in Colombo, Sri Lanka and Shenzhen, China. Atmosphere 2023, 14, 839. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Outdoor Thermal Comfort: Coupling Microclimatic Parameters with Subjective Thermal Assessment to Design Urban Performative Spaces. Buildings 2020, 10, 238. [Google Scholar] [CrossRef]
- Copernicus. Demonstrating Heat Stress in European Cities. Available online: https://climate.copernicus.eu/demonstrating-heat-stress-european-cities (accessed on 5 June 2023).
- Fadhil, M.; Hamoodi, M.N.; Ziboon, A.R.T. Mitigating Urban Heat Island Effects in Urban Environments: Strategies and Tools. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012025. [Google Scholar] [CrossRef]
- C40 Cities Climate Leadership Group. How to Adapt Your City to Extreme Heat. Available online: https://www.c40knowledgehub.org/s/article/How-to-adapt-your-city-to-extreme-heat?language=en_US (accessed on 14 March 2023).
- Tsoka, S.; Tsikaloudaki, K.; Theodosiou, T.; Bikas, D. Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review. Energies 2020, 13, 1414. [Google Scholar] [CrossRef]
- Saneinejad, S.; Moonen, P.; Carmeliet, J. Comparative Assessment of Various Heat Island Mitigation Measures. Build. Environ. 2014, 73, 162–170. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Shu, L.; Xiao, T.; Shui, T. Landscape Configuration Effects on Outdoor Thermal Comfort across Campus—A Case Study. Atmosphere 2023, 14, 270. [Google Scholar] [CrossRef]
- Vujovic, S.; Haddad, B.; Karaky, H.; Sebaibi, N.; Boutouil, M. Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. CivilEng 2021, 2, 459–484. [Google Scholar] [CrossRef]
- Wardeh, Y.; Kinab, E.; Escadeillas, G.; Rahme, P.; Ginestet, S. Review of the Optimization Techniques for Cool Pavements Solutions to Mitigate Urban Heat Islands. Build. Environ. 2022, 223, 109482. [Google Scholar] [CrossRef]
- Kappou, S.; Souliotis, M.; Papaefthimiou, S.; Panaras, G.; Paravantis, J.A.; Michalena, E.; Hills, J.M.; Vouros, A.P.; Ntymenou, A.; Mihalakakou, G. Cool Pavements: State of the Art and New Technologies. Sustainability 2022, 14, 5159. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J.; Costa, A.; Principi, S. The Role of Architectural Skin Emissivity Influencing Outdoor Microclimatic Comfort: A Case Study in Bologna, Italy. Sustainability 2022, 14, 14669. [Google Scholar] [CrossRef]
- Alonso, C.; Martín-Consuegra, F.; Oteiza, I.; Asensio, E.; Pérez, G.; Martínez, I.; Frutos, B. Effect of Façade Surface Finish on Building Energy Rehabilitation. Sol. Energy 2017, 146, 470–483. [Google Scholar] [CrossRef]
- Zinzi, M. Exploring the Potentialities of Cool Facades to Improve the Thermal Response of Mediterranean Residential Buildings. Sol. Energy 2016, 135, 386–397. [Google Scholar] [CrossRef]
- Rosso, F.; Pisello, A.L.; Pignatta, G.; Castaldo, V.L.; Piselli, C.; Cotana, F.; Ferrero, M. Outdoor Thermal and Visual Perception of Natural Cool Materials for Roof and Urban Paving. Procedia Eng. 2015, 118, 1325–1332. [Google Scholar] [CrossRef]
- Zeeshan, M.; Ali, Z. The Potential of Cool Materials towards Improving Thermal Comfort Conditions inside Real-Urban Hot-Humid Microclimate. Environ. Urban. ASIA 2022, 13, 56–72. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J.; Bartoletti, S.; Antonini, E. Effect of Facade Reflectance on Outdoor Microclimate: An Italian Case Study. Sustain. Cities Soc. 2020, 54, 101984. [Google Scholar] [CrossRef]
- Gál, T.; Mahó, S.I.; Skarbit, N.; Unger, J. Numerical Modelling for Analysis of the Effect of Different Urban Green Spaces on Urban Heat Load Patterns in the Present and in the Future. Comput. Environ. Urban Syst. 2021, 87, 101600. [Google Scholar] [CrossRef]
- EPA. Reduce Urban Heat Island Effect. Available online: https://www.epa.gov/green-infrastructure/reduce-urban-heat-island-effect (accessed on 10 May 2023).
