The Cultivation Effect of Architectural Heritage YouTube Videos on Perceived Destination Image
Abstract
:1. Introduction
- (1)
- How does Beijing’s architectural heritage in French YouTube videos cultivate Beijing’s destination image?
- (2)
- How do YouTube viewers perceive Beijing’s architectural heritage tourism destination image cultivated by these videos?
- (3)
- What are the characteristics of YouTube video networks?
2. Literature Review
2.1. Architectural Heritage in Tourism
2.2. YouTube and Online Destination Image Cultivation
3. Data Collection and Analysis
3.1. Data Collection
3.2. Data Analysis
3.2.1. Video Type Preference
3.2.2. Sentiment Analysis of Beijing’s Architectural Heritage Relevant Videos
3.2.3. Viewer’s Social Network Analysis
Algorithm 1: Harel–Koren fast multiscale layout algorithm |
Layout (G (V, E)) |
Goal: Find L, a nice layout of G |
1. Compute the all-pairs shortest distance |
2. Set up a random layout L |
3. |
4. while do |
4.1 |
4.2 |
4.3 |
4.3.1 |
4.4 |
5. end |
3.2.4. Semantic Analysis of YouTube Users’ Comments
4. Discussion
4.1. General Discussion
4.2. Contributions and Implication
4.3. Limitation and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detail of KWIC
Keyword in French(English) | Contextual Words (L = Count on the Left of Keyword, R = Count on the Right of Keyword) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Contextual Words | L5 | L4 | L3 | L2 | L1 | R1 | R2 | R3 | R4 | R5 | Score | Count | |
Merci (Thanks) | Beaucoup (a lot) | 3 | 8 | 3 | 4 | 1 | 154 | 1 | 0 | 5 | 6 | 163.550 | 185 |
Vidéo (video) | 18 | 15 | 16 | 38 | 17 | 2 | 2 | 112 | 49 | 21 | 105.467 | 290 | |
Avoir (have) | 30 | 19 | 20 | 10 | 0 | 30 | 9 | 32 | 28 | 32 | 80.983 | 210 | |
Seigneur (lord) | 1 | 3 | 7 | 6 | 5 | 56 | 4 | 9 | 6 | 1 | 73.983 | 98 | |
Amen (amen) | 3 | 9 | 11 | 24 | 16 | 2 | 7 | 1 | 4 | 6 | 42.550 | 83 | |
Infiniment(infinitively) | 0 | 1 | 0 | 0 | 2 | 38 | 2 | 2 | 1 | 0 | 42.176 | 46 | |
Grand(great or big) | 4 | 0 | 3 | 0 | 38 | 1 | 0 | 2 | 0 | 2 | 41.867 | 50 | |
Bon (good) | 17 | 12 | 18 | 10 | 3 | 7 | 7 | 14 | 10 | 15 | 41.074 | 113 | |
Beau (beautiful) | 7 | 6 | 12 | 11 | 3 | 2 | 4 | 33 | 25 | 12 | 39.050 | 115 | |
Chef (Chief) | 1 | 1 | 1 | 6 | 2 | 29 | 2 | 3 | 4 | 1 | 37.983 | 50 | |
Vidéo (video) | Super (super) | 5 | 3 | 5 | 8 | 99 | 5 | 15 | 5 | 1 | 5 | 121.833 | 151 |
Merci (thanks) | 22 | 49 | 112 | 2 | 2 | 17 | 38 | 16 | 15 | 18 | 105.667 | 291 | |
Avoir (have) | 41 | 27 | 43 | 4 | 3 | 10 | 11 | 36 | 48 | 38 | 81.383 | 261 | |
Bon (good) | 4 | 10 | 3 | 2 | 60 | 0 | 8 | 7 | 5 | 7 | 74.283 | 106 | |
Beau (beautiful) | 8 | 5 | 4 | 3 | 55 | 0 | 3 | 6 | 4 | 2 | 65.583 | 90 | |
Faire (make or do) | 12 | 11 | 24 | 39 | 0 | 2 | 11 | 14 | 11 | 9 | 49.367 | 133 | |
Superbe (superb) | 2 | 1 | 0 | 2 | 40 | 2 | 5 | 1 | 2 | 1 | 47.183 | 56 | |
Excellent (excellent) | 0 | 1 | 4 | 1 | 29 | 1 | 6 | 1 | 0 | 2 | 35.187 | 45 | |
Voir (watch) | 4 | 6 | 14 | 23 | 0 | 0 | 4 | 1 | 2 | 10 | 23.300 | 64 | |
Adorer (adore) | 2 | 4 | 3 | 33 | 0 | 0 | 0 | 6 | 3 | 7 | 23.050 | 58 | |
Pouvoir (can) | Avoir (have) | 23 | 10 | 7 | 26 | 70 | 26 | 12 | 7 | 7 | 13 | 131.117 | 201 |
Faire (make or do) | 9 | 2 | 3 | 3 | 1 | 68 | 44 | 15 | 4 | 2 | 102.200 | 151 | |
Dire (say or tell) | 4 | 6 | 2 | 0 | 0 | 24 | 19 | 14 | 2 | 0 | 41.633 | 71 | |
Voir (watch or see) | 7 | 3 | 2 | 1 | 0 | 20 | 14 | 9 | 0 | 1 | 33.517 | 57 | |
Aller (go) | 3 | 2 | 1 | 2 | 5 | 9 | 1 | 4 | 4 | 5 | 20.267 | 36 | |
Mettre (put) | 2 | 1 | 0 | 1 | 0 | 14 | 3 | 4 | 0 | 0 | 17.983 | 25 | |
Vidéo (video) | 4 | 1 | 4 | 7 | 0 | 0 | 1 | 12 | 8 | 8 | 13.983 | 45 | |
Regarder (watch or look) | 2 | 0 | 4 | 0 | 0 | 9 | 3 | 2 | 0 | 0 | 12.900 | 20 | |
Trouver (find) | 0 | 0 | 1 | 0 | 0 | 7 | 9 | 1 | 1 | 0 | 12.417 | 19 | |
Parler (talk or speak) | 2 | 1 | 1 | 1 | 0 | 6 | 4 | 2 | 0 | 1 | 10.350 | 18 | |
Bon (good) | Très (very) | 12 | 8 | 7 | 7 | 166 | 1 | 2 | 9 | 6 | 8 | 184.333 | 226 |
Vidéo (video) | 8 | 5 | 8 | 8 | 1 | 60 | 2 | 2 | 10 | 4 | 75.483 | 108 | |
Film (film) | 5 | 6 | 4 | 2 | 1 | 54 | 3 | 2 | 1 | 4 | 63.050 | 82 | |
Continuation (continuation) | 0 | 0 | 1 | 2 | 0 | 47 | 0 | 0 | 0 | 1 | 48.522 | 51 | |
Merci (thanks) | 15 | 10 | 15 | 7 | 7 | 3 | 10 | 19 | 12 | 18 | 41.933 | 116 | |
Humeur (humour) | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 0 | 41.000 | 41 | |
Journée (day or daytime) | 0 | 1 | 0 | 1 | 0 | 38 | 0 | 1 | 0 | 0 | 39.083 | 41 | |
Courage (courage) | 1 | 0 | 1 | 2 | 1 | 33 | 2 | 1 | 1 | 1 | 37.317 | 43 | |
Moment (moment) | 1 | 1 | 0 | 0 | 1 | 23 | 1 | 1 | 0 | 1 | 25.483 | 29 | |
Travail (job or work) | 2 | 0 | 1 | 0 | 0 | 23 | 1 | 1 | 1 | 1 | 25.017 | 30 | |
Beau (beautiful) | Très (very) | 6 | 5 | 6 | 2 | 130 | 1 | 6 | 7 | 3 | 5 | 143.533 | 171 |
Vidéo (video) | 2 | 3 | 6 | 3 | 0 | 55 | 3 | 4 | 5 | 9 | 65.533 | 90 | |
Trop (too) | 2 | 3 | 2 | 2 | 36 | 1 | 0 | 1 | 0 | 2 | 40.550 | 49 | |
Merci (thanks) | 12 | 25 | 33 | 4 | 2 | 3 | 11 | 12 | 6 | 9 | 39.450 | 117 | |
Film (film) | 3 | 1 | 5 | 1 | 0 | 15 | 0 | 1 | 1 | 0 | 18.600 | 27 | |
Image (image or photo or picture) | 0 | 0 | 1 | 0 | 1 | 16 | 0 | 1 | 2 | 0 | 18.167 | 21 | |
Français (French) | 1 | 1 | 1 | 0 | 0 | 16 | 1 | 0 | 0 | 0 | 17.283 | 20 | |
Pays (country) | 0 | 1 | 0 | 0 | 1 | 14 | 0 | 1 | 0 | 1 | 15.783 | 18 | |
Histoire (history) | 4 | 1 | 1 | 3 | 0 | 11 | 0 | 1 | 2 | 1 | 14.917 | 24 | |
Super (super) | 2 | 1 | 1 | 1 | 11 | 1 | 0 | 1 | 1 | 4 | 14.876 | 23 | |
Aimer (love) | Bien (well) | 4 | 1 | 3 | 0 | 15 | 64 | 0 | 0 | 0 | 0 | 81.050 | 87 |
