Experimental and Numerical Investigation on the Triaxial Compressive Behavior of Steamed Recycled Aggregate Concrete
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Curing Regimes
- (1)
- Standard curing
- (2)
- Steam curing
2.3. Triaxial Compression Test
3. Test Results and Analysis
3.1. Failure Mode
3.2. Stress–Strain Curves
3.3. The Cohesion and Internal Friction Angle
4. Numerical Simulation
4.1. Numerical Model
4.2. Parameter Calibration
4.3. Numerical Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shehata, N.; Mohamed, O.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef] [PubMed]
- Khadka, B. Rammed earth, as a sustainable and structurally safe green building: A housing solution in the era of global warming and climate change. Asian J. Civ. Eng. 2020, 21, 119–136. [Google Scholar] [CrossRef]
- Katerusha, D. Investigation of the optimal price for recycled aggregate concrete—An experimental approach. J. Clean. Prod. 2022, 365, 132857. [Google Scholar] [CrossRef]
- Ulucan, M.; Alyamac, K.E. A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste Manag. 2022, 146, 53–65. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Salgado, F.; de Andrade Silva, F. Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. J. Build. Eng. 2022, 52, 104452. [Google Scholar] [CrossRef]
- Datta, S.D.; Sobuz, H.R.; Akid, A.S.M.; Islam, S. Influence of coarse aggregate size and content on the properties of recycled aggregate concrete using non-destructive testing methods. J. Build. Eng. 2022, 61, 105249. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A comprehensive review on recycled aggregate and recycled aggregate concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Zhang, P. Methods for improving the durability of recycled aggregate concrete: A review. J. Mater. Res. Technol. 2021, 15, 6367–6386. [Google Scholar] [CrossRef]
- Bahraq, A.A.; Jose, J.; Shameem, M.; Maslehuddin, M. A review on treatment techniques to improve the durability of recycled aggregate concrete: Enhancement mechanisms, performance and cost analysis. J. Build. Eng. 2022, 55, 104713. [Google Scholar] [CrossRef]
- Ge, P.; Huang, W.; Zhang, J.; Quan, W.; Guo, Y. Mix proportion design method of recycled brick aggregate concrete based on aggregate skeleton theory. Constr. Build. Mater. 2021, 304, 124584. [Google Scholar] [CrossRef]
- Leite, M.B.; Santana, V.M. Evaluation of an experimental mix proportion study and production of concrete using fine recycled aggregate. J. Build. Eng. 2019, 21, 243–253. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Ren, J.; Han, N.; Xing, F. A novel treatment method for recycled aggregate and the mechanical properties of recycled aggregate concrete. J. Mater. Res. Technol. 2021, 10, 1389–1401. [Google Scholar] [CrossRef]
- Ouyang, K.; Liu, J.; Liu, S.; Song, B.; Guo, H.; Li, G.; Shi, C. Influence of pre-treatment methods for recycled concrete aggregate on the performance of recycled concrete: A review. Resour. Conserv. Recycl. 2023, 188, 106717. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Constr. Build. Mater. 2012, 35, 69–76. [Google Scholar] [CrossRef]
- Alexandridou, C.; Angelopoulos, G.N.; Coutelieris, F.A. Mechanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants. J. Clean. Prod. 2018, 176, 745–757. [Google Scholar] [CrossRef]
- Zheng, B.T.; Teng, J.G. A plasticity constitutive model for concrete under multiaxial compression. Eng. Struct. 2022, 251, 113435. [Google Scholar] [CrossRef]
- Rong, C.; Shi, Q.; Zhang, T.; Zhao, H. New failure criterion models for concrete under multiaxial stress in compression. Constr. Build. Mater. 2018, 161, 432–441. [Google Scholar] [CrossRef]
- Azevedo, V.d.S.d.; de Lima, L.R.; Vellasco, P.C.D.S.; Tavares, M.E.d.N.; Chan, T.-M. Experimental investigation on recycled aggregate concrete filled steel tubular stub columns under axial compression. J. Constr. Steel Res. 2021, 187, 106930. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Ren, R.; Wu, Z.; Ozbakkaloglu, T. Performance evaluation of recycled aggregate concrete-filled steel tubes under different loading conditions: Database analysis and modelling. J. Build. Eng. 2020, 30, 101308. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, J.; Lui, E.M.; Wu, B. Performance evaluation of recycled aggregate concrete under multiaxial compression. Constr. Build. Mater. 2019, 229, 116935. [Google Scholar] [CrossRef]
- Kedir, F.; Hall, D.M. Resource efficiency in industrialized housing construction—A systematic review of current performance and future opportunities. J. Clean. Prod. 2021, 286, 125443. [Google Scholar] [CrossRef]
- Zairul, M. The recent trends on prefabricated buildings with circular economy (CE) approach. Clean. Eng. Technol. 2021, 4, 100239. [Google Scholar] [CrossRef]
