The Spatiotemporal Distribution Characteristics and Driving Factors of Carbon Emissions in the Chinese Construction Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Carbon Emissions Distribution
2.2. Influencing Factors
2.3. Relevant Research Methods
2.4. Literature Summary
3. Data and Methods
3.1. Data Definition and Source
3.1.1. Vector Data of Carbon Emissions
3.1.2. Factors Selection
3.2. Spatial Econometric Analysis
3.2.1. Spatial Correlation Analysis
3.2.2. Spatial Econometric Models
- Spatial Lag Model (SLM)
- Spatial Error Model (SEM)
4. Results
4.1. Initial Exploration of Carbon Emissions
4.1.1. Statistics of the Carbon Emissions
4.1.2. Carbon Emissions Trends
4.2. Spatiotemporal Distribution Characteristics of Carbon Emissions
4.2.1. Spatiotemporal Distribution Pattern
4.2.2. Global Spatial Autocorrelation Analysis
4.3. Spatial Driving Factors
4.3.1. Construction of Spatial Econometric Models
4.3.2. Model Results Analysis
5. Discussion
5.1. Aggravating Effect
5.1.1. The Gross Product (GP)
5.1.2. The Number of employees (NE)
5.2. Inhibitory Effect
5.3. Special Effect
5.3.1. The Urbanization Rate (UR)
5.3.2. Technical Equipment Rate (TR)
5.4. Policy Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, C.; Tan, Z.; Liu, W.; Yu, F.; Han, Q.; Liu, H.; Dai, Y.; Liu, Z.; Zheng, S. A study on climate change, carbon emissions and low-carbon city planning. Urban Plan. Forum 2009, 3, 38–45. [Google Scholar]
- CO2 Emissions. Available online: https://ourworldindata.org/co2-emissions (accessed on 24 September 2023).
- Qi, Y.; Stern, N.; He, J.; Lu, J.; Liu, T.; King, D.; Wu, T. The policy-driven peak and reduction of China’s carbon emissions. Adv. Clim. Chang. Res. 2020, 11, 65–71. [Google Scholar] [CrossRef]
- Karlsson, I.; Rootzén, J.; Johnsson, F. Reaching net-zero carbon emissions in construction supply chains—Analysis of a Swedish road construction project. Renew. Sustain. Energy Rev. 2020, 120, 109651. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, J.; Shen, L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 2017, 166, 615–627. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Cai, H. Inter-provincial diversity and factor decomposition of the totality and intensity of carbon emissions in China. J. Hunan Univ. Technol. 2022, 36, 1–9. [Google Scholar] [CrossRef]
- Shen, N.; Peng, H.; Wang, Q. Spatial dependence, agglomeration externalities and the convergence of carbon productivity. Socio Econ. Plan. Sci. 2021, 78, 101060. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, R.; Ding, M.; Man, Z.; Wang, S.; Yu, J.; Yang, W. Spatial pattern and influencing mechanism of urban carbon emissions in China based on cross—Section data of 285 cities. Resour. Dev. Mark. 2018, 34, 1243–1249. [Google Scholar] [CrossRef]
- Liu, H.; Shao, M.; Ji, Y. The spatial pattern and distribution dynamic evolution of carbon emissions in China: Empirical study based on county carbon emission data. Sci. Geogr. Sin. 2021, 41, 1917–1924. [Google Scholar] [CrossRef]
- Gregg, J.S.; Losey, L.M.; Andres, R.J.; Blasing, T.J.; Marland, G. The temporal and spatial distribution of carbon dioxide emissions from fossil-fuel use in North America. J. Appl. Meteorol. Climatol. 2009, 48, 2528–2542. [Google Scholar] [CrossRef]
- Ezcurra, R. Is there cross-country convergence in carbon dioxide emissions? Energy Policy 2007, 35, 1363–1372. [Google Scholar] [CrossRef]
- Nazlioglu, S.; Payne, J.E.; Lee, J.; Rayos-Velazquez, M.; Karul, C. Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks. Econ. Model. 2021, 100, 105498. [Google Scholar] [CrossRef]