Beaucoup (much) | 0 | 0 | 0 | 0 | 15 | 45 | 6 | 0 | 0 | 2 | 63.400 | 68 | |
Vidéo (video) | 5 | 6 | 4 | 0 | 0 | 0 | 9 | 9 | 6 | 4 | 13.633 | 43 | |
Film (film) | 4 | 1 | 2 | 0 | 0 | 1 | 10 | 10 | 2 | 2 | 11.950 | 32 | |
Savoir (know) | 2 | 0 | 1 | 0 | 0 | 8 | 4 | 0 | 1 | 0 | 10.983 | 16 | |
Voir (watch or see) | 1 | 2 | 0 | 0 | 0 | 6 | 5 | 1 | 1 | 0 | 7.783 | 16 | |
Merci (thanks) | 2 | 3 | 3 | 0 | 0 | 2 | 2 | 5 | 6 | 5 | 9.317 | 28 | |
Aller (go) | 1 | 0 | 0 | 2 | 2 | 1 | 1 | 4 | 2 | 1 | 6.733 | 14 | |
Histoire (history) | 1 | 1 | 2 | 0 | 0 | 0 | 3 | 10 | 2 | 0 | 6.540 | 19 | |
Chine (China) | 0 | 1 | 2 | 0 | 0 | 0 | 4 | 2 | 3 | 1 | 4.533 | 13 | |
Film (film) | Bon (good) | 4 | 1 | 2 | 3 | 54 | 1 | 2 | 4 | 5 | 5 | 62.800 | 81 |
Voir (watch) | 2 | 3 | 7 | 34 | 0 | 0 | 4 | 1 | 3 | 8 | 25.167 | 62 | |
Beau (beautiful) | 0 | 1 | 1 | 0 | 15 | 0 | 1 | 5 | 1 | 3 | 18.600 | 27 | |
Super (super) | 2 | 3 | 0 | 3 | 10 | 2 | 2 | 1 | 0 | 1 | 16.183 | 24 | |
Merci (thanks) | 2 | 1 | 8 | 0 | 0 | 8 | 3 | 2 | 4 | 2 | 14.883 | 30 | |
Aimer (love) | 2 | 2 | 10 | 10 | 1 | 0 | 0 | 2 | 1 | 4 | 11.950 | 32 | |
Regarder (watch) | 1 | 0 | 0 | 20 | 0 | 0 | 0 | 1 | 0 | 4 | 11.333 | 26 | |
Adorer (adore) | 2 | 2 | 1 | 13 | 0 | 0 | 1 | 2 | 3 | 3 | 10.250 | 27 | |
Meilleur (better) | 2 | 0 | 1 | 0 | 7 | 1 | 1 | 0 | 0 | 1 | 9.433 | 13 | |
Magnifique (magnificent) | 1 | 1 | 0 | 0 | 3 | 4 | 2 | 0 | 2 | 2 | 9.350 | 15 | |
Chine (China) | Muraille (wall) | 0 | 0 | 1 | 63 | 0 | 0 | 0 | 0 | 1 | 0 | 32.083 | 65 |
Aller (go) | 2 | 3 | 3 | 13 | 0 | 2 | 0 | 0 | 4 | 1 | 11.850 | 28 | |
Voir (watch or see) | 0 | 4 | 4 | 3 | 0 | 2 | 2 | 3 | 2 | 1 | 8.533 | 21 | |
Grand (great or big) | 1 | 3 | 11 | 0 | 1 | 0 | 0 | 3 | 0 | 2 | 7.017 | 21 | |
Vif (live or vivid or bright) | 1 | 0 | 0 | 7 | 0 | 1 | 2 | 0 | 0 | 0 | 5.700 | 11 | |
Histoire (history) | 3 | 0 | 9 | 3 | 0 | 0 | 0 | 1 | 0 | 1 | 5.633 | 17 | |
Bon (good) | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 2 | 5.317 | 13 | |
Merci (thanks) | 0 | 1 | 0 | 0 | 0 | 0 | 6 | 2 | 1 | 3 | 4.767 | 13 | |
Pays (country) | 1 | 1 | 4 | 0 | 0 | 0 | 1 | 4 | 2 | 3 | 4.717 | 16 | |
Aimer (love) | 1 | 3 | 2 | 4 | 0 | 0 | 0 | 2 | 1 | 0 | 4.533 | 13 | |
Super (super) | Vidéo (video) | 5 | 1 | 5 | 15 | 4 | 95 | 8 | 5 | 3 | 5 | 116.833 | 146 |
Intéressant (interesting) | 1 | 0 | 0 | 1 | 1 | 39 | 0 | 0 | 2 | 4 | 42.000 | 48 | |
Merci (thanks) | 2 | 3 | 15 | 8 | 2 | 5 | 13 | 15 | 8 | 7 | 32.050 | 78 | |
Bien (well) | 6 | 4 | 5 | 1 | 0 | 13 | 0 | 2 | 2 | 2 | 18.933 | 35 | |
Cool (cool) | 1 | 0 | 0 | 0 | 2 | 16 | 0 | 0 | 0 | 1 | 18.400 | 20 | |
Film (film) | 1 | 0 | 1 | 2 | 2 | 10 | 3 | 0 | 3 | 2 | 16.183 | 24 | |
Beau (beautiful) | 4 | 1 | 1 | 0 | 1 | 11 | 1 | 1 | 1 | 2 | 14.867 | 23 | |
Bon (good) | 2 | 3 | 4 | 4 | 1 | 6 | 3 | 1 | 2 | 2 | 14.217 | 28 | |
Episode (episode) | 0 | 1 | 0 | 0 | 1 | 11 | 0 | 1 | 0 | 0 | 12.583 | 14 | |
Format (format) | 0 | 1 | 1 | 2 | 1 | 7 | 2 | 2 | 2 | 0 | 11.750 | 18 | |
Grand (great or big) | Muraille (wall) | 0 | 0 | 0 | 0 | 0 | 55 | 1 | 0 | 2 | 1 | 56.200 | 59 |
Merci (thanks) | 2 | 0 | 2 | 0 | 2 | 42 | 0 | 3 | 0 | 4 | 46.867 | 55 | |
Chose (thing) | 1 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 13.200 | 14 | |
Bravo (bravo) | 1 | 0 | 2 | 0 | 0 | 11 | 1 | 1 | 0 | 1 | 12.900 | 17 | |
Pays (country) | 0 | 0 | 3 | 0 | 0 | 9 | 1 | 1 | 3 | 1 | 11.783 | 18 | |
Chine (China) | 2 | 0 | 3 | 0 | 0 | 1 | 0 | 11 | 3 | 1 | 7.017 | 21 | |
Ville (city) | 1 | 1 | 0 | 1 | 0 | 5 | 1 | 1 | 0 | 0 | 6.783 | 10 | |
Homme (people or man) | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 6.250 | 7 | |
Maître (master) | 1 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 6.200 | 7 | |
Beau (beautiful) | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 5.183 | 13 |
Appendix B. Glossary of Terms
Term | Definition | Reference |
---|---|---|
Architectural heritage | Immovable cultural heritage, including historical buildings, monuments, and archaeological sites | UNESCO [22] |
Destination image | The set of beliefs, ideas, and impressions that people have of a destination of place | Baloglu and McCleary [47] |
Cultivation theory | How a much more comprehensive range of messages gradually influence the public, as they are exposed to media messages daily | Potter [68] |
Open APIs (open application programming interfaces) | Open APIs promote interoperability via the provision of the data-sharing tools required to create widely used web apps, enable seamless social media service integration, and give rise to developer ecosystems that are mutually beneficial and build on top of social media platforms | Bodle [71] |
NodeXL | An open-source graph visualisation tool that supports social network structure analysis from Microsoft | NodeXL [72] |
Clauset–Newman–Moore algorithm | A widely used algorithm for analysing large networks and community classification | Vieira, Xavier, Ebecken, and Evsukoff [88] |
Harel–Koren fast multiscale layout algorithm | Algorithm enables both multiscale graph representation and locally good layout | Yao, Li, Song, and Crabbe [91] |
Nodes (i.e., vertices) | A social structure or content, virtual physical location, event, or individual, for instance, an institution, organisation, or country | Hansen, Shneiderman, and Smith [87] |
Edge(s) | Link or connection that occurs when two vertices collaborate or exchange information | NodeXL [92] |
Average geodesic distance | Average number of paths that one node reaches the others | NodeXL [92] |
Modularity | Index that determines the fitness of the groups in a network | NodeXL [92] |