- Han, F.; Song, S.; Liu, J.; Huang, S. Properties of steam-cured precast concrete containing iron tailing powder. Powder Technol. 2019, 345, 292–299. [Google Scholar] [CrossRef]
- Shi, J.; Liu, B.; Shen, S.; Tan, J.; Dai, J.; Ji, R. Effect of curing regime on long-term mechanical strength and transport properties of steam-cured concrete. Constr. Build. Mater. 2020, 255, 119407. [Google Scholar] [CrossRef]
- Ramezanianpour, A.M.; Esmaeili, K.; Ghahari, S.A.; Ramezanianpour, A.A. Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete. Constr. Build. Mater. 2014, 73, 187–194. [Google Scholar] [CrossRef]
- Sebaibi, N.; Boutouil, M. Reducing energy consumption of prefabricated building elements and lowering the environmental impact of concrete. Eng. Struct. 2020, 213, 110594. [Google Scholar] [CrossRef]
- Zou, C.; Long, G.; Xie, Y.; He, J.; Ma, C.; Zeng, X. Evolution of multi-scale pore structure of concrete during steam-curing process. Microporous Mesoporous Mater. 2019, 288, 109566. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Johari, M.A.M.; Abutaleb, A.; Tayeh, B.A. The effect of steam curing regimes on the chloride resistance and pore size of high–strength green concrete. Constr. Build. Mater. 2021, 280, 122409. [Google Scholar] [CrossRef]
- Wang, J.; Long, G.; Xiang, Y.; Dong, R.; Tang, Z.; Xiao, Q.; Yang, Z.; Ma, K. Influence of rapid curing methods on concrete microstructure and properties: A review. Case Stud. Constr. Mater. 2022, 17, e01600. [Google Scholar] [CrossRef]
- Le Hoang, A.; Fehling, E.; Thai, D.-K.; Van Nguyen, C. Evaluation of axial strength in circular STCC columns using UHPC and UHPFRC. J. Constr. Steel Res. 2019, 153, 533–549. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, S.; Chen, J.; Ma, L.; Li, L.; Wu, X. Axial compression behavior of recycled-aggregate-concrete-filled GFRP–steel composite tube columns. Eng. Struct. 2020, 216, 110676. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Zhang, N.; Wang, X.; Diao, H. Experimental and numerical research on triaxial mechanical behavior of self-compacting concrete subjected to freeze–thaw damage. Constr. Build. Mater. 2021, 288, 123110. [Google Scholar] [CrossRef]
- Meng, E.; Yu, Y.; Zhang, X.; Su, Y. Experimental and theoretical research on the mechanical performance of totally recycled concrete under triaxial compression after high temperatures. Constr. Build. Mater. 2020, 261, 120012. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Oskooei, P.R.; Arulrajah, A. Discrete element modeling of cemented recycled concrete aggregates under unconfined and k0 loading conditions. Transp. Geotech. 2021, 26, 100450. [Google Scholar] [CrossRef]
- Rangari, S.; Murali, K.; Deb, A. Effect of meso-structure on strength and size effect in concrete under compression. Eng. Fract. Mech. 2018, 195, 162–185. [Google Scholar] [CrossRef]
Components | CaO | MgO | SiO2 | Fe2O3 | P2O5 | Al2O3 | SO3 | LOI |
---|---|---|---|---|---|---|---|---|
Slag | 45.09 | 6.99 | 27.33 | 0.45 | 0.13 | 13.66 | 4.03 | 0.95 |
Cement | 54.65 | 2.58 | 22.07 | 4.32 | 1.03 | 6.30 | 2.59 | 2.14 |
Cement | Slag | Sand | RA | Water | Water Reducer |
---|---|---|---|---|---|
241.5 | 241.5 | 815 | 957 | 145 | 3.42 |
Static Stop Time/h | Heating Time/h | Constant Temperature/°C | Holding Time/h | Cooling Time/h |
---|---|---|---|---|
3 | 2 | 60 | 12 | 2 |
80 | 9 |
Fitting Parameters | Curing Conditions | ||
---|---|---|---|
RAC20 | RAC6012 | RAC8009 | |
Slope (sinφ) | 0.699 | 0.691 | 0.723 |
Intercept (c·cosφ) | 10.654 | 9.809 | 7.268 |
Degree of fit (R2) | 0.999 | 0.996 | 0.999 |
Parameters | Curing Conditions | ||
---|---|---|---|
RAC20 | RAC6012 | RAC8009 | |
Cohesion (c)/MPa | 14.90 | 13.57 | 10.52 |
Internal friction angle (φ)/° | 44.36 | 43.71 | 46.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ning, Y.; Chen, X.; Xuan, W.; Zhu, X. Experimental and Numerical Investigation on the Triaxial Compressive Behavior of Steamed Recycled Aggregate Concrete. Buildings 2023, 13, 334. https://doi.org/10.3390/buildings13020334
Chen Y, Ning Y, Chen X, Xuan W, Zhu X. Experimental and Numerical Investigation on the Triaxial Compressive Behavior of Steamed Recycled Aggregate Concrete. Buildings. 2023; 13(2):334. https://doi.org/10.3390/buildings13020334
Chicago/Turabian StyleChen, Yuzhi, Yingjie Ning, Xudong Chen, Weihong Xuan, and Xiangyi Zhu. 2023. "Experimental and Numerical Investigation on the Triaxial Compressive Behavior of Steamed Recycled Aggregate Concrete" Buildings 13, no. 2: 334. https://doi.org/10.3390/buildings13020334
APA StyleChen, Y., Ning, Y., Chen, X., Xuan, W., & Zhu, X. (2023). Experimental and Numerical Investigation on the Triaxial Compressive Behavior of Steamed Recycled Aggregate Concrete. Buildings, 13(2), 334. https://doi.org/10.3390/buildings13020334