Information Exchange between Construction and Manufacturing Industries to Achieve Circular Economy: A Literature Review and Interviews with Swedish Experts
Abstract
:1. Introduction
2. Background
2.1. Circular Economy
2.2. The Construction and Manufacturing Industries
2.3. Circular Economy in the Construction and Manufacturing Industries
- Refuse: Automation technology solution providers (ATSPs) identify no need for automation (now/at this part of the production).
- Rethink: ATSPs coach the customer to increase productivity; for example, use equipment and resources more intensively/efficiently.
- Reduce: ATSPs coach the customer to utilize the machines more smartly to achieve higher energy efficiency and less investment in new machinery.
- Reuse: ATSPs design automation solutions with a modular approach for components, virtual models, machinery, and subsystems.
- Repair: ATSPs deliver a service or skill for maintenance of the installed base and renovation of machinery so that it can be used with its original function.
- Refurbish: ATSPs sell a service for upgrading machinery and solutions, such as new IT control systems.
- Remanufacture: ATSPs reflect and reuse components from discarded products in new settings; for example, old casting platforms in new stamping machines.
- Repurpose: ATSPs reuse virtual models and subsystems in the development of new automation solutions with new purposes.
- Recycle: ATSPs manage old machinery and solutions in new applications.
- Recover: ATSPs use their skills and ability to develop automation solutions for waste management within the customers’ production system for energy recovery; that is, they contribute to the customers’ sustainability KPIs.
- Resilience: ATSPs manage societal change while continuously maintaining adaptation to emerging technologies (for example, automation, production technologies, and digitalization) and the capability to use for changing customer needs through open manufacturing and design flexible automation solutions that can be reconfigurable related to changes in demands (volume, material, size, geometry, etc.).
3. Methods
4. Results
4.1. Literature Review
4.1.1. 11Rs Framework
4.1.2. Information Exchange Barriers
4.2. Interviews
4.2.1. Theoretical Definition vs. Practical Implementation
“Organizations have the biggest challenge with the change towards CE”(5A)
4.2.2. (No) Strategies of Circular Economy
4.2.3. Information Exchange Barriers
“A development is required around method studies within larger organizations that can guide as it often leads to other smaller organizations following the same strategy. The benefits of the circular economy need to be addressed while spreading knowledge between organizations.”(5A)
5. Discussion
5.1. 11Rs Framework as a CE Strategies
5.2. Different Definitions of Circular Economy
5.3. Barriers within Information Exchange
5.3.1. Lack of Information
5.3.2. Information Management
5.3.3. LD and SW as Possible Solution for a Global Platform
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. A Clean Planet for All a European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Geng, Y.; Sarkis, J.; Bleischwitz, R. Globalize the Circular Economy; Springer NATURE: Berlin, Germany, 2019. [Google Scholar]
- Nordic Council of Ministers Circular Economy in the Nordic Construction Sector: Identification and Assessment of Potential Policy Instruments That Can Accelerate a Transition toward a Circular Economy. Available online: https://www.diva-portal.org/smash/get/diva2:1188884/FULLTEXT01.pdf (accessed on 30 April 2022).