- Li, L.; Han, R.; Zhang, X. Spatial-temporal evolution of carbon emission and its efficiency in Chinese aviation. Acta Ecol. Sin. 2022, 42, 3919–3932. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M. Carbon emission measurement for China’s logistics industry and its influence factors based on input-output method. Resour. Sci. 2018, 40, 195–206. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, B.; Zhang, R. Spatiotemporal evolution and influencing factors of agricultural carbon emissions in Hebei Province at the county scale. Chin. J. Eco-Agric. 2022, 30, 570–581. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Hao, Y.; Liu, S.; Liu, X.; Zhu, C.; Wu, Y.; Liu, W.; Bai, X.; Wu, B. Atmospheric emission inventory of multiple pollutants from civil aviation in China: Temporal trend, spatial distribution characteristics and emission features analysis. Sci. Total Environ. 2019, 648, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Deng, Y.; Zhou, J.; Wu, J.; Pang, Q. Spatial spillover effect of carbon emission efficiency in the construction industry of China. Environ. Sci. Pollut. Res. 2022, 29, 2466–2479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, B.; Du, J.; Liu, C.; Li, H.; Wang, S. Internationalization trends of carbon emission linkages: A case study on the construction sector. J. Clean. Prod. 2020, 270, 122433. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J. The temporal variation characteristics and scenario analysis of operation carbon emissions of buildings in Beijing. J. Beijing Univ. Technol. 2022, 48, 220–238. [Google Scholar] [CrossRef]
- Wei, D.; Huang, W.; Cao, Z. Influencing factors and reduction mechanism of carbon emissions in the provincial range: A case study of Zhejiang province. Ecol. Econ. 2017, 33, 14–18. [Google Scholar]
- O’neill, B.C.; Dalton, M.; Fuchs, R.; Jiang, L.; Pachauri, S.; Zigova, K. Global demographic trends and future carbon emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 17521–17526. [Google Scholar] [CrossRef]
- Du, Q.; Shao, L.; Zhou, J.; Huang, N.; Bao, T.; Hao, C. Dynamics and scenarios of carbon emissions in China’s construction industry. Sustain. Cities Soc. 2019, 48, 101556. [Google Scholar] [CrossRef]
- Kohler, M. CO2 emissions, energy consumption, income and foreign trade: A South African perspective. Energy Policy 2013, 63, 1042–1050. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. The effects of trade openness on decoupling carbon emissions from economic growth–evidence from 182 countries. J. Clean. Prod. 2021, 279, 123838. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Nasreen, S.; Ahmed, K.; Hammoudeh, S. Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels. Energy Econ. 2017, 61, 221–232. [Google Scholar] [CrossRef]
- Gong, X.; Xia, Y.; Hou, J.; Li, D. Industrial agglomeration and carbon emissions: Boost or inhibition?—Based on empirical evidence of the provincial level in China. Xinjiang State Farms Econ. 2022, 3, 71–78. [Google Scholar]
- Du, Q.; Lu, X.; Li, Y.; Wu, M.; Bai, L.; Yu, M. Carbon Emissions in China’s Construction Industry: Calculations, Factors and Regions. Int. J. Environ. Res. Public Health 2018, 15, 1220. [Google Scholar] [CrossRef] [PubMed]
- Chuai, X.; Huang, X.; Zhang, M.; Zhao, R.; Lu, J. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry. Environ. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Song, Y.; Zhu, J.; Chang, R. Analyzing the influence factors of the carbon emissions from China’s building and construction industry from 2000 to 2015. J. Clean. Prod. 2019, 221, 552–566. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- Hou, H.; Feng, X.; Zhang, Y.; Bai, H.; Ji, Y.; Xu, H. Energy-related carbon emissions mitigation potential for the construction sector in China. Environ. Impact Assess. Rev. 2021, 89, 106599. [Google Scholar] [CrossRef]
- Lu, N.; Feng, S.; Liu, Z.; Wang, W.; Lu, H.; Wang, M. The Determinants of Carbon Emissions in the Chinese Construction Industry: A Spatial Analysis. Sustainability 2020, 12, 1428. [Google Scholar] [CrossRef]
- Liu, T.; Dong, H.; Gao, L.; Luo, T. Research on identification of evolution characteristics and influencing factors of industrial carbon emission in Jiangsu province. J. Xi’an Univ. 2022, 25, 105–111. [Google Scholar]
- Zhu, Y.; Wang, Z.; Pang, L.; Wang, L.; Zou, X. Simulation on China’s economy and prediction on energy consumption and carbon emission under optimal growth path. Acta Grograph. Sin. 2009, 64, 935–944. [Google Scholar]
- Liu, Y.; Liu, H. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province. Chin. J. Eco-Agric. 2022, 30, 558–569. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Liu, B. Manufacturing/remanufacturing decisions for a capital-constrained manufacturer considering carbon emission cap and trade. J. Clean. Prod. 2017, 140, 1118–1128. [Google Scholar] [CrossRef]