- Goldbach, A.; Kuttler, W. Influence of Evapotranspiration on Thermal Comfort in Central European Cities. In Proceedings of the EGU General Assembly 2012, Vienna, Austria, 22–27 April 2012; Volume 14, p. 5396. [Google Scholar]
- Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Lin, L.; Lin, L.; Liu, J. The Influence of Green Space Patterns on Land Surface Temperature in Different Seasons: A Case Study of Fuzhou City, China. Remote Sens. 2021, 13, 5114. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Zhang, Z.; Cao, W.; Wu, T. How Can Urban Green Spaces Be Planned to Mitigate Urban Heat Island Effect under Different Climatic Backgrounds? A Threshold-Based Perspective. Sci. Total Environ. 2023, 890, 164422. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and Bluespace to Mitigate Urban Heat Island Intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, Z.; Xin, Y.; Xu, A.; Xie, S.; Yan, Y.; Wang, L. How Are Land-Use/Land-Cover Indices and Daytime and Nighttime Land Surface Temperatures Related in Eleven Urban Centres in Different Global Climatic Zones? Land 2022, 11, 1312. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Johansson, E. Influence of Urban Geometry on Outdoor Thermal Comfort in a Hot Dry Climate: A Study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Banerjee, S.; Ching, N.Y.G.; Yik, S.K.; Dzyuban, Y.; Crank, P.J.; Pek Xin Yi, R.; Chow, W.T.L. Analysing Impacts of Urban Morphological Variables and Density on Outdoor Microclimate for Tropical Cities: A Review and a Framework Proposal for Future Research Directions. Build. Environ. 2022, 225, 109646. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, W.; Sun, J.; Xu, X.; Wang, R.; Lu, Y.; Zhang, S.; Zhou, W. Assessing the Effects of 2D/3D Urban Morphology on the 3D Urban Thermal Environment by Using Multi-Source Remote Sensing Data and UAV Measurements: A Case Study of the Snow-Climate City of Changchun, China. J. Clean. Prod. 2021, 321, 128956. [Google Scholar] [CrossRef]
- Li, Z.; Hu, D. Exploring the Relationship between the 2D/3D Architectural Morphology and Urban Land Surface Temperature Based on a Boosted Regression Tree: A Case Study of Beijing, China. Sustain. Cities Soc. 2022, 78, 103392. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Exploring the Spatial Heterogeneity of Urban Heat Island Effect and Its Relationship to Block Morphology with the Geographically Weighted Regression Model. Sustain. Cities Soc. 2022, 76, 103431. [Google Scholar] [CrossRef]
- Palusci, O.; Monti, P.; Cecere, C.; Montazeri, H.; Blocken, B. Impact of Morphological Parameters on Urban Ventilation in Compact Cities: The Case of the Tuscolano-Don Bosco District in Rome. Sci. Total Environ. 2022, 807, 150490. [Google Scholar] [CrossRef]
- Palusci, O.; Cecere, C. Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability 2022, 14, 3948. [Google Scholar] [CrossRef]
- Lin, M.; Hang, J.; Li, Y.; Luo, Z.; Sandberg, M. Quantitative Ventilation Assessments of Idealized Urban Canopy Layers with Various Urban Layouts and the Same Building Packing Density. Build. Environ. 2014, 79, 152–167. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Chandler, D.L. Urban Heat Island Effects Depend on a City’s Layout; MIT News Office. Available online: https://news.mit.edu/2018/urban-heat-island-effects-depend-city-layout-0222 (accessed on 12 February 2023).
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A.; Sailor, D.J. Heat in Courtyards: A Validated and Calibrated Parametric Study of Heat Mitigation Strategies for Urban Courtyards in the Netherlands. Sol. Energy 2014, 103, 108–124. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A. Thermal Performance Characteristics of Unshaded Courtyards in Hot and Humid Climates. Build. Environ. 2015, 87, 154–168. [Google Scholar] [CrossRef]
- Almhafdy, A.; Ibrahim, N.; Ahmad, S.S.; Yahya, J. Courtyard Design Variants and Microclimate Performance. Procedia Soc. Behav. Sci. 2013, 101, 170–180. [Google Scholar] [CrossRef]
- Li, M.; Jin, Y.; Guo, J. Dynamic Characteristics and Adaptive Design Methods of Enclosed Courtyard: A Case Study of a Single-Story Courtyard Dwelling in China. Build. Environ. 2022, 223, 109445. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of Height/Width Proportions on the Thermal Comfort of Courtyard Typology for Italian Climate Zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Han, J.; Li, X.; Li, B.; Yang, W.; Yin, W.; Peng, Y.; Feng, T. Research on the Influence of Courtyard Space Layout on Building Microclimate and Its Optimal Design. Energy Build. 2023, 289, 113035. [Google Scholar] [CrossRef]