KWIC (keyword in context) | Extracting co-occurrence words from the text | Ängsal, Brodén, Fridlund, Olsson, and Öhberg [76] |
References
- Yaldız, E.; Aydın, D.; Sıramkaya, S.B. Loss of city identities in the process of change: The city of konya-turkey. Procedia-Soc. Behav. Sci. 2014, 140, 221–233. [Google Scholar] [CrossRef]
- Muratovski, G. The role of architecture and integrated design in city branding. Place Brand. Public Dipl. 2012, 8, 195–207. [Google Scholar] [CrossRef]
- Gholitabar, S.; Alipour, H.; Costa, C.M.M.d. An empirical investigation of architectural heritage management implications for tourism: The case of portugal. Sustainability 2018, 10, 93. [Google Scholar] [CrossRef]
- Ageeva, E.; Foroudi, P. Tourists’ destination image through regional tourism: From supply and demand sides perspectives. J. Bus. Res. 2019, 101, 334–348. [Google Scholar] [CrossRef]
- Lee, W.; Chhabra, D. Heritage hotels and historic lodging: Perspectives on experiential marketing and sustainable culture. J. Herit. Tour. 2015, 10, 103–110. [Google Scholar] [CrossRef]
- Arefieva, V.; Egger, R.; Yu, J. A machine learning approach to cluster destination image on instagram. Tour. Manag. 2021, 85, 104318. [Google Scholar] [CrossRef]
- Neuhofer, B.; Celuch, K.; To, T.L. Experience design and the dimensions of transformative festival experiences. Int. J. Contemp. Hosp. Manag. 2020, 32, 2881–2901. [Google Scholar] [CrossRef]
- Li, J.; Weng, G. Hawkeye sees dragon: A longitudinal study of china’s destination-country image projected by the discovery channel. J. Destin. Mark. Manag. 2022, 25, 100733. [Google Scholar] [CrossRef]
- Gretzel, U.; Collier de Mendonça, M. Smart destination brands: Semiotic analysis of visual and verbal signs. Int. J. Tour. Cities 2019, 5, 560–580. [Google Scholar] [CrossRef]
- Chen, C.F.; Tsai, D. How destination image and evaluative factors affect behavioral intentions? Tour. Manag. Stud. 2007, 28, 1115–1122. [Google Scholar] [CrossRef]
- Tomaž, K.; Walanchalee, W. One does not simply … project a destination image within a participatory culture. J. Destin. Mark. Manag. 2020, 18, 100494. [Google Scholar] [CrossRef]
- Song, S.-G.; Kim, D.-Y. A pictorial analysis of destination images on pinterest: The case of tokyo, kyoto, and osaka, japan. J. Travel Tour. Mark. 2016, 33, 687–701. [Google Scholar] [CrossRef]
- Kim, S.-E.; Lee, K.Y.; Shin, S.I.; Yang, S.-B. Effects of tourism information quality in social media on destination image formation: The case of sina weibo. Inf. Manag. Commun. Q. 2017, 54, 687–702. [Google Scholar] [CrossRef]
- Tiago, F.; Moreira, F.; Borges-Tiago, T. Youtube videos: A destination marketing outlook. In Strategic Innovative Marketing and Tourism; Springer International Publishing: Cham, Switzerland, 2019; pp. 877–884. [Google Scholar]
- Lu, Q.; Atadil, H.A. Do you dare to travel to china? An examination of china’s destination image amid the COVID-19. Tour. Manag. Perspect. 2021, 40, 100881. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; ReFaey, K.; Stein, R.; Calhoun, B.J.; Despart, A.N.; Brantley, M.C.; Grewal, S.S.; Quinones-Hinojosa, A.; Wharen, R.E. The reliability of deep brain stimulation youtube videos. J. Clin. Neurosci. 2020, 74, 202–204. [Google Scholar] [CrossRef]
- Radonjic, A.; Fat Hing, N.N.; Harlock, J.; Naji, F. Youtube as a source of patient information for abdominal aortic aneurysms. J. Vasc. Surg. 2020, 71, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Meng, B.; Liu, N.; Qi, Z.; Liu, J.; Wang, J. Cultural perception of the historical and cultural blocks of beijing based on weibo photos. Landsc. Archaeol. Read. 2022, 11, 495. [Google Scholar] [CrossRef]
- Academy of Contemporary China and World Studies. 2019 Global Survey of China’s National Image. Available online: http://www.accws.org.cn/achievement/202009/P020200915609025580537.pdf (accessed on 15 September 2020).
- Zhang, J.; Wu, B.; Morrison, A.M.; Tseng, C.; Chen, Y.-c. How country image affects tourists’ destination evaluations: A moderated mediation approach. J. Hosp. Tour. Res. 2018, 42, 904–930. [Google Scholar] [CrossRef]
- France Diplomacy. The French Language in Figures. Available online: https://www.diplomatie.gouv.fr/en/french-foreign-policy/francophony-and-the-french-language/the-french-language-in-figures/ (accessed on 24 October 2022).
- UNESCO. Cultural Heritage Protection Act; National Assembly of the Republic of Slovenia Republic of Slovenia: Ljubljana, Slovenia, 1999.
- Taher Tolou Del, M.S.; Saleh Sedghpour, B.; Kamali Tabrizi, S. The semantic conservation of architectural heritage: The missing values. Herit. Sci. 2020, 8, 70. [Google Scholar] [CrossRef]
- Costa, M.; Carneiro, M.J. The influence of interpretation on learning about architectural heritage and on the perception of cultural significance. J. Tour. Cult. Chang. 2021, 19, 230–249. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Wang, C.-C.; Hou, M.; Li, A. Recent progress in instrumental techniques for architectural heritage materials. Herit. Sci. 2019, 7, 36. [Google Scholar] [CrossRef]
- Giannakopoulou, S.; Kaliampakos, D. The social aspects of rural, mountainous built environment. Key elements of a regional policy planning. J. Cult. Herit. 2016, 21, 849–859. [Google Scholar] [CrossRef]
- Council of Europe. European Charter of the Architectural Heritage. 1975. Available online: https://www.icomos.org/en/resources/charters-and-texts/179-articles-en-francais/ressources/charters-and-standards/170-european-charter-of-the-architectural-heritage (accessed on 25 December 2022).
