Sewage Sludge Valorization for Collapsible Soil Improvement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Physical Characterization
2.2.2. Chemical Characterization
- pH—the pH in the soil and sludge samples indicates the presence of exchangeable aluminum and also the predominance of clay in weathering process, which is verified by the variation of the pH in water and the pH in KCl;
- Organic carbon and organic matter—the amount of organic matter in the soil defines the formation of a greater or lesser amount of aggregate in the structure, and aggregates formed by organic matter contents higher than 3.5% are considered unstable;
- Exchangeable acidity—the actual acidity is used to determine the effective cation exchange capacity (CTC), also defined as the sum of bases;
- Electrical conductivity—the electrical conductivity in the saturation extract defines the amount of existing salts (cations and anions);
- Specific surface area and methylene blue adsorption—the larger the specific surface area of the clay mineral, the greater the amount of methylene blue adsorbed and the smaller the particle size.
2.2.3. Scanning Electron Microscopy
2.2.4. Double and Single Oedometer Test
3. Results
3.1. Physical Characterization of Soil, Sludge and Soil-Sludge Mixtures
3.2. Chemical Characterization of Soil, Sludge, and Mixtures of Soil and Sludge
3.3. Oedometer Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ottosen, L.M.; Bertelsen, I.M.G.; Jensen, P.E.; Kirkelund, G.M. Sewage sludge ash as resource for phosphorous and material for clay brick manufacturing. Constr. Build. Mater. 2020, 249, 118684. [Google Scholar] [CrossRef] [Green Version]
- Shih, K.; Chuang, K. Treatment and use of ashes from solid waste processing. In Sustainable Solid Waste Management; ASCE: Reston, VA, USA, 2016. [Google Scholar]
- Bittencourt, S. Agricultural Use of Sewage Sludge in Paraná State, Brazil: A Decade of National Regulation. Recycling 2018, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Miricioiu, M.G.; Zaharioiu, A.; Oancea, S.; Bucura, F.; Raboaca, M.S.; Filote, C.; Ionete, R.E.; Niculescu, V.C.; Constantinescu, M. Sewage Sludge Derived Materials for CO2 Adsorption. Appl. Sci. 2021, 11, 7139. [Google Scholar] [CrossRef]
- Zaharioiu, A.; Bucura, F.; Ionete, E.I.; Ionete, R.E.; Ebrasu, D.; Sandru, C.; Marin, F.; Oancea, S.; Niculescu, V.C.; Miricioiu, M.G.; et al. Thermochemical Decomposition of Sewage Sludge—An Eco-Friendly Solution for a Sustainable Energy Future by Using Wastes. Rev. Chim. 2020, 71, 171–181. [Google Scholar] [CrossRef]
- Opala, P.A.; Okalebo, J.R.; Othieno, C.O. Effects of organic and inorganic materials on soil acidity and phosphorus availability in a soil incubation study. Int. Sch. Res. Not. 2012, 2012, 597216. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.; Farooq, S.; Qazi, H.A.; Jaweed, T.H.; Kadam, A.K.; Lone, F.A. Evaluation of nutrient status of kale and spinach as affected by sewage sludge and mineral fertilizers. J. Plant Nutr. 2020, 43, 2633–2644. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Taher, M.A.; El-Bebany, A.F.; Hashem, M.; Galal, T.M.; Mostafa, Y.S.; Ahmed, M.T.; et al. Planned Application of Sewage Sludge Recirculates Nutrients to Agricultural Soil and Improves Growth of Okra (Abelmoschus esculentus (L.) Moench) Plants. Sustainability 2022, 14, 740. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Ciaran, J.L.; Ravindra, K.D.; Gurmel, S.G.; Roger, P.W. Sewage Sludge Ash Characteristics and Potential for Use in Concrete. Constr. Build. Mater. 2015, 98, 767–779. [Google Scholar]
- Perez, M.C.; Baeza, F.B.; Paya, J.; Saval, J.M.; Zornoza, E. Potential Use of Sewage Sludge Ash (SSA) as a Cement Replacement in Precast Concrete Blocks. Mater. De Constr. 2014, 64, 313. [Google Scholar]
- Mosallaei, A.; Eteraf, H.; Kovács, B.; Mikita, V. Effect of Sewage Sludge Ash on Collapsible Soil. In Research Developments in Geotechnics, Geo-Informatics and Remote Sensing; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 45–47. [Google Scholar]
- Zha, F.; Liu, S.; Du, Y.; Cui, K. Behavior of expansive soils stabilized with fly ash. Nat. Hazards 2008, 47, 509–523. [Google Scholar] [CrossRef]
- Kaniraj, S.R.; Havanagi, V.G. Behavior of cement-stabilized fiber-reinforced fly ash–soil mixtures. J. Geotech. Geoenviron. Eng. ASCE 2001, 127, 574–584. [Google Scholar] [CrossRef]