- Garcia-Nevado, E.; Beckers, B.; Coch, H. Assessing the Cooling Effect of Urban Textile Shading Devices Through Time-Lapse Thermography. Sustain. Cities Soc. 2020, 63, 102458. [Google Scholar] [CrossRef]
- Cantini, A.; Angelotti, A.; Zanelli, A. A lightweight textile device for urban microclimate control and thermal comfort improvement: Concept project and design parameters. In Softening the Habitats—Sustainable Innovation in Minimal Mass Structures and Lightweight Architectures; Maggioli Editore: Santarcangelo di Romagna, Italy, 2019. [Google Scholar] [CrossRef]
- López-Cabeza, V.P.; Galán-Marín, C.; Rivera-Gómez, C.; Roa-Fernández, J. Courtyard Microclimate ENVI-Met Outputs Deviation from the Experimental Data. Build. Environ. 2018, 144, 129–141. [Google Scholar] [CrossRef]
- Wu, R.; Fang, X.; Liu, S.; Middel, A. A Fast and Accurate Mean Radiant Temperature Model for Courtyards: Evidence from the Keyuan Garden in Central Guangdong, China. Build. Environ. 2023, 229, 109916. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Safarzadeh, H.; Bahadori, M.N. Passive Cooling Effects of Courtyards. Build. Environ. 2005, 40, 89–104. [Google Scholar] [CrossRef]
- Soflaei, F.; Shokouhian, M.; Abraveshdar, H.; Alipour, A. The Impact of Courtyard Design Variants on Shading Performance in Hot- Arid Climates of Iran. Energy Build. 2017, 143, 71–83. [Google Scholar] [CrossRef]
- Forouzandeh, A. Numerical Modeling Validation for the Microclimate Thermal Condition of Semi-Closed Courtyard Spaces between Buildings. Sustain. Cities Soc. 2018, 36, 327–345. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Bedra, K.B. Evaluating the Improvements of Thermal Comfort by Different Natural Elements within Courtyards in Singapore. Urban Clim. 2022, 45, 101253. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A. Indoor Thermal Comfort in Urban Courtyard Block Dwellings in the Netherlands. Build. Environ. 2014, 82, 566–579. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Srebric, J.; Hu, Y.; Liu, M.; Su, L.; Wang, S. The Effect of Tree-Planting Patterns on the Microclimate within a Courtyard. Sustainability 2019, 11, 1665. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Li, K. A Simulation Study on the Effects of Tree Height Variations on the Façade Temperature of Enclosed Courtyard in North China. Build. Environ. 2022, 207, 108566. [Google Scholar] [CrossRef]
- Ngo, H.N.D.; Motoasca, E.; Versele, A.; Pham, H.C.; Breesch, H. Effect of Neighbourhood Courtyard Design on the Outdoor Thermal Comfort in a Tropical City. IOP Conf. Ser. Earth Environ. Sci. 2022, 1078, 012035. [Google Scholar] [CrossRef]
- Ferrari, S. Ventilation in a Group of Courtyard Buildings. EPJ Web Conf. 2022, 264, 01014. [Google Scholar] [CrossRef]
- Aryani, S.M.; Sasongko, S.; Sulistyono, I.B.; Hidayati, N. Courtyard Placement for Maintaining Air Movement of Natural Ventilation inside a Transformed House. In Proceedings of the 4th Bandung Creative Movement International Conference on Creative Industries 2017 (BCM 2017), Bandung, Indonesia, 9–10 October 2017; Atlantis Press: Zhengzhou, China, 2018; pp. 355–359. [Google Scholar]
- Sun, H.; Jimenez-Bescos, C.; Mohammadi, M.; Zhong, F.; Calautit, J.K. Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates. Energies 2021, 14, 5388. [Google Scholar] [CrossRef]
- Subhashini, S.; Thirumaran, K. CFD Simulations for Examining Natural Ventilation in the Learning Spaces of an Educational Building with Courtyards in Madurai. Build. Serv. Eng. Res. Technol. 2020, 41, 466–479. [Google Scholar] [CrossRef]
- Maryland Department of Planning. Models and Guidelines for Infill Development. 2001. Available online: https://planning.maryland.gov/Documents/OurProducts/Archive/72195/mg23-Infill-Development.pdf (accessed on 12 February 2023).
- MRSC. Infill Development. Available online: https://mrsc.org/explore-topics/planning/development-types-and-land-uses/infill-development (accessed on 10 June 2023).
- Ottawa Council. Urban Design Guidelines for Low-Rise Infill Housing. 2022. Available online: https://ottawa.ca/en/planning-development-and-construction/community-design/design-and-planning-guidelines/completed-guidelines/urban-design-guidelines-low-rise-infill-housing (accessed on 12 February 2023).
- Cardiff Council. Infill Sites Supplementary Planning Guidance. 2011. Available online: https://www.cardiff.gov.uk/ENG/resident/Planning/Planning-Policy/Supplementary-Planning-Guidance/Documents/Infill%20Sites%20SPG%20-%20Nov%202017%20Final.pdf (accessed on 11 February 2023).