- Wang, R.; Liu, G.; Zhou, J.; Wang, J. Identifying the critical stakeholders for the sustainable development of architectural heritage of tourism: From the perspective of china. Sustainability 2019, 11, 1671. [Google Scholar] [CrossRef]
- Hmood, K.; Jumaily, H.; Melnik, V. Urban architectural heritage and sustainable tourism. WIT Trans. Ecol. Environ. 2018, 227, 209–220. [Google Scholar]
- Esmail, A. Sustainability between urban heritage and tourism development by participation in al-qasr. J. Eng. Appl. Sci. 2019, 66, 429–450. [Google Scholar]
- Bogan, E. The tourism potential of the jewish cultural heritage in bucharest. Societies 2022, 12, 120. [Google Scholar] [CrossRef]
- Giannakopoulou, S.; Kaliampakos, D. Protection of architectural heritage: Attitudes of local residents and visitors in sirako, greece. J. Mt. Sci. 2016, 13, 424–439. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Tu, Z. The protection of architectural heritage in the process of urbanization under the internet environment. Mob. Inf. Syst. 2022, 2022, 7841789. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, H.; Wang, C. Self-adaptability and topological deformation of ganlan architectural heritage: Conservation and regeneration of lianghekou tujia village in western hubei, china. Front. Archit. Res. 2022, 11, 865–876. [Google Scholar] [CrossRef]
- Kostopoulou, S. Architectural heritage and tourism development in urban neighborhoods: The case of upper city, thessaloniki, greece. In Conservation of Architectural Heritage; Versaci, A., Bougdah, H., Akagawa, N., Cavalagli, N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 139–152. [Google Scholar]
- Buchrieser, Y. Simulacra architecture in relation to tourism: Charles rennie mackintosh in glasgow and antoni gaudi in barcelona. J. Tour. Cult. Chang. 2019, 17, 100–114. [Google Scholar] [CrossRef]
- Cocola-Gant, A. Tourism, simulacra and architectural reconstruction: Selling an idealised past. In Tourism Fictions, Simulacra and Virtualities; Routledge: London, UK, 2019; pp. 122–136. [Google Scholar]
- Scorrano, P.; Fait, M.; Iaia, L.; Rosato, P. The image attributes of a destination: An analysis of the wine tourists’ perception. EuroMed J. Bus. 2018, 13, 335–350. [Google Scholar] [CrossRef]
- Francesconi, S. Images and writing in tourist brochures. J. Tour. Cult. Chang. 2011, 9, 341–356. [Google Scholar] [CrossRef]
- Syed Jaafar, S.M.R.; Ismail, H.N.; Md Khairi, N.D. Tourists’ real-time destination image of kuala lumpur. Int. J. Tour. Cities 2022, 8, 7–29. [Google Scholar] [CrossRef]
- Michelson, A.; Paadam, K. Destination branding and reconstructing symbolic capital of urban heritage: A spatially informed observational analysis in medieval towns. J. Destin. Mark. Manag. 2016, 5, 141–153. [Google Scholar] [CrossRef]
- Kim, H.; Stepchenkova, S. Effect of tourist photographs on attitudes towards destination: Manifest and latent content. Tour. Manag. 2015, 49, 29–41. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, M. Behavioral intentions of heritage tourists: Influential variables on recommendations to visit. J. Herit. Tour. 2020, 15, 511–532. [Google Scholar] [CrossRef]
- Lojo, A.; Li, M.; Xu, H. Online tourism destination image: Components, information sources, and incongruence. J. Travel Tour. Mark. 2020, 37, 495–509. [Google Scholar] [CrossRef]
- Su, M.M.; Wall, G.; Ma, Z. A multi-stakeholder examination of destination image: Nanluoguxiang heritage street, beijing, china. Tour. Geogr. 2019, 21, 2–23. [Google Scholar] [CrossRef]
- Yang, Y.; Sha, C.; Su, W.; Donkor, E.K.N. Research on online destination image of zhenjiang section of the grand canal based on network content analysis. Sustainability 2022, 14, 2731. [Google Scholar] [CrossRef]
- Baloglu, S.; McCleary, K.W. A model of destination image formation. Ann. Tour. Res. 1999, 26, 868–897. [Google Scholar] [CrossRef]
- Dolnicar, S.; Grün, B. Validly measuring destination image in survey studies. J. Travel Res. 2012, 52, 3–14. [Google Scholar] [CrossRef]
- Afshardoost, M.; Eshaghi, M.S. Destination image and tourist behavioural intentions: A meta-analysis. Tour. Manag. 2020, 81, 104154. [Google Scholar] [CrossRef]
- Rasoolimanesh, S.M.; Seyfi, S.; Rastegar, R.; Hall, C.M. Destination image during the COVID-19 pandemic and future travel behavior: The moderating role of past experience. J. Destin. Mark. Manag. 2021, 21, 100620. [Google Scholar] [CrossRef]
- Wang, D.; Chan, H.; Pan, S. The impacts of mass media on organic destination image: A case study of singapore. Asia Pac. J. Tour. Res. 2015, 20, 860–874. [Google Scholar] [CrossRef]
- Chemli, S.; Toanoglou, M.; Valeri, M. The impact of COVID-19 media coverage on tourist’s awareness for future travelling. Curr. Issues Tour. 2022, 25, 179–186. [Google Scholar] [CrossRef]
- Lin, M.S.; Liang, Y.; Xue, J.X.; Pan, B.; Schroeder, A. Destination image through social media analytics and survey method. Int. J. Contemp. Hosp. Manag. 2021, 33, 2219–2238. [Google Scholar] [CrossRef]
- Nadeau, J.; Wardley, L.J.; Rajabi, E. Tourism destination image resiliency during a pandemic as portrayed through emotions on twitter. Tour. Hosp. Res. 2022, 22, 60–70. [Google Scholar] [CrossRef]
- Garay Tamajón, L.; Cànoves Valiente, G. Barcelona seen through the eyes of tripadvisor: Actors, typologies and components of destination image in social media platforms. Curr. Issues Tour. 2017, 20, 33–37. [Google Scholar] [CrossRef]
- Chang, H.H. Virtual reality, youtube, or social media? Assessing promotional effects on tourism destination. J. Vacat. Mark. 2021, 28, 211–227. [Google Scholar] [CrossRef]
- Mak, A.H.N. Online destination image: Comparing national tourism organisation’s and tourists’ perspectives. Tour. Manag. 2017, 60, 280–297. [Google Scholar] [CrossRef]
- Deng, N.; Li, X. Feeling a destination through the “right” photos: A machine learning model for dmos’ photo selection. Tour. Manag. 2018, 65, 267–278. [Google Scholar] [CrossRef]
- Liang, X.; Xue, J. Online destination image generated by national tourism organizations hosed wechat official accounts. In Proceedings of the 2021 7th International Conference on Information Management (ICIM), London, UK, 27–29 March 2021; IEEE: Piscataway, NJ, USA; pp. 140–143. [Google Scholar]
- Kim, H.; Richardson, S.L. Motion picture impacts on destination images. Ann. Tour. Res. 2003, 30, 216–237. [Google Scholar] [CrossRef]
- Llodrà-Riera, I.; Martínez-Ruiz, M.P.; Jiménez-Zarco, A.I.; Izquierdo-Yusta, A. A multidimensional analysis of the information sources construct and its relevance for destination image formation. Tour. Manag. 2015, 48, 319–328. [Google Scholar] [CrossRef]
- Beyvers, E.M.A.; Herbrich, T. Social media and the european fundamental rights to privacy and data protection. In Proceedings of the 3rd European Conference on Social M di R h Media Research EM Normandie, Caen, France, 12–13 June 2016; pp. 33–39. [Google Scholar]
- Hunter, W.C. The social construction of tourism online destination image: A comparative semiotic analysis of the visual representation of seoul. Tour. Manag. 2016, 54, 221–229. [Google Scholar] [CrossRef]
- Huertas, A.; Míguez-González, M.I.; Lozano-Monterrubio, N. Youtube usage by spanish tourist destinations as a tool to communicate their identities and brands. J. Brand Manag. 2017, 24, 211–229. [Google Scholar] [CrossRef]
- Garay, L. #visitspain. Breaking down affective and cognitive attributes in the social media construction of the tourist destination image. Tour. Manag. Perspect. 2019, 32, 100560. [Google Scholar]
- Li, R.; Luo, Z.; Anil, B.; Fevzi, O. Marketing china to u.S. Travelers through electronic word-of-mouth and destination image: Taking beijing as an example. J. Vacat. Mark. 2021, 27, 267–286. [Google Scholar]
- Tseng, C.; Wu, B.; Morrison, A.M.; Zhang, J.; Chen, Y.-C. Travel blogs on china as a destination image formation agent: A qualitative analysis using leximancer. Tour. Manag. 2015, 46, 347–358. [Google Scholar] [CrossRef]
- Potter, W.J. A critical analysis of cultivation theory. J. Commun. 2014, 64, 1015–1036. [Google Scholar] [CrossRef]
- Ladewig, J.W. Murder and presidential elections: A cultivation-based issue-ownership theory of local television news and its geographic structure. Pres. Stud. Q. 2020, 50, 811–844. [Google Scholar] [CrossRef]
- France Diplomacy. Infographic: French, the 5th World Language. Available online: https://www.diplomatie.gouv.fr/en/french-foreign-policy/francophony-and-the-french-language/the-french-language-in-figures/infographic-french-the-5th-world-language/ (accessed on 23 December 2022).