- Kate, J.M. Strength and volume change behavior of expansive soils treated with fly ash. In Proceedings of the Geo-Frontiers Congress, Austin, TX, USA, 24–26 January 2005. [Google Scholar]
- Seco, A.; Ramírez, F.; Miqueleiz, L.; García, B. Stabilization of expansive soils for use in construction. Appl. Clay Sci. 2011, 51, 348–352. [Google Scholar] [CrossRef]
- Burghardt, W. Main characteristics of urban soils. In Soils within Cities—Global Approaches to Their Sustainable Management—Composition, Properties, and Functions of Soils of the Urban Environment; Levin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzynski, P., Shaw, R.K., Eds.; Schweizerbart Soil Sciences: Stuttgart, Germany, 2017; pp. 19–26. [Google Scholar]
- Kalantari, B. Foundations on collapsible soils: A review. Proc. Inst. Civ. Eng. Forensic Eng. 2013, 166, 57–63. [Google Scholar] [CrossRef]
- Osama, M.; Hesham, B.; Tareq, M. Soil Improvement Techniques of Collapsible Soil. Int. J. Sci. Eng. Res. 2017, 8, 125–128. [Google Scholar]
- Feitosa, M.C.A.; Ferreira, S.R.M.; Delgado, J.M.P.Q.; Silva, F.A.N.; Oliveira, J.T.R.; Oliveira, P.E.S.; Azevedo, A.C. Use of Sewage Sludge for the Substitution of Fine Aggregates for Concrete. J. Comp. Sci. 2023, 7, 21. [Google Scholar] [CrossRef]
- Silva, F.A.N.; Silva, M.A.; Delgado, J.M.P.Q.; Azevedo, A.C.; Pereira, G.F.C. Construction and Demolition Waste as Raw Material in Pavements Layers. J. Constr. 2022, 21, 184–192. [Google Scholar] [CrossRef]
- Aparna, R.P. Sewage sludge ash for soil stabilization: A review. Mater. Today Proc. 2022, 61, 392–399. [Google Scholar]
- Munjed, M.A.S.; Mousa, F.A. A Geoenvironmental Application of Burned Wastewater Sludge Ash in Soil Stabilization. Environ. Earth Sci. 2013, 71, 2453–2463. [Google Scholar]
- Deng, F.L.; Huan, L.L.; Darn, H.H.; Chien, T.C.; Ming, D.C. Enhancing Soft Subgrade Soil with a Sewage Sludge Ash/Cement Mixture and Nano-Silicon Dioxide. Environ. Earth Sci. 2016, 75, 619. [Google Scholar]
- NBR 6467; Aggregates-Determination of Fine Aggregate Swelling-Testing Method. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2009.
- NBR 7181; Soil-Particle Size Analysis. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2018.
- NBR 6458; Grains of Soils Passing Through the Sieve of 4.8 mm-Determination of the Specific Mass. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2016.
- NBR 6459; Soil-Liquid Limit Determination. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2017.
- NBR 7180; Soil-Plasticity Limit Determination. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2020.
- NBR 7182; Soil-Compaction Test. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2020.
- Diário Oficial República Federativa do Brasil. Available online: http://www2.mma.gov.br/port/conama/res/res06/res37506.pdf (accessed on 15 November 2022).
- NBR 16853; Soil-One-Dimensional Consolidation Test. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2020.
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual of Soil Analysis Methods, Brasília, DF: Embrapa; Centro Nacional de Pesquisas de Solos: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Oliveira, L.A.; Martins, F.P.; Pedroso, L.B. Estudo comparativo entre condutividade hidráulica e textura de latossolos arenosos na micro-bacia do Córrego Irapitinga, município de Ituiuba/MG. In Simpósio Brasileiro De Geografia Aplicada, 13.; Universidade Federal de Viçosa: Viçosa, Brazil, 2009. [Google Scholar]
- Carvalho, J.C.; Gitirana, G.F.N. Unsaturated Soils in the Context of Tropical Soils. Soils Rocks 2021, 44, 1. [Google Scholar] [CrossRef]
- Atarodi, H. Improvement of collapsible soils by using sludge ash. Master’s Thesis, Shahrood University of Technology, Shahroud, Iran, 2016. [Google Scholar]
- Mosallaei, A.; Eteraf, H.; Kovács, B.; Mikita, V. Effect of Sewage Sludge Ash on Collapsible Soil. In Research Developments in Geotechnics, Geo-Informatics and Remote Sensing; CAJG 2019. Advances in Science. Technology & Innovation; El-Askary, H., Erguler, Z.A., Karakus, M., Chaminé, H.I., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Milieu Ltd; WRc; RPA. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final Report for the European Commission, DG Environment under Study Contract DG ENV.G.4/ETU/2008/0076r. 2008. Available online: https://ec.europa.eu/environment/archives/waste/sludge/pdf/part_i_report.pdf (accessed on 14 January 2023).