- Altunkasa, C.; Uslu, C. Use of Outdoor Microclimate Simulation Maps for a Planting Design to Improve Thermal Comfort. Sustain. Cities Soc. 2020, 57, 102137. [Google Scholar] [CrossRef]
- Gaspari, J.; Fabbri, K. A Study on the Use of Outdoor Microclimate Map to Address Design Solutions for Urban Regeneration. Energy Procedia 2017, 111, 500–509. [Google Scholar] [CrossRef]
- Fabbri, K.; Costanzo, V. Drone-Assisted Infrared Thermography for Calibration of Outdoor Microclimate Simulation Models. Sustain. Cities Soc. 2020, 52, 101855. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a Universal Thermal Index: Physiological Equivalent Temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Koppen- Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Dext3r Database. Available online: https://simc.arpae.it/dext3r/ (accessed on 16 March 2023).
- ARPAER. Wheater Data Emilia-Romagna Region. Available online: www.arpae.it (accessed on 5 April 2022).
- Wild, T.; Freitas, T.; Vandewoestijne, S.; Bulkeley, H.; Naumann, S.; Vojinović, Z.; Calfapietra, C.; Whiteoak, K.; European Commission—Directorate-General for Research and Innovation. Nature-Based Solutions: State of the Art in EU-Funded Projects; European Union: Luxembourg, 2020; ISBN 9789276173342. [Google Scholar]
- Mahmoud, I.; Eugenio Morello, E. Catalogue of Nature-Based Solution for Urban Regeneration Energy & Urban Planning Workshop—Final Report; School of Architecture Urban Planning and Construction Engineering: Milano, Italy, 2019. [Google Scholar]
- Dumitru, A.; European Commission. Directorate-General for Research and Innovation. Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners; Publications Office of the European Union: Luxembourg, 2021; ISBN 9789276228219.
Hours | Air Temperature (°C) | Aa B2 (0) | Ad B1 | Ad B2 | Ad B3 |
---|---|---|---|---|---|
11:00 | 30.50 | - | - | 2.00 | 7.00 |
31.00 | 19.00 | 4.00 | 28.00 | 46.00 | |
31.50 | 20.00 | 52.00 | 25.00 | 3.00 | |
32.00 | 44.00 | 22.00 | 31.00 | 28.00 | |
32.50 | 12.00 | 17.00 | 10.00 | 9.00 | |
33.00 | - | 1.00 | - | - | |
33.50 | - | - | - | - | |
34.00 | - | - | - | - | |
34.50 | - | - | - | - | |
13:00 | 30.50 | - | - | - | - |
31.00 | - | - | - | - | |
31.50 | - | - | - | 2.00 | |
32.00 | - | - | 1.00 | 10.00 | |
32.50 | 3.00 | 3.00 | 25.00 | 42.00 | |
33.00 | 19.00 | 46.00 | 27.00 | 3.00 | |
33.50 | 47.00 | 32.00 | 33.00 | 29.00 | |
34.00 | 25.00 | 13.00 | 10.00 | 8.00 | |
34.50 | 1.00 | 2.00 | - | - | |
15:00 | 30.50 | - | - | - | - |
31.00 | - | - | - | - | |
31.50 | - | - | - | 2.00 | |
32.00 | - | - | 1.00 | 13.00 | |
32.50 | 3.00 | - | 29.00 | 40.00 | |
33.00 | 41.00 | 40.00 | 47.00 | 25.00 | |
33.50 | 50.00 | 48.00 | 18.00 | 15.00 | |
34.00 | 3.00 | 8.00 | 1.00 | - | |
34.50 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchi, L.; Gaspari, J.; Fabbri, K. Outdoor Microclimate in Courtyard Buildings: Impact of Building Perimeter Configuration and Tree Density. Buildings 2023, 13, 2687. https://doi.org/10.3390/buildings13112687
Marchi L, Gaspari J, Fabbri K. Outdoor Microclimate in Courtyard Buildings: Impact of Building Perimeter Configuration and Tree Density. Buildings. 2023; 13(11):2687. https://doi.org/10.3390/buildings13112687
Chicago/Turabian StyleMarchi, Lia, Jacopo Gaspari, and Kristian Fabbri. 2023. "Outdoor Microclimate in Courtyard Buildings: Impact of Building Perimeter Configuration and Tree Density" Buildings 13, no. 11: 2687. https://doi.org/10.3390/buildings13112687
APA StyleMarchi, L., Gaspari, J., & Fabbri, K. (2023). Outdoor Microclimate in Courtyard Buildings: Impact of Building Perimeter Configuration and Tree Density. Buildings, 13(11), 2687. https://doi.org/10.3390/buildings13112687