- Bodle, R. Regimes of sharing. Inf. Commun. Soc. 2011, 14, 320–337. [Google Scholar] [CrossRef]
- NodeXL. Nodexl Pro for Research. Available online: https://nodexl.com/ (accessed on 29 July 2022).
- Yao, Q.; Li, R.Y.M.; Song, L. Construction safety knowledge sharing on youtube from 2007 to 2021: Two-step flow theory and semantic analysis. Saf. Sci. 2022, 153, 105796. [Google Scholar] [CrossRef]
- Shapiro, M.A.; Park, H.W. Climate change and youtube: Deliberation potential in post-video discussions. Environ. Commun. 2018, 12, 115–131. [Google Scholar] [CrossRef]
- Zulkifli, N.S.A.; Lee, A.W.K. Sentiment analysis in social media based on english language multilingual processing using three different analysis techniques. In Proceedings of the International Conference on Soft Computing in Data Science, Iizuka, Japan, 28–29 August 2019; Springer: Singapore; pp. 375–385. [Google Scholar]
- Ängsal, M.P.; Brodén, D.; Fridlund, M.; Olsson, L.-J.; Öhberg, P. Linguistic framing of political terror: Distant and close readings of the discourse on terrorism in the swedish parliament 1993–2018. In Proceedings of the CLARIN Annual Conference 2022, Prague, Czechia, 10–12 October 2022; pp. 69–72. [Google Scholar]
- Nemorin, S.; Vlachidis, A.; Ayerakwa, H.M.; Andriotis, P. Ai hyped? A horizon scan of discourse on artificial intelligence in education (aied) and development. Learn. Media Technol. 2022, 48, 38–51. [Google Scholar] [CrossRef]
- TripAdvisor. About Tripadvisor. Available online: https://tripadvisor.mediaroom.com/uk-about-us (accessed on 7 December 2021).
- Taecharungroj, V.; Mathayomchan, B. Analysing tripadvisor reviews of tourist attractions in phuket, thailand. Tour. Manag. 2019, 75, 550–568. [Google Scholar] [CrossRef]
- Xiang, Z.; Du, Q.; Ma, Y.; Fan, W. Assessing reliability of social media data: Lessons from mining tripadvisor hotel reviews. Inf. Technol. Tour. 2018, 18, 43–59. [Google Scholar] [CrossRef]
- TripAdvisor. Monuments à Pékin. Available online: https://www.tripadvisor.fr/Attractions-g294212-Activities-c47-Beijing.html (accessed on 6 May 2022).
- Dobler, D.; Friedrich, S.; Pauly, M. Nonparametric manova in meaningful effects. Ann. Inst. Stat. Math. 2020, 72, 997–1022. [Google Scholar] [CrossRef]
- Goodale, T. Multivariate analysis of the impact of gender and college major on student levels of environmental concern and knowledge. Int. Electron. J. Environ. Educ. 2021, 11, 1–12. [Google Scholar]
- Abdi, H.; Williams, L. Tukey’s honestly significant difference (hsd) test. Encycl. Res. Des. 2010, 3, 1–5. [Google Scholar]
- Serrat, O. Social network analysis. In Knowledge Solutions: Tools, Methods, and Approaches to Drive Organizational Performance; Serrat, O., Ed.; Springer: Singapore, 2017; pp. 39–43. [Google Scholar]
- Saito, K.; Kimura, M.; Ohara, K.; Motoda, H. Super mediator–a new centrality measure of node importance for information diffusion over social network. Inf. Sci. 2016, 329, 985–1000. [Google Scholar] [CrossRef]
- Hansen, D.; Shneiderman, B.; Smith, M.A. Analyzing Social Media Networks with Nodexl: Insights from a Connected World; Morgan Kaufmann: Burlington, MA, USA, 2010. [Google Scholar]
- Vieira, V.d.F.; Xavier, C.R.; Ebecken, N.F.F.; Evsukoff, A.G. Performance evaluation of modularity based community detection algorithms in large scale networks. Math. Probl. Eng. 2014, 2014, 502809. [Google Scholar] [CrossRef]
- Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef] [PubMed]
- Yum, S. Social network analysis for coronavirus (COVID-19) in the united states. Soc. Sci. Q. 2020, 101, 1642–1647. [Google Scholar] [CrossRef]
- Yao, Q.; Li, R.Y.M.; Song, L.; Crabbe, M.J.C. Construction safety knowledge sharing on twitter: A social network analysis. Saf. Sci. 2021, 143, 105411. [Google Scholar] [CrossRef]
- NodeXL. Overall Metrics Defined. Available online: https://www.smrfoundation.org/networks/overall-metrics-defined/ (accessed on 4 May 2021).
- Guare, J. Six Degrees of Separation: A Play; Vintage: London, UK, 1990. [Google Scholar]
- Wu, T.; Zhang, K.; Liu, X.; Cao, C. A two-stage social trust network partition model for large-scale group decision-making problems. Knowl.-Based Syst. 2019, 163, 632–643. [Google Scholar] [CrossRef]
- Song, L.; Li, R.Y.M.; Yao, Q. An informal institution comparative study of occupational safety knowledge sharing via french and english tweets: Languaculture, weak-strong ties and ai sentiment perspectives. Saf. Sci. 2022, 147, 105602. [Google Scholar] [CrossRef]
- Park, H.W.; Park, S.; Chong, M. Conversations and medical news frames on twitter: Infodemiological study on COVID-19 in south korea. J. Med. Internet Res. 2020, 22, e18897. [Google Scholar] [CrossRef]
- Yao, Q.; Li, R.Y.M.; Song, L. Carbon neutrality vs. Neutralité carbone: A comparative study on french and english users’ perceptions and social capital on twitter. Front. Environ. Sci. 2022, 10, 1632. [Google Scholar] [CrossRef]
- Khmelev, D.V.; Tweedie, F.J. Using markov chains for identification of writer. Lit. Linguist. Comput. 2001, 16, 299–307. [Google Scholar] [CrossRef]
- Tran, D.; Sharma, D. Markov models for written language identification. In Proceedings of the 12th International Conference on Neural Information Processing, Taipei, Taiwan, 30 October–2 November 2005; pp. 67–70. [Google Scholar]
- Sagum, R.A. Filipino native language identification using markov chain model and maximum likelihood decision rule. Turk. J. Comput. Math. Math. Educ. Educ. 2021, 12, 5475–5478. [Google Scholar] [CrossRef]
- Ghahtarani, A.; Sheikhmohammady, M.; Rostami, M. The impact of social capital and social interaction on customers’ purchase intention, considering knowledge sharing in social commerce context. J. Innov. Knowl. 2020, 5, 191–199. [Google Scholar] [CrossRef]
- Liu, B. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data; Springer: Berlin/Heidelberg, Germany, 2011; Volume 1. [Google Scholar]
- Penttinen, V.; Ciuchita, R.; Čaić, M. Youtube it before you buy it: The role of parasocial interaction in consumer-to-consumer video reviews. J. Interact. Mark. 2022, 57, 561–582. [Google Scholar] [CrossRef]