- Babatunde, A.O.; Zhao, Y.Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial Reuses. Crit. Rev. Environ. Sci. Technol. 2007, 37, 129–164. [Google Scholar] [CrossRef]
Maximum Concentration (mg/kg Dry Mass) | ||
---|---|---|
Metal | STP | CONMA 375/06 |
As | 0.41 | 41 |
Ba | 242.45 | 1300 |
Cd | 1.86 | 39 |
Pb | 9.66 | 300 |
Cu | 20.89 | 1500 |
Cr | 10.49 | 1000 |
Hg | 0.16 | 17 |
Mo | 23.21 | 50 |
Ni | 8.73 | 420 |
Se | 0.22 | 100 |
Zn | 86.54 | 2800 |
Material | γd (kN/m3) | Sand (%) | Silt (%) | Clay (%) | Classification | wopt (%) | γdmax (kN/m3) | |
---|---|---|---|---|---|---|---|---|
Unified | TRB | |||||||
Soil | 26.16 | 88 | 3 | 9 | SM | A-2-4 | 8.66 | 18.18 |
Sludge | 16.27 | 96 | 4 | 0 | -- | -- | -- | -- |
Soil + 5% sludge | 23.99 | 90 | 3 | 7 | SM | A-2-4 | 12.34 | 17.66 |
Soil + 10% sludge | 23.54 | 92 | 4 | 4 | SM | A-3 | 13.28 | 18.14 |
Soil + 15% sludge | 22.84 | 92 | 4 | 4 | SM-SP | A-2-4 | 12.46 | 15.85 |
Properties | Soil | Sludge | Soil—Sludge Mixture | ||
---|---|---|---|---|---|
5% | 10% | 15% | |||
pH in water | 6.08 | 7.22 | 6.9 | 7.01 | 7.13 |
pH in KCl | 6.00 | 7.30 | 7.06 | 7.15 | 7.18 |
Organic carbon (g/kg) | 1.07 | 14.29 | 8.60 | 9.67 | 11.46 |
Organic matter (g/kg)) | 1.85 | 24.64 | 14.82 | 16.67 | 19.76 |
Mg2+ exchangeable (cmol/kg) | 3.30 | 11.00 | 3.00 | 0.20 | 1.50 |
Na+ exchangeable (cmol/kg) | 0.30 | 185.80 | 10.40 | 22.30 | 26.90 |
K+ exchangeable (cmol/kg) | 0.20 | 18.40 | 1.30 | 1.90 | 2.20 |
H+ + Al3+ extracted (cmol/kg) | 8.10 | 8.90 | 6.01 | 6.67 | 7.37 |
H+ exchangeable (cmol/kg) | 7.70 | 8.80 | 5.71 | 6.27 | 6.95 |
Value of V (% Sat. of Base) | 0.38 | 0.97 | 0.76 | 0.83 | 0.86 |
% Fe2O3 in Ext. Sulfuric (g/kg) | 0.50 | 2.25 | 0.63 | 0.75 | 0.88 |
% Al2O3 in Ext. Sulfuric (g/kg) | 1.50 | 3.30 | 1.50 | 3.20 | 3.40 |
Electrical conductivity (mS/cm at 25 °C) | 10 | 9769 | 2708 | 3670 | 5940 |
Specific surface (m2/g) | 18.40 | 14.70 | 3.70 | 11.00 | 11.00 |
Vertical Flood Stress (kPa) | Collapse Potential—CP (%) | |||||||
---|---|---|---|---|---|---|---|---|
Dry Specific Weight—15.0 kN/m3 | Dry Specific Weight—17.0 kN/m3 | |||||||
0% Sludge | 5% Sludge | 10% Sludge | 15% Sludge | 0% Sludge | 5% Sludge | 10% Sludge | 15% Sludge | |
10 | 0.11 | 0.13 | −0.49 | −0.92 | 0.11 | −0.11 | −0.37 | −1.12 |
20 | 0.50 | 0.16 | −0.06 | −0.04 | 0.41 | −0.05 | −0.29 | −0.60 |
40 | 1.30 | 0.40 | 0.52 | 0.05 | 0.45 | 0.32 | 0.02 | −0.31 |
80 | 3.75 | 1.30 | 1.03 | 0.29 | 0.61 | 0.49 | 0.76 | 0.65 |
160 | 4.99 | 2.15 | 1.30 | 0.80 | 0.63 | 0.63 | 0.78 | 1.26 |
320 | 6.61 | 4.50 | 1.96 | 1.67 | 0.88 | 0.53 | 0.79 | 1.61 |
640 | 5.81 | 5.45 | 2.81 | 2.53 | 1.64 | 0.41 | 1.08 | 2.21 |