- O’Connor, J.; Nguyen, T.B.T.; Honeyands, T.; Monaghan, B.; O’Dea, D.; Rinklebe, J.; Vinu, A.; Hoang, S.A.; Singh, G.; Kirkham, M.B.; et al. Production, Characterisation, Utilisation, and Beneficial Soil Application of Steel Slag: A Review. J. Hazard Mater. 2021, 419. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, B.; Tanguay, X.; Amor, B.; Imbrogno, A.F. Forest Products and Circular Economy Strategies: A Canadian Perspective. Energies 2022, 15, 673. [Google Scholar] [CrossRef]
- Abdelshafy, A.; Walther, G. Exploring the Effects of Energy Transition on the Industrial Value Chains and Alternative Resources: A Case Study from the German Federal State of North Rhine-Westphalia (NRW). Resour. Conserv. Recycl. 2022, 177, 105992. [Google Scholar] [CrossRef]
- NoParast, M.; Hematian, M.; Ashrafian, A.; Amiri, M.J.T.; AzariJafari, H. Development of a Non-Dominated Sorting Genetic Algorithm for Implementing Circular Economy Strategies in the Concrete Industry. Sustain. Prod. Consum. 2021, 27, 933–946. [Google Scholar] [CrossRef]
- Mulvaney, D.; Richards, R.M.; Bazilian, M.D.; Hensley, E.; Clough, G.; Sridhar, S. Progress towards a Circular Economy in Materials to Decarbonize Electricity and Mobility. Renew. Sustain. Energy Rev. 2021, 137, 110604. [Google Scholar] [CrossRef]
- de Arquer, M.; Ponte, B.; Pino, R. Examining the Balance between Efficiency and Resilience in Closed-Loop Supply Chains. Cent. Eur. J. Oper. Res. 2022, 30, 1307–1336. [Google Scholar] [CrossRef]
- Smol, M.; Kulczycka, J.; Henclik, A.; Gorazda, K.; Wzorek, Z. The Possible Use of Sewage Sludge Ash (SSA) in the Construction Industry as a Way towards a Circular Economy. J. Clean. Prod. 2015, 95, 45–54. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokuge, W.; Aravinthan, T.; Schubel, P. Recycling of Landfill Wastes (Tyres, Plastics and Glass) in Construction—A Review on Global Waste Generation, Performance, Application and Future Opportunities. Resour. Conserv. Recycl. 2021, 173, 105745. [Google Scholar] [CrossRef]
- Vincevica-gaile, Z.; Teppand, T.; Kriipsalu, M.; Krievans, M.; Jani, Y.; Klavins, M.; Hendroko Setyobudi, R.; Grinfelde, I.; Rudovica, V.; Tamm, T.; et al. Towards Sustainable Soil Stabilization in Peatlands: Secondary Raw Materials as an Alternative. Sustainability 2021, 13, 6726. [Google Scholar] [CrossRef]
- Condotta, M.; Zatta, E. Reuse of Building Elements in the Architectural Practice and the European Regulatory Context: Inconsistencies and Possible Improvements. J. Clean. Prod. 2021, 318, 128413. [Google Scholar] [CrossRef]
- Durán-Romero, G.; López, A.M.; Beliaeva, T.; Ferasso, M.; Garonne, C.; Jones, P. Bridging the Gap between Circular Economy and Climate Change Mitigation Policies through Eco-Innovations and Quintuple Helix Model. Technol. Forecast. Soc. Chang. 2020, 160, 120246. [Google Scholar] [CrossRef]
- Gorecki, J. Circular Economy Maturity in Construction Companies. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 112090. [Google Scholar] [CrossRef]
- de los Rios, I.C.; Charnley, F.J.S. Skills and Capabilities for a Sustainable and Circular Economy: The Changing Role of Design. J. Clean. Prod. 2017, 160, 109–122. [Google Scholar] [CrossRef]
- Kobza, N.; Schuster, A. Building a Responsible Europe—The Value of Circular Economy. IFAC-PapersOnLine 2016, 49, 111–116. [Google Scholar] [CrossRef]
- Fernández, J.E. Resource Consumption of New Urban Construction in China. J. Ind. Ecol. 2007, 11, 99–115. [Google Scholar] [CrossRef]
- Çimen, Ö. Construction and Built Environment in Circular Economy: A Comprehensive Literature Review. J. Clean. Prod. 2021, 305, 127180. [Google Scholar] [CrossRef]
- Chen, Q.; Feng, H.; Garcia de Soto, B. Revamping Construction Supply Chain Processes with Circular Economy Strategies: A Systematic Literature Review. J. Clean. Prod. 2022, 335, 130240. [Google Scholar] [CrossRef]
- Mhatre, P.; Panchal, R.; Singh, A.; Bibyan, S. A Systematic Literature Review on the Circular Economy Initiatives in the European Union. Sustain. Prod. Consum. 2021, 26, 187–202. [Google Scholar] [CrossRef]
- Dams, B.; Maskell, D.; Shea, A.; Allen, S.; Driesser, M.; Kretschmann, T.; Walker, P.; Emmitt, S. A Circular Construction Evaluation Framework to Promote Designing for Disassembly and Adaptability. J. Clean. Prod. 2021, 316, 128122. [Google Scholar] [CrossRef]
- Eberhardt, L.C.M.; Birgisdottir, H.; Birkved, M. Potential of Circular Economy in Sustainable Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 092051. [Google Scholar] [CrossRef]