Rank | Name (in French) | Name (in English) |
---|---|---|
1 | La Grande Muraille | The Great Wall |
2 | Cité Interdite | The Forbidden City |
3 | Palais d’Eté | Summer Palace |
4 | Temple du Ciel | Temple of Heaven |
5 | Parc Jingshan | Jingshan Gongyuan |
6 | Parc Beihai | Beihai Park |
7 | La Ville d’Eau de Gubei | Gubei Water Town |
8 | Place de Tiananmen | Tiananmen |
Multivariate Tests c | |||||||
---|---|---|---|---|---|---|---|
Effect | Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | |
Intercept | Pillai’s Trace | 0.002 | 1.708 a | 3.000 | 2636.000 | 0.163 | 0.002 |
Wilks’ Lambda | 0.998 | 1.708 a | 3.000 | 2636.000 | 0.163 | 0.002 | |
Hotelling’s Trace | 0.002 | 1.708 a | 3.000 | 2636.000 | 0.163 | 0.002 | |
Roy’s Largest Root | 0.002 | 1.708 a | 3.000 | 2636.000 | 0.163 | 0.002 | |
VideoType | Pillai’s Trace | 0.024 | 3.580 | 18.000 | 7914.000 | 0.000 | 0.008 |
Wilks’ Lambda | 0.976 | 3.590 | 18.000 | 7456.219 | 0.000 | 0.008 | |
Hotelling’s Trace | 0.025 | 3.598 | 18.000 | 7904.000 | 0.000 | 0.008 | |
Roy’s Largest Root | 0.018 | 7.717 b | 6.000 | 2638.000 | 0.000 | 0.017 |
Tukey HSD | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable | (I) Video Type | (J) Video Type | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Bound | Upper Bound | ||||||
View Count | Entertainment | Sport | 1,133,731.0802 | 777,467.78398 | 0.770 | −1,160,268.3037 | 3,427,730.4641 |
Travel and Event | 1,119,576.2946 * | 262,878.64937 | 0.000 | 343,925.5575 | 1,895,227.0317 | ||
People and Blog | 1,125,327.8333 * | 284,779.24448 | 0.002 | 285,057.1175 | 1,965,598.5491 | ||
News and Politics | 975,491.9188 | 347,105.55338 | 0.074 | −48,679.0398 | 1,999,662.8774 | ||
Education and Science | 1,100,783.0888 | 391,002.55643 | 0.073 | −52,910.5330 | 2,254,476.7106 | ||
Others | 1,134,624.4533 | 761,717.05111 | 0.751 | −1,112,900.7586 | 3,382,149.6652 | ||
Sport | Entertainment | −1,133,731.0802 | 777,467.78398 | 0.770 | −3,427,730.4641 | 1,160,268.3037 | |
Travel and Event | −14,154.7856 | 777,228.16498 | 1.000 | −2,307,447.1488 | 2,279,137.5775 | ||
People and Blog | −8403.2469 | 784,906.14358 | 1.000 | −2,324,350.2827 | 2,307,543.7889 | ||
News and Politics | −158,239.1614 | 809,605.27502 | 1.000 | −2,547,063.5479 | 2,230,585.2250 | ||
Education and Science | −32,947.9914 | 829,374.12263 | 1.000 | −2,480,102.4144 | 2,414,206.4316 | ||
Others | 893.3730 | 1,056,026.18438 | 1.000 | −3,115,021.4806 | 3,116,808.2267 | ||
Travel and Event | Entertainment | −1,119,576.2946 * | 262,878.64937 | 0.000 | −1,895,227.0317 | −343,925.5575 | |
Sport | 14,154.7856 | 777,228.16498 | 1.000 | −2,279,137.5775 | 2,307,447.1488 | ||
People and Blog | 5751.5387 | 284,124.41535 | 1.000 | −832,587.0358 | 844,090.1132 | ||
News and Politics | −144,084.3758 | 346,568.50766 | 1.000 | −1,166,670.7253 | 878,501.9736 | ||
Education and Science | −18,793.2058 | 390,525.88192 | 1.000 | −1,171,080.3500 | 1,133,493.9384 | ||
Others | 15,048.1587 | 761,472.47571 | 1.000 | −2,231,755.4081 | 2,261,851.7255 | ||
People and Blog | Entertainment | −1,125,327.8333 * | 284,779.24448 | 0.002 | −1,965,598.5491 | −285,057.1175 | |
Sport | 8403.2469 | 784,906.14358 | 1.000 | −2,307,543.7889 | 2,324,350.2827 | ||
Travel and Event | −5751.5387 | 284,124.41535 | 1.000 | −844,090.1132 | 832,587.0358 | ||
News and Politics | −149,835.9145 | 363,460.81535 | 1.000 | −1,222,264.7709 | 922,592.9419 | ||
Education and Science | −24,544.7445 | 405,591.54114 | 1.000 | −1,221,284.6798 | 1,172,195.1908 | ||
Others | 9296.6199 | 769,307.71805 | 1.000 | −2,260,625.6425 | 2,279,218.8824 | ||
News and Politics | Entertainment | −975,491.9188 | 347,105.55338 | 0.074 | −1,999,662.8774 | 48,679.0398 | |
Sport | 158,239.1614 | 809,605.27502 | 1.000 | −2,230,585.2250 | 2,547,063.5479 | ||
Travel and Event | 144,084.3758 | 346,568.50766 | 1.000 | −878,501.9736 | 1,166,670.7253 | ||
People and Blog | 149,835.9145 | 363,460.81535 | 1.000 | −922,592.9419 | 1,222,264.7709 | ||
Education and Science | 125,291.1700 | 451,539.08507 | 1.000 | −1,207,021.7621 | 1,457,604.1022 | ||
Others | 159,132.5345 | 794,491.92076 | 1.000 | −2,185,098.3318 | 2,503,363.4007 | ||
Education and Science | Entertainment | −1,100,783.0888 | 391,002.55643 | 0.073 | −2,254,476.7106 | 52,910.5330 | |
Sport | 32,947.9914 | 829,374.12263 | 1.000 | −2,414,206.4316 | 2,480,102.4144 | ||
Travel and Event | 18,793.2058 | 390,525.88192 | 1.000 | −1,133,493.9384 | 1,171,080.3500 | ||
People and Blog | 24,544.7445 | 405,591.54114 | 1.000 | −1,172,195.1908 | 1,221,284.6798 | ||
News and Politics | −125,291.1700 | 451,539.08507 | 1.000 | −1,457,604.1022 | 1,207,021.7621 | ||
Others | 33,841.3644 | 814,627.61193 | 1.000 | −2,369,801.9483 | 2,437,484.6772 | ||
Others | Entertainment | −1,134,624.4533 | 761,717.05111 | 0.751 | −3,382,149.6652 | 1,112,900.7586 | |
Sport | −893.3730 | 1,056,026.18438 | 1.000 | −3,116,808.2267 | 3,115,021.4806 | ||
Travel and Event | −15,048.1587 | 761,472.47571 | 1.000 | −2,261,851.7255 | 2,231,755.4081 | ||
People and Blog | −9296.6199 | 769,307.71805 | 1.000 | −2,279,218.8824 | 2,260,625.6425 | ||
News and Politics | −159,132.5345 | 794,491.92076 | 1.000 | −2,503,363.4007 | 2,185,098.3318 | ||
Education and Science | −33,841.3644 | 814,627.61193 | 1.000 | −2,437,484.6772 | 2,369,801.9483 | ||
Like Count | Entertainment | Sport | 7398.2209 | 4,289.68349 | 0.599 | −5258.9355 | 20,055.3772 |
Travel and Event | 7533.5302 * | 1450.43464 | 0.000 | 3253.8723 | 11,813.1881 | ||
People and Blog | 7349.8283 * | 1571.27131 | 0.000 | 2713.6292 | 11,986.0273 | ||
News and Politics | 5294.6672 | 1915.15712 | 0.083 | −356.2027 | 10,945.5370 | ||
Education and Science | 6652.8486 * | 2157.35912 | 0.034 | 287.3367 | 13,018.3606 | ||
Others | 7297.0814 | 4202.77872 | 0.592 | −5103.6534 | 19,697.8162 | ||
Sport | Entertainment | −7398.2209 | 4289.68349 | 0.599 | −20,055.3772 | 5258.9355 | |
Travel and Event | 135.3094 | 4288.36139 | 1.000 | −12,517.9460 | 12,788.5647 | ||
People and Blog | −48.3926 | 4330.72469 | 1.000 | −12,826.6453 | 12,729.8600 | ||