Samples | Test Type | Coefficients and Parameters | |||
---|---|---|---|---|---|
Compression Index | Vertical Stress Range (kPa) | Expansion Index | Compression Index | ||
Sand + 0% sludge | Natural | 0.046 | 10–80 | 0.015 | 115.61 |
0.055 | 160–640 | ||||
Flooded | 0.111 | 10–80 | 0.021 | 73.96 | |
0.129 | 160–640 | ||||
Sand + 5% sludge | Natural | 0.044 | 10–80 | 0.016 | 150.31 |
0.090 | 160–640 | ||||
Flooded | 0.111 | 10–80 | 0.021 | 125.89 | |
0.165 | 160–640 | ||||
Sand + 10% sludge | Natural | 0.040 | 10–80 | 0.018 | 81.85 |
0.078 | 160–640 | ||||
Flooded | 0.091 | 10–80 | 0.021 | 64.82 | |
0.165 | 160–640 | ||||
Sand + 15% sludge | Natural | 0.038 | 10–80 | 0.015 | 80 |
0.071 | 160–640 | ||||
Flooded | 0.096 | 10–80 | 0.021 | 40 | |
0.109 | 160–640 |
Samples | Test Type | Coefficients and Parameters | |||
---|---|---|---|---|---|
Compression Index | Vertical Stress Range (kPa) | Expansion Index | Pre-Consolidation Stress (kPa) | ||
Sand + 0% sludge | Natural | 0.023 | 10–80 | 0.014 | 147.23 |
0.042 | 160–640 | ||||
Flooded | 0.049 | 10–80 | 0.017 | 231.06 | |
0.079 | 160–640 | ||||
Sand + 5% sludge | Natural | 0.035 | 10–80 | 0.015 | 128.33 |
0.057 | 160–640 | ||||
Flooded | 0.070 | 10–80 | 0.018 | 207.49 | |
0.089 | 160–640 | ||||
Sand + 10% sludge | Natural | 0.039 | 10–80 | 0.016 | 118.23 |
0.066 | 160–640 | ||||
Flooded | 0.052 | 10–80 | 0.018 | 54.50 | |
0.092 | 160–640 | ||||
Sand + 15% sludge | Natural | 0.039 | 10–80 | 0.021 | 126.64 |
0.069 | 160–640 | ||||
Flooded | 0.076 | 10–80 | 0.025 | 66.15 | |
0.110 | 160–640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feitosa, M.C.A.; Ferreira, S.R.M.; Delgado, J.M.P.Q.; Silva, F.A.N.; Oliveira, J.T.R.; Oliveira, P.E.S.; Azevedo, A.C. Sewage Sludge Valorization for Collapsible Soil Improvement. Buildings 2023, 13, 338. https://doi.org/10.3390/buildings13020338
Feitosa MCA, Ferreira SRM, Delgado JMPQ, Silva FAN, Oliveira JTR, Oliveira PES, Azevedo AC. Sewage Sludge Valorization for Collapsible Soil Improvement. Buildings. 2023; 13(2):338. https://doi.org/10.3390/buildings13020338
Chicago/Turabian StyleFeitosa, Maria C. A., Sílvio R. M. Ferreira, João M. P. Q. Delgado, Fernando A. N. Silva, Joaquim T. R. Oliveira, Pedro E. S. Oliveira, and António C. Azevedo. 2023. "Sewage Sludge Valorization for Collapsible Soil Improvement" Buildings 13, no. 2: 338. https://doi.org/10.3390/buildings13020338
APA StyleFeitosa, M. C. A., Ferreira, S. R. M., Delgado, J. M. P. Q., Silva, F. A. N., Oliveira, J. T. R., Oliveira, P. E. S., & Azevedo, A. C. (2023). Sewage Sludge Valorization for Collapsible Soil Improvement. Buildings, 13(2), 338. https://doi.org/10.3390/buildings13020338