- O’Connor, K.E. Microbiology Challenges and Opportunities in the Circular Economy. Microbiology 2021, 167, 001026. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, N.; Harrington, T.S.; Srai, J.S. Digital Supply Network Design: A Circular Economy 4.0 Decision-Making System for Real-World Challenges. Prod. Plan. Control. 2021, 1–26. [Google Scholar] [CrossRef]
- López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. The Circular Economy in the Construction and Demolition Waste Sector – A Review and an Integrative Model Approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- Paletta, A.; Leal Filho, W.; Balogun, A.L.; Foschi, E.; Bonoli, A. Barriers and Challenges to Plastics Valorisation in the Context of a Circular Economy: Case Studies from Italy. J. Clean. Prod. 2019, 241, 118149. [Google Scholar] [CrossRef]
- Savini, F. The Economy That Runs on Waste: Accumulation in the Circular City. J. Environ. Policy Plan. 2019, 21, 675–691. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Jahanzaib, M. Sustainable Manufacturing-An Overview and a Conceptual Framework for Continuous Transformation and Competitiveness. Adv. Prod. Eng. Manag. 2018, 13, 237–253. [Google Scholar] [CrossRef]
- Sinclair, M.; Sheldrick, L.; Moreno, M.; Dewberry, E. Consumer Intervention Mapping-A Tool for Designing Future Product Strategies within Circular Product Service Systems. Sustainability 2018, 10, 2088. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, P.; Wilson, P.; Walsh, C.; Hodgson, P. The Role of Material Efficiency to Reduce CO2 Emissions during Ship Manufacture: A Life Cycle Approach. Mar. Policy 2017, 75, 227–237. [Google Scholar] [CrossRef]
- Joustra, J.; Flipsen, B.; Balkenende, R. Structural Reuse of High End Composite Products: A Design Case Study on Wind Turbine Blades. Resour. Conserv. Recycl. 2021, 167, 105393. [Google Scholar] [CrossRef]
- González Chávez, C.A.; Romero, D.; Rossi, M.; Luglietti, R.; Johansson, B. Circular Lean Product-Service Systems Design: A Literature Review, Framework Proposal and Case Studies. Procedia CIRP 2019, 83, 419–424. [Google Scholar] [CrossRef]
- Ellen Macarthur Foundation. Towards a Circular Economy: Business Rationale for an Accelerated Transition. 2015. Available online: https://ellenmacarthurfoundation.org/towards-a-circular-economy-business-rationale-for-an-accelerated-transition (accessed on 30 June 2022).
- Ellen Macarthur Foundation. Towards the Circular Economy: Opportunities for the Consumer Goods Sector. 2013. Available online: https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed on 30 June 2022).
- Ellen MacArthur Foundation Towards the Circular Economy Vol.3: Accelerating the Scale-Up across Global Supply Chains. 2014. Available online: https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-3-accelerating-the-scale-up-across-global (accessed on 30 June 2022).
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy – A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.; Ashton, W.; Teixeira, C.; Lyon, E.; Pereira, J. Infrastructuring the Circular Economy. Energies 2020, 13, 1805. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Rönnbäck, A.Ö. Small Automation Technology Solution Providers: Facilitators for Sustainable Manufacturing. Procedia CIRP 2021, 104, 677–682. [Google Scholar] [CrossRef]
- Sustainable Brand Index. Official Report 2022: Europe’s Largest Brand Study on Sustainability. 2022. Available online: https://ss-usa.s3.amazonaws.com/c/308477602/media/73236231eae9729a454005671198543/SE_Official%20Report%202022_compressed.pdf (accessed on 21 December 2021).
- Boverket Dessa Byggnader Ska Klimatdeklareras. 2021. Available online: https://www.boverket.se/sv/klimatdeklaration/omfattas/ska-deklareras (accessed on 21 December 2021).
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular Economy in the Building and Construction Sector: A Scientific Evolution Analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Piscitelli, G.; Ferazzoli, A.; Petrillo, A.; Cioffi, R.; Parmentola, A.; Travaglioni, M. Circular Economy Models in the Industry 4.0 Era: A Review of the Last Decade. Procedia Manuf. 2020, 42, 227–234. [Google Scholar] [CrossRef]
- Benachio, G.L.F.; Freitas, M.D.C.D.; Tavares, S.F. Circular Economy in the Construction Industry: A Systematic Literature Review. J. Clean. Prod. 2020, 260, 121046. [Google Scholar] [CrossRef]
- Afshari, A.R.; Górecki, J.; Afshari, R.; Circular Economy in Construction Sector. Construction Management View Project ICT Project Manager Selection. 2019. Available online: https://www.researchgate.net/publication/335701046 (accessed on 21 December 2021).