News and Politics | −2103.5537 | 4467.00230 | 0.999 | −15,283.9076 | 11,076.8002 | ||
Education and Science | −745.3722 | 4576.07705 | 1.000 | −14,247.5625 | 12,756.8180 | ||
Others | −101.1395 | 5826.63125 | 1.000 | −17,293.2197 | 17,090.9407 | ||
Travel & Event | Entertainment | −7533.5302 * | 1450.43464 | 0.000 | −11,813.1881 | −3253.8723 | |
Sport | −135.3094 | 4288.36139 | 1.000 | −12,788.5647 | 12,517.9460 | ||
People and Blog | −183.7020 | 1567.65829 | 1.000 | −4809.2404 | 4441.8365 | ||
News and Politics | −2238.8631 | 1912.19397 | 0.905 | −7880.9898 | 3403.2637 | ||
Education and Science | −880.6816 | 2154.72906 | 1.000 | −7238.4333 | 5477.0701 | ||
Others | −236.4488 | 4201.42928 | 1.000 | −12,633.2019 | 12,160.3043 | ||
People and Blog | Entertainment | −7349.8283 * | 1571.27131 | 0.000 | −11,986.0273 | −2713.6292 | |
Sport | 48.3926 | 4330.72469 | 1.000 | −12,729.8600 | 12,826.6453 | ||
Travel and Event | 183.7020 | 1567.65829 | 1.000 | −4441.8365 | 4809.2404 | ||
News and Politics | −2055.1611 | 2005.39738 | 0.948 | −7972.2942 | 3861.9720 | ||
Education & Science | −696.9796 | 2237.85393 | 1.000 | −7299.9999 | 5906.0406 | ||
Others | −52.7469 | 4244.66028 | 1.000 | −12,577.0575 | 12,471.5638 | ||
News and Politics | Entertainment | −5294.6672 | 1915.15712 | 0.083 | −10,945.5370 | 356.2027 | |
Sport | 2103.5537 | 4467.00230 | 0.999 | −11,076.8002 | 15,283.9076 | ||
Travel and Event | 2238.8631 | 1912.19397 | 0.905 | −3403.2637 | 7880.9898 | ||
People and Blog | 2055.1611 | 2005.39738 | 0.948 | −3861.9720 | 7972.2942 | ||
Education and Science | 1358.1814 | 2491.36980 | 0.998 | −5992.8637 | 8709.2266 | ||
Others | 2002.4142 | 4383.61428 | 0.999 | −10,931.8946 | 14,936.7231 | ||
Education and Science | Entertainment | −6652.8486 * | 2157.35912 | 0.034 | −13,018.3606 | −287.3367 | |
Sport | 745.3722 | 4576.07705 | 1.000 | −12,756.8180 | 14,247.5625 | ||
Travel and Event | 880.6816 | 2154.72906 | 1.000 | −5477.0701 | 7238.4333 | ||
People and Blog | 696.9796 | 2237.85393 | 1.000 | −5906.0406 | 7299.9999 | ||
News and Politics | −1358.1814 | 2491.36980 | 0.998 | −8709.2266 | 5992.8637 | ||
Others | 644.2328 | 4494.71308 | 1.000 | −12,617.8846 | 13,906.3502 | ||
Others | Entertainment | −7297.0814 | 4202.77872 | 0.592 | −19697.8162 | 5103.6534 | |
Sport | 101.1395 | 5826.63125 | 1.000 | −17,090.9407 | 17,293.2197 | ||
Travel and Event | 236.4488 | 4201.42928 | 1.000 | −12,160.3043 | 12,633.2019 | ||
People and Blog | 52.7469 | 4244.66028 | 1.000 | −12,471.5638 | 12,577.0575 | ||
News and Politics | −2002.4142 | 4383.61428 | 0.999 | −14,936.7231 | 10,931.8946 | ||
Education and Science | −644.2328 | 4494.71308 | 1.000 | −13,906.3502 | 12,617.8846 | ||
Comment Count | Entertainment | Sport | 399.7862 | 354.55697 | 0.920 | −646.3710 | 1445.9433 |
Travel and Event | 406.6881 * | 119.88337 | 0.012 | 52.9598 | 760.4164 | ||
People and Blog | 365.1875 | 129.87093 | 0.074 | −18.0102 | 748.3851 | ||
News and Politics | −106.2006 | 158.29427 | 0.994 | −573.2643 | 360.8631 | ||
Education and Science | 321.3022 | 178.31309 | 0.547 | −204.8291 | 847.4335 | ||
Others | 312.9086 | 347.37400 | 0.973 | −712.0544 | 1337.8717 | ||
Sport | Entertainment | −399.7862 | 354.55697 | 0.920 | −1445.9433 | 646.3710 | |
Travel and Event | 6.9019 | 354.44770 | 1.000 | −1038.9328 | 1052.7366 | ||
People and Blog | −34.5987 | 357.94917 | 1.000 | −1090.7649 | 1021.5675 | ||
News and Politics | −505.9868 | 369.21298 | 0.818 | −1595.3880 | 583.4144 | ||
Education and Science | −78.4840 | 378.22838 | 1.000 | −1194.4861 | 1037.5181 | ||
Others | −86.8775 | 481.59095 | 1.000 | −1507.8616 | 1334.1065 | ||
Travel and Event | Entertainment | −406.6881 * | 119.88337 | 0.012 | −760.4164 | −52.9598 | |
Sport | −6.9019 | 354.44770 | 1.000 | −1052.7366 | 1038.9328 | ||
People and Blog | −41.5006 | 129.57231 | 1.000 | −423.8172 | 340.8159 | ||
News and Politics | −512.8887 * | 158.04935 | 0.020 | −979.2297 | −46.5477 | ||
Education and Science | −85.3859 | 178.09571 | 0.999 | −610.8757 | 440.1040 | ||
Others | −93.7794 | 347.26246 | 1.000 | −1118.4134 | 930.8545 | ||
People and Blog | Entertainment | −365.1875 | 129.87093 | 0.074 | −748.3851 | 18.0102 | |
Sport | 34.5987 | 357.94917 | 1.000 | −1021.5675 | 1090.7649 | ||
Travel and Event | 41.5006 | 129.57231 | 1.000 | −340.8159 | 423.8172 | ||
News and Politics | −471.3881 | 165.75293 | 0.067 | −960.4593 | 17.6832 | ||
Education and Science | −43.8853 | 184.96626 | 1.000 | −589.6474 | 501.8769 | ||
Others | −52.2788 | 350.83565 | 1.000 | −1087.4558 | 982.8982 | ||
News and Politics | Entertainment | 106.2006 | 158.29427 | 0.994 | −360.8631 | 573.2643 | |
Sport | 505.9868 | 369.21298 | 0.818 | −583.4144 | 1595.3880 | ||
Travel and Event | 512.8887 * | 158.04935 | 0.020 | 46.5477 | 979.2297 | ||
People and Blog | 471.3881 | 165.75293 | 0.067 | −17.6832 | 960.4593 | ||
Education and Science | 427.5028 | 205.92021 | 0.367 | −180.0862 | 1035.0918 | ||
Others | 419.1092 | 362.32067 | 0.910 | −649.9555 | 1488.1740 | ||
Education and Science | Entertainment | −321.3022 | 178.31309 | 0.547 | −847.4335 | 204.8291 | |
Sport | 78.4840 | 378.22838 | 1.000 | −1037.5181 | 1194.4861 | ||
Travel and Event | 85.3859 | 178.09571 | 0.999 | −440.1040 | 610.8757 | ||
People and Blog | 43.8853 | 184.96626 | 1.000 | −501.8769 | 589.6474 | ||
News and Politics | −427.5028 | 205.92021 | 0.367 | −1035.0918 | 180.0862 | ||
Others | −8.3936 | 371.50337 | 1.000 | −1104.5528 | 1087.7657 | ||
Others | Entertainment | −312.9086 | 347.37400 | 0.973 | −1337.8717 | 712.0544 | |
Sport | 86.8775 | 481.59095 | 1.000 | −1334.1065 | 1507.8616 | ||
Travel and Event | 93.7794 | 347.26246 | 1.000 | −930.8545 | 1118.4134 | ||
People and Blog | 52.2788 | 350.83565 | 1.000 | −982.8982 | 1,087.4558 | ||
News and Politics | −419.1092 | 362.32067 | 0.910 | −1488.1740 | 649.9555 | ||
Education and Science | 8.3936 | 371.50337 | 1.000 | −1,087.7657 | 1,104.5528 |
Graph Type | Directed |
---|---|
Vertices | 22,677 |
Unique Edges | 20,867 |
Edges With Duplicates | 4367 |
Total Edges | 25,234 |
Self-Loops | 108 |
Reciprocated Vertex Pair Ratio | 4.45474 × 10−5 |