- Zheng, H.; Ye, A. Spatial correlation network structure and influencing factors of carbon emission in urban agglomeration. China Environ. Sci. 2022, 45, 2413–2422. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Wu, W. Spatio-temporal evolution and influencing factors of carbon emissions in different grade cities in the Yangtze River Economic Belt. Res. Environ. Sci. 2022, 35, 2273–2281. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Zhang, C. Technological innovation, industrial structure upgrading and carbon emissions efficiency: An analysis based on PVAR model of panel data at provincial level. J. Nat. Resour. 2022, 37, 508–520. [Google Scholar] [CrossRef]
- Chen, K.; Hua, J.; Li, Y. Are there regional differences in the impact of the fossil energy market on the carbon emission rights market? Syst. Eng. 2022, 40, 18–32. [Google Scholar]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Li, D.; Huang, G.; Zhu, S.; Chen, L.; Wang, J. How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province. Renew. Sustain. Energy Rev. 2021, 144, 110953. [Google Scholar] [CrossRef]
- Hong, H.; Hu, R.; Huang, M.; Zhang, J. Spatial-temporal Characteristics and Driving Factors of Aircraft Carbon Emissions in Airports. J. Wuhan Univ. Technol. 2022, 46, 953–958. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, H.; Dong, S.; Qian, J. Study on the spatial effects of industrial development and carbon emission in central and western regions of China. Ecol. Econ. 2022, 38, 21–29+59. [Google Scholar]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement. Natl. Bur. Econ. Res. 1991, 3914, 1–57. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Wang, J.; Fischer, M.M.; Liu, T. Spatial Analysis of Economic and Social Sciences; Science Press: Beijing, China, 2012; pp. 6–20. [Google Scholar]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Lesage, J.P.; Fischer, M.M. Spatial growth regressions: Model specification, estimation and interpretation. Spat. Econ. Anal. 2008, 3, 275–304. [Google Scholar] [CrossRef]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Shi, Z.; Bi, A. Spatiotemporal pattern and influencing factors of carbon emissions from construction sector in the Yangtze River Delta urban agglomeration. J. Xi’an Univ. Technol. 2023, 1–10. [Google Scholar]
- Ke, Y. Analysis of the influence of construction labor quality on economic growth. Wuhan Univ. Technol. 2019, 32, 130–137. [Google Scholar] [CrossRef]
- Liu, H.; Tan, Y.; Li, N.; Cui, P.; Mao, P. How will rural houses go green? exploring influencing factors of villagers’ participation in green housing construction in rural communities. J. Green Build. 2023, 18, 159–190. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; Davis, S.; Giron, C.; Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 2022, 3, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, B.; Yin, S. Is technological innovation effective for energy saving and carbon emissions reduction? Evidence from China. IEEE Access 2020, 8, 83524–83537. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, J.; Li, Y.; Chen, Y.; Gao, Y.; Hu, M.; Qin, C.; Sun, J. How green technology innovation affects carbon emission efficiency: Evidence from developed countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. 2022, 29, 35780–35799. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, H.; Yan, H.; Huang, W.; Hao, Z. Analysis of carbon emission intensity distribution and spatial effect of China’s construction industry based on the Spatial Durbin Model. J. Eng. Manag. 2021, 35, 1–6. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Mangla, S.; Song, M.; Wen, J. Effects of technological changes on China’s carbon emissions. Technol. Forecast. Soc. Chang. 2020, 153, 119938. [Google Scholar] [CrossRef]
- Moyer, J.D.; Hughes, B.B. ICTs: Do they contribute to increased carbon emissions? Technol. Forecast. Soc. Chang. 2012, 79, 919–931. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, H.; Mao, P.; Zheng, X. Evaluation of safety management of smart construction sites from the perspective of resilience. Buildings 2023, 13, 2205. [Google Scholar] [CrossRef]