- Pomponi, F.; Moncaster, A. Circular Economy for the Built Environment: A Research Framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Blessing, L.T.M.; Chakrabarti, A. DRM, a Design Research Methodology; Springer: London, UK, 2009. [Google Scholar] [CrossRef]
- Booth, A.; Papaioannou, D.; Sutton, A.A. Systematic Approaches to a Successful Literature Review. 2016. Available online: https://www.researchgate.net/publication/235930866 (accessed on 20 December 2021).
- United Nations. Sustainable Development Goals Knowledge Platform; Voluntary National Review 2021; United Nations: Stockholm, Sweden, 2021. [Google Scholar]
- Valusyte, R. Circular Design Strategies in Manufacturing SME’s: From Material to the Meaning and Dematerialization. In Proceedings of the 2021 IEEE International Conference on Technology and Entrepreneurship (ICTE), Kaunas, Lithuania, 24–27 August 2021. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ncube, A.; D’ambrosio, G.; Passaro, R.; Ulgiati, S. Potential Energy Savings from Circular Economy Scenarios Based on Construction and Agri-Food Waste in Italy. Energies 2021, 14, 8561. [Google Scholar] [CrossRef]
- Di, J.; Reck, B.K.; Miatto, A.; Graedel, T.E. United States Plastics: Large Flows, Short Lifetimes, and Negligible Recycling. Resour. Conserv. Recycl. 2021, 167, 105440. [Google Scholar] [CrossRef]
- Avadanei, M.; Olaru, S.; Ionescu, I.; Florea, A.; Curteza, A.; Loghin, E.C.; Dulgheriu, I.; Radu, D.C. Clothing Development Process towards a Circular Model. Ind. Text. 2021, 72, 89–96. [Google Scholar] [CrossRef]
- la Scalia, G.; Saeli, M.; Adelfio, L.; Micale, R. From lab to industry: Scaling up green geopolymeric mortars manufacturing towards circular economy. J. Clean. Prod. 2021, 316, 128164. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Yang, X.; Miranda-Xicotencatl, B.; Sprecher, B.; Di Maio, F.; Zhong, X.; Tukker, A. Upgrading Construction and Demolition Waste Management from Downcycling to Recycling in the Netherlands. J. Clean. Prod. 2020, 266, 121718. [Google Scholar] [CrossRef]
- Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L.; Colling, M. Strategies for Applying the Circular Economy to Prefabricated Buildings. Buildings 2018, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Vladimirov, V.; Bica, I. Methodology and calculation model for recycling of composite construction products. E3S Web Conf. 2019, 85, 07016. [Google Scholar] [CrossRef]
- Dong, D.; Espinoza, L.A.T.; Loibl, A.; Pfaff, M.; Tukker, A.; van der Voet, E. Scenarios for anthropogenic copper demand and supply in China: Implications of a scrap import ban and a circular economy transition. Resour. Conserv. Recycl. 2020, 161, 104943. [Google Scholar] [CrossRef]
- Ali, A.K.; Wang, Y.; Alvarado, J.L. Facilitating Industrial Symbiosis to Achieve Circular Economy Using Value-Added by Design: A Case Study in Transforming the Automobile Industry Sheet Metal Waste-Flow into Voronoi Facade Systems. J. Clean. Prod. 2019, 234, 1033–1044. [Google Scholar] [CrossRef]
- Vitale, F.; Nicolella, M. Mortars with recycled aggregates from building-related processes: A ‘four-step’ methodological proposal for a review. Sustainability 2021, 13, 2756. [Google Scholar] [CrossRef]
- Azcárate-Aguerre, J.F.; den Heijer, A.; Klein, T. Integrated facades as a Product-Service System—Business process innovation to accelerate integral product implementation. J. Facade Des. Eng. 2018, 6, 41–56. [Google Scholar] [CrossRef]
- Valle, A.D.; Atta, N.; Macrì, L.; Ratti, S. Circularity within the Construction Sector: Organisational Models Based on Re-Manufacturing. TECHNE 2021, 22, 140–148. [Google Scholar] [CrossRef]