Reciprocated Edge Ratio | 8.90908 × 10−5 |
Connected Components | 361 |
Single-Vertex Connected Components | 12 |
Maximum Vertices in a Connected Component | 15,492 |
Maximum Edges in a Connected Component | 17,381 |
Maximum Geodesic Distance (Diameter) | 30 |
Average Geodesic Distance | 10.042648 |
Graph Density | 4.36561 × 10−5 |
Modularity | 0.875765 |
Keywords in French (English) | Contextual Words | Number of Times That the Contextual Words Appear on the Left-Hand Side of the French Keywords | Number of Times That the Contextual Words Appear on the Right-Hand Side of the French Keywords | Total Frequency | Correlation Score between French Keywords and Contextual Words |
---|---|---|---|---|---|
Merci (Thanks) | Beaucoup (a lot) | 19 | 166 | 185 | 163.550 |
Vidéo (video) | 104 | 186 | 290 | 105.467 | |
Avoir (have) | 79 | 131 | 210 | 80.983 | |
Seigneur (lord) | 22 | 76 | 98 | 73.9983 | |
Amen (amen) | 63 | 20 | 83 | 42.550 | |
Infiniment (infinitively) | 3 | 43 | 46 | 42.167 | |
Grand (great or big) | 45 | 5 | 50 | 41.867 | |
Bon (good) | 60 | 53 | 113 | 41.067 | |
Beau (beautiful) | 39 | 76 | 115 | 39/050 | |
Chef (Chief) | 11 | 39 | 50 | 37.893 | |
Vidéo (video) | Super (super) | 120 | 21 | 151 | 121.833 |
Merci (thanks) | 187 | 104 | 291 | 105.667 | |
Avoir (have) | 118 | 143 | 261 | 81.383 | |
Bon (good) | 79 | 27 | 106 | 74.283 | |
Beau (beautiful) | 75 | 15 | 90 | 65.583 | |
Faire (make or do) | 86 | 47 | 133 | 49.367 | |
Superbe (superb) | 45 | 11 | 56 | 47.183 | |
Excellent (excellent) | 35 | 10 | 45 | 35.187 | |
Voir (watch or see) | 47 | 17 | 64 | 23.300 | |
Adorer (adore) | 42 | 16 | 58 | 23.050 | |
Pouvoir (can) | Avoir (have) | 136 | 65 | 201 | 131.117 |
Faire (make or do) | 18 | 133 | 151 | 102.200 | |
Dire (say or tell) | 12 | 59 | 71 | 41.633 | |
Voir (watch or see) | 13 | 44 | 57 | 33.517 | |
Aller (go) | 13 | 23 | 36 | 20.267 | |
Mettre (put) | 4 | 22 | 25 | 17.983 | |
Vidéo (video) | 16 | 29 | 45 | 13.983 | |
Regarder (watch or look) | 6 | 14 | 20 | 12.900 | |
Trouver (find) | 1 | 18 | 19 | 12.417 | |
Parler (talk or speak) | 5 | 13 | 18 | 10.350 | |
Bon (good) | Très (very) | 200 | 26 | 226 | 184.333 |
Vidéo (video) | 30 | 78 | 108 | 75.483 | |
Film (film) | 18 | 64 | 82 | 63.050 | |
Continuation (continuation) | 3 | 48 | 51 | 48.522 | |
Merci (thanks) | 54 | 62 | 116 | 41.933 | |
Humeur (humour) | 0 | 41 | 41 | 41.000 | |
Journée (day or daytime) | 2 | 39 | 41 | 39.083 | |
Courage (courage) | 5 | 38 | 43 | 37.317 | |
Moment (moment) | 2 | 26 | 29 | 25.483 | |
Travail (job or work) | 3 | 27 | 30 | 25.017 | |
Beau (beautiful) | Très (very) | 149 | 22 | 171 | 143.533 |
Vidéo (video) | 14 | 76 | 90 | 65.533 | |
Trop (too) | 45 | 4 | 49 | 40.550 | |
Merci (thanks) | 76 | 41 | 117 | 39.450 | |
Film (film) | 10 | 17 | 27 | 18.600 | |
Image (image or photo or picture) | 2 | 19 | 21 | 18.167 | |
Français (French) | 3 | 17 | 20 | 17.283 | |
Pays (country) | 2 | 16 | 18 | 15.783 | |
Histoire (history) | 9 | 15 | 24 | 14.917 | |
Super (super) | 16 | 7 | 23 | 14.876 | |
Aimer (love) | Bien (well) | 23 | 64 | 87 | 81.050 |
Beaucoup (much) | 15 | 53 | 68 | 63.400 | |
Vidéo (video) | 15 | 28 | 43 | 13.633 | |
Film (film) | 7 | 25 | 32 | 11.950 | |
Savoir (know) | 3 | 13 | 16 | 10.983 | |
Voir (watch or see) | 3 | 13 | 16 | 7.783 | |
Merci (thanks) | 8 | 20 | 28 | 9.317 | |
Aller (go) | 5 | 9 | 14 | 6.733 | |
Histoire (history) | 4 | 15 | 19 | 6.540 | |
Chine (China) | 3 | 10 | 13 | 4.533 | |
Film (film) | Bon (good) | 64 | 17 | 81 | 62.800 |
Voir (watch) | 16 | 46 | 62 | 25.167 | |
Beau (beautiful) | 17 | 10 | 27 | 18.600 | |
Super (super) | 18 | 6 | 24 | 16.183 | |
Merci (thanks) | 11 | 19 | 30 | 14.883 | |
Aimer (love) | 25 | 7 | 32 | 11.950 | |
Regarder (watch) | 21 | 5 | 26 | 11.333 | |
Adorer (adore) | 18 | 9 | 27 | 10.250 | |
Meilleur (better) | 13 | 10 | 23 | 9.433 | |
Magnifique (magnificent) | 15 | 5 | 20 | 9.350 | |
Chine (China) | Muraille (wall) | 64 | 1 | 65 | 32.083 |
Aller (go) | 21 | 7 | 28 | 11.850 | |
Voir | 11 | 10 | 21 | 8.533 | |
Grand (great or big) | 16 | 5 | 21 | 7.017 | |
Vif (live or vivid or bright) | 8 | 3 | 11 | 5.700 | |
Histoire (history) | 15 | 2 | 17 | 5.633 | |
Bon (good) | 2 | 11 | 13 | 5.317 | |
Merci (thanks) | 1 | 12 | 13 | 4.767 | |
Pays (country) | 6 | 10 | 16 | 4.717 | |
Aimer (louve) | 10 | 3 | 13 | 4.533 | |
Super (super) | Vidéo (video) | 30 | 116 | 146 | 116.833 |
Intéressant (interesting) | 3 | 45 | 48 | 42.000 | |
Merci (thanks) | 30 | 48 | 78 | 32.050 | |
Bien (well) | 16 | 19 | 35 | 18.933 | |
Cool (cool) | 3 | 17 | 20 | 18.400 | |
Film (film) | 6 | 18 | 24 | 16.183 | |
Beau (beautiful) | 7 | 16 | 23 | 14.867 | |
Bon (good) | 14 | 14 | 28 | 14.217 | |
Episode (episode) | 2 | 12 | 14 | 12.583 | |
Format (format) | 5 | 13 | 18 | 11.750 | |
Grand (great or big) | Muraille (wall) | 0 | 59 | 59 | 56.200 |
Merci (thanks) | 6 | 49 | 55 | 46.867 | |
Chose (thing) | 1 | 13 | 14 | 13.200 | |
Bravo (bravo) | 3 | 14 | 17 | 12.900 | |
Pays (country) | 3 | 15 | 18 | 11.783 | |
Chine (China) | 5 | 16 | 21 | 7.017 | |
Ville (city) | 3 | 7 | 10 | 6.783 | |
Homme (people or man) | 1 | 6 | 7 | 6.250 | |
Maître (master) | 1 | 6 | 7 | 6.200 | |
Beau (beautiful) | 5 | 8 | 13 | 5.183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Li, R.Y.M.; Wareewanich, T. The Cultivation Effect of Architectural Heritage YouTube Videos on Perceived Destination Image. Buildings 2023, 13, 508. https://doi.org/10.3390/buildings13020508
Song L, Li RYM, Wareewanich T. The Cultivation Effect of Architectural Heritage YouTube Videos on Perceived Destination Image. Buildings. 2023; 13(2):508. https://doi.org/10.3390/buildings13020508
Chicago/Turabian StyleSong, Lingxi, Rita Yi Man Li, and Thitinant Wareewanich. 2023. "The Cultivation Effect of Architectural Heritage YouTube Videos on Perceived Destination Image" Buildings 13, no. 2: 508. https://doi.org/10.3390/buildings13020508
APA StyleSong, L., Li, R. Y. M., & Wareewanich, T. (2023). The Cultivation Effect of Architectural Heritage YouTube Videos on Perceived Destination Image. Buildings, 13(2), 508. https://doi.org/10.3390/buildings13020508