- Elkins, P.; Baker, T. Carbon taxes and carbon emissions trading. J. Econ. Surv. 2001, 15, 325–376. [Google Scholar] [CrossRef]
Variables | Definition | Unit |
---|---|---|
CE | Carbon emissions in the construction industry | MT |
GP | Gross product of the construction industry | 1010 Yuan |
NE | Number of employees in the construction industry | 106 Person |
UR | Urbanization rates | % |
TR | Technological equipment rates | 104 Yuan/Person |
PG | Domestic Patents Granted | 104 Item |
Year | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Valid (n) | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Null (n) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mean | 2.080 | 2.044 | 2.170 | 2.204 | 2.261 | 2.242 | 2.305 | 2.263 | 2.308 | 2.334 |
Median | 1.760 | 1.786 | 2.117 | 1.974 | 1.929 | 2.063 | 2.000 | 1.858 | 1.962 | 1.874 |
Standard Deviation | 1.505 | 1.421 | 1.528 | 1.588 | 1.635 | 1.534 | 1.578 | 1.610 | 1.649 | 1.680 |
Minimum | 0.127 | 0.148 | 0.048 | 0.058 | 0.144 | 0.068 | 0.075 | 0.049 | 0.187 | 0.186 |
Maximum | 5.850 | 5.549 | 5.942 | 6.033 | 6.103 | 5.921 | 5.925 | 6.139 | 6.326 | 6.532 |
25% | 0.893 | 0.953 | 1.111 | 1.129 | 1.026 | 1.047 | 1.062 | 0.988 | 0.996 | 1.072 |
75% | 2.828 | 2.710 | 2.577 | 2.747 | 3.011 | 3.101 | 3.331 | 3.353 | 3.411 | 3.616 |
Year | Moran’s I | p-Value | z-Value |
---|---|---|---|
2011 | 0.151 | 0.015 | 2.1739 |
2012 | 0.142 | 0.011 | 2.1638 |
2013 | 0.162 | 0.004 | 2.4164 |
2014 | 0.194 | 0.001 | 2.8491 |
2015 | 0.225 | 0.001 | 3.2964 |
2016 | 0.245 | 0.001 | 3.3674 |
2017 | 0.279 | 0.001 | 3.8362 |
2018 | 0.284 | 0.001 | 3.8130 |
2019 | 0.281 | 0.001 | 3.8397 |
2020 | 0.269 | 0.001 | 3.5399 |
Index | Spatial Error Model | Spatial Lag Model |
---|---|---|
R2 | 0.700504 | 0.602019 |
Sigma2 | 0.787003 | 1.0458 |
S.E of regression | 0.887132 | 1.02264 |
LogL | −41.209947 | −43.9397 |
AIC | 94.4199 | 101.879 |
SC | 102.827 | 111.688 |
Year | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
GP | 0.0825 (1.68) * | 0.0464 (1.10) | 0.0438 (1.04) | 0.0414 (0.86) | 0.0319 (0.81) | 0.0481 (1.93) * | 0.0579 (2.36) ** | 0.0499 (2.24) ** | 0.0532 (3.08) *** | 0.0673 (3.65) *** |
NE | 0.5959 (2.40) ** | 0.7659 (2.64) *** | 0.8008 (2.78) *** | 0.5143 (1.79) * | 0.7875 (3.22) *** | 0.6436 (4.45) *** | 0.4638 (3.30) *** | 0.3972 (2.26) ** | 0.2748 (1.58) | 0.2763 (1.55) |
UR | 0.0065 (0.46) | 0.0083 (0.50) | 0.0333 (2.25) ** | −0.0063 (−2.89) | 0.0154 (0.68) | 0.0011 (0.06) | 0.0183 (1.07) | 0.0200 (0.99) | 0.0396 (2.14) ** | 0.0469 (1.97) ** |
TR | 0.4492 (2.35) ** | 0.2619 (1.85) * | 0.0276 (0.33) | 0.5544 (2.10) ** | 1.0375 (2.15) ** | 0.6840 (2.62) *** | 0.4232 (1.52) | −0.2591 (−0.20) | −0.1624 (−1.68) * | −0.1170 (−1.98) ** |
PG | −0.0618 (−0.94) | −0.1197 (−1.85) * | −0.1658 (−2.22) ** | −0.0242 (−0.30) | −0.1287 (−2.01) ** | −0.0717 (−1.73) * | −0.0710 (−2.05) ** | −0.0623 (−2.40) ** | −0.0760 (−3.38) *** | −0.0640 (−3.48) *** |
LAMBDA | −0.4461 (−1.66) * | −0.5210 (−1.96) * | 0.6602 (−2.56) ** | −0.1840 (−0.53) | 0.4394 (1.61) | −0.8849 (−3.75) *** | −0.9191 (−3.97) *** | −0.9783 (−4.38) *** | 0.8722 (−3.67) *** | −0.9980 (−4.53) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zheng, X. The Spatiotemporal Distribution Characteristics and Driving Factors of Carbon Emissions in the Chinese Construction Industry. Buildings 2023, 13, 2808. https://doi.org/10.3390/buildings13112808
Yang J, Zheng X. The Spatiotemporal Distribution Characteristics and Driving Factors of Carbon Emissions in the Chinese Construction Industry. Buildings. 2023; 13(11):2808. https://doi.org/10.3390/buildings13112808
Chicago/Turabian StyleYang, Jun, and Xiaodan Zheng. 2023. "The Spatiotemporal Distribution Characteristics and Driving Factors of Carbon Emissions in the Chinese Construction Industry" Buildings 13, no. 11: 2808. https://doi.org/10.3390/buildings13112808
APA StyleYang, J., & Zheng, X. (2023). The Spatiotemporal Distribution Characteristics and Driving Factors of Carbon Emissions in the Chinese Construction Industry. Buildings, 13(11), 2808. https://doi.org/10.3390/buildings13112808