- Rabbat, C.; Awad, S.; Villot, A.; Rollet, D.; Andrès, Y. Sustainability of Biomass-Based Insulation Materials in Buildings: Current Status in France, End-of-Life Projections and Energy Recovery Potentials. Renew. Sustain. Energy Rev. 2022, 156, 111962. [Google Scholar] [CrossRef]
- Mottese, A.F.; Parisi, F.; Marciano, G.; Giacobello, F.; Franzone, M.; Sabatino, G.; Di Bella, M.; Italiano, F.; Tripodo, A. A Flipped Classroom Experience: Towards the Knowledge of New Ecofriendly Materials Named “Geopolymers”. AAPP Atti Della Accad. Peloritana Dei Pericolanti Cl. Di Sci. Fis. Mat. E Nat. 2021, 99, A35. [Google Scholar] [CrossRef]
- Rossetti, M.; Bin, A. Development of Soundproofing and Sound-Absorbing Bituminous Membranes Containing Recycled Materials. TECHNE 2018, 16, 281–288. [Google Scholar] [CrossRef]
- Domenech, T.; Bleischwitz, R.; Doranova, A.; Panayotopoulos, D.; Roman, L. Mapping Industrial Symbiosis Development in Europe_ Typologies of Networks, Characteristics, Performance and Contribution to the Circular Economy. Resour. Conserv. Recycl. 2019, 141, 76–98. [Google Scholar] [CrossRef]
- Viscuso, S. Coding the Circularity. Design for the Disassembly and Reuse of Building Components. TECHNE 2021, 22, 271–278. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, L.; Jia, F.; Xu, Z. Complementarity of Circular Economy Practices: An Empirical Analysis of Chinese Manufacturers. Int. J. Prod. Res. 2019, 57, 6369–6384. [Google Scholar] [CrossRef]
- Mesa, J.; Pierce, J.; Zuñiga, J.; Esparragoza, I.; Maury, H. Sustainable Manufacture of Scalable Product Families Based on Modularity. CIRP J. Manuf. Sci. Technol. 2021, 35, 80–95. [Google Scholar] [CrossRef]
- Geldermans, B.; Tenpierik, M.; Luscuere, P. Circular and Flexible Indoor Partitioning-a Design Conceptualization of Innovative Materials and Value Chains. Buildings 2019, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Pedone, G.; Beregi, R.; Kis, K.B.; Colledani, M. Enabling Cross-Sectorial, Circular Economy Transition in SME via Digital Platform Integrated Operational Services. Procedia Manuf. 2020, 54, 70–75. [Google Scholar] [CrossRef]
- Alonso-Muñoz, S.; González-Sánchez, R.; Siligardi, C.; García-Muiña, F.E. Building Exploitation Routines in the Circular Supply Chain to Obtain Radical Innovations. Resources 2021, 10, 22. [Google Scholar] [CrossRef]
- Pasco, J.; Lei, Z.; Aranas, C. Additive Manufacturing in Off-Site Construction: Review and Future Directions. Buildings 2022, 12, 53. [Google Scholar] [CrossRef]
- Elmaraghy, A.; Voordijk, H.; Marzouk, M. An Exploration of BIM and Lean Interaction in Optimizing Demolition Projects. In Proceedings of the 26th Annual Conference of the International Group for Lean Construction: Evolving Lean Construction Towards Mature Production Management Across Cultures and Frontiers, Chennai, India, 18–20 July 2018; Volume 1, pp. 112–122. [Google Scholar] [CrossRef] [Green Version]
- Azcarate-Aguerre, J.F.; Klein, T.; Konstantinou, T.; Veerman, M. Façades-as-a-Service: The Role of Technology in the Circular Servitisation of the Building Envelope. Appl. Sci. 2022, 12, 1267. [Google Scholar] [CrossRef]
- Quina, M.J.; Bontempi, E.; Bogush, A.; Schlumberger, S.; Weibel, G.; Braga, R.; Funari, V.; Hyks, J.; Rasmussen, E.; Lederer, J. Technologies for the Management of MSW Incineration Ashes from Gas Cleaning: New Perspectives on Recovery of Secondary Raw Materials and Circular Economy. Sci. Total Environ. 2018, 635, 526–542. [Google Scholar] [CrossRef] [PubMed]
- Heesbeen, C.; Prieto, A. Archetypical CBMs in Construction and a Translation to Industrialized Manufacture. Sustainability 2020, 12, 1572. [Google Scholar] [CrossRef] [Green Version]
- Santoyo-Castelazo, E.; Solano-Olivares, K.; Martínez, E.; García, E.O.; Santoyo, E. Life Cycle Assessment for a Grid-Connected Multi-Crystalline Silicon Photovoltaic System of 3 KWp: A Case Study for Mexico. J. Clean. Prod. 2021, 316, 128314. [Google Scholar] [CrossRef]
- Schweiker, M.; Endres, E.; Gosslar, J.; Hack, N.; Hildebrand, L.; Creutz, M.; Klinge, A.; Kloft, H.; Knaack, U.; Mehnert, J.; et al. Ten Questions Concerning the Potential of Digital Production and New Technologies for Contemporary Earthen Constructions. Build. Environ. 2021, 206, 108240. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Dasu, J.; Murthy, Y.R.; Kapure, G.; Pal, A.R.; Filippov, L.O. Utilisation Perspective on Water Quenched and Air-Cooled Blast Furnace Slags. J. Clean. Prod. 2020, 262, 121354. [Google Scholar] [CrossRef]
- Balea, A.; Fuente, E.; Monte, M.C.; Blanco, A.; Negro, C. Recycled Fibers for Sustainable Hybrid Fiber Cement Based Material: A Review. Materials 2021, 14, 2408. [Google Scholar] [CrossRef]
- Kvadsheim, N.P.; Nujen, B.B.; Mwesiumo, D. The Most Critical Decisions in Manufacturing: Implications for a Circular Economy. In IFIP Int Conference on Advances in Production Management Systems; Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D., Eds.; Springer: Cham, Switzerland, 2021; Volume 632. [Google Scholar]
- Peceño, B.; Leiva, C.; Alonso-Fariñas, B.; Gallego-Schmid, A. Is Recycling Always the Best Option? Environmental Assessment of Recycling of Seashell as Aggregates in Noise Barriers. Processes 2020, 8, 776. [Google Scholar] [CrossRef]
- Hentges, T.I.; Machado da Motta, E.A.; Valentin de Lima Fantin, T.; Moraes, D.; Fretta, M.A.; Pinto, M.F.; Spiering Böes, J. Circular Economy in Brazilian Construction Industry: Current Scenario, Challenges and Opportunities. Waste Manag. Res. 2021, 40, 642–653. [Google Scholar] [CrossRef]
- Ali, A.K.; Kio, P.N.; Alvarado, J.; Wang, Y. Symbiotic Circularity in Buildings: An Alternative Path for Valorizing Sheet Metal Waste Stream as Metal Building Facades. Waste Biomass Valorization 2020, 11, 7127–7145. [Google Scholar] [CrossRef]
- Schischke, K.; Manessis, D.; Pawlikowski, J.; Kupka, T.; Krivec, T.; Pamminger, R.; Glaser, S.; Podhradsky, G.; Nissen, N.F.; Schneider-Ramelow, M.; et al. Embedding as a key board-level technology for modularization and circular design of smart mobile products: Environmental assessment. In Proceedings of the 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), Pisa, Italy, 16–19 September 2019. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, W.; Guo, Q.; Gao, L.; Zhang, G.; Chen, X. Comparative Life Cycle Assessment of Manufactured and Remanufactured Loading Machines in China. Resour. Conserv. Recycl. 2018, 131, 225–234. [Google Scholar] [CrossRef]
- Concu, G. Sustainability of the Timber Supply Chain on the Island of Sardinia. In International Conference on Computational Science and Its Applications, LNTCS; Springer: Cham, Switzerland, 2020; Volume 12255, pp. 353–367. [Google Scholar]
- Khan, M.A.; West, S.; Wuest, T. Midlife Upgrade of Capital Equipment: A Servitization-Enabled, Value-Adding Alternative to Traditional Equipment Replacement Strategies. CIRP J. Manuf. Sci. Technol. 2020, 29, 232–244. [Google Scholar] [CrossRef]
- Abrishami, S.; Martín-Durán, R. Bim and Dfma: A Paradigm of New Opportunities. Sustainability 2021, 13, 9591. [Google Scholar] [CrossRef]
- Adrodegari, F.; Bacchetti, A.; Saccani, N.; Arnaiz, A.; Meiren, T. The Transition towards Service-Oriented Business Models: A European Survey on Capital Goods Manufacturers. Int. J. Eng. Bus. Manag. 2018, 10. [Google Scholar] [CrossRef]
- Morseletto, P. Targets for a Circular Economy. Resour. Conserv. Recycl. 2020, 153. [Google Scholar] [CrossRef]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. In A New Form of Web Content That Is Meaningful to Computers will Unleash a Revolution of New Possibilities; Scientific American: New York, NY, USA, 2001; Volume 284, pp. 25–30. [Google Scholar]
- Hyland-Wood, D.; Zaidman, M.; Ruth, L. Linked Data: Structured Data on the Web, 1st ed.; Manning: Shelter Island, NY, USA, 2013; ISBN 9781617290398. [Google Scholar]
- Pauwels, P.; Zhang, S.; Lee, Y.-C. Semantic Web Technologies in AEC Industry: A Literature Overview. Autom. Constr. 2017, 73, 145–165. [Google Scholar] [CrossRef]
- Rasmussen, M.H.; Lefrançois, M.; Schneider, G.F.; Pauwels, P. BOT: The Building Topology Ontology of the W3C Linked Building Data Group. Semant. Web 2020, 12, 143–161. [Google Scholar] [CrossRef]
- Werbrouck, J.; Pauwels, P.; Beetz, J.; van Berlo, L. Towards a Decentralised Common Data Environment Using Linked Building Data and the Solid Ecosystem. In Proceedings of the 36th CIB W78 Conference on Information Technology in Construction, Newcastle, UK, 18–20 September 2019; pp. 113–123. [Google Scholar]
- Zhang, C.; Beetz, J.; Weise, M. Interoperable Validation for IFC Building Models Using Open Standards. Electron. J. Inf. Technol. Constr. 2015, 20, 24–39. [Google Scholar]
- Cavka, H.B.; Staub-French, S.; Poirier, E.A. Developing Owner Information Requirements for BIM-Enabled Project Delivery and Asset Management. Autom. Constr. 2017, 83, 169–183. [Google Scholar] [CrossRef]
- Eastman, C.M. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers Designers, Engineers, and Contractors; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kebede, R.; Moscati, A.; Johansson, P. Semantic Web and Linked Data for Information Exchange between the Building and Product Manufacturing Industries: A Literature Review. In Proceedings of the 37th International Conference of CIB W78, São Paulo, Brazil, 18–20 August 2020; pp. 248–265. [Google Scholar] [CrossRef]
Search Concepts | Synonyms |
---|---|
Circular economy | (“Circular economy”) |
Construction industry | (Construction OR Building OR “builging” OR “Construction industr*” OR “construction sector” OR “construction compan*” OR “building industr*” OR “building sector” OR “building compan*”) |
Manufacturing industry | (Manufacturing OR “Manufacturing industr*” OR “Manufacturing Compan*” OR “manufacturing sector*” OR Manufactures OR “Manufacturing Sector*”) |
Products | (Product* OR Component*) |
Respondents Code | Type of Company | Expertise | Experience (Years) |
---|---|---|---|
1A | Facility management | Sustainability expert | 10 |
2A | Digital strategy consultant | Systematics responsible | 40 |
3A | Digital strategy consultant | Sustainability expert | 45 |
3B | Digital strategy consultant | BIM/Information expert | 23 |
4A | Lighting manufacture group | Sustainability expert | 16 |
5A | Digital strategy consultant | BIM/Information expert | 20 |
6A | Lighting manufacture | Sustainability responsible | 3,5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscati, A.; Johansson, P.; Kebede, R.; Pula, A.; Törngren, A. Information Exchange between Construction and Manufacturing Industries to Achieve Circular Economy: A Literature Review and Interviews with Swedish Experts. Buildings 2023, 13, 633. https://doi.org/10.3390/buildings13030633
Moscati A, Johansson P, Kebede R, Pula A, Törngren A. Information Exchange between Construction and Manufacturing Industries to Achieve Circular Economy: A Literature Review and Interviews with Swedish Experts. Buildings. 2023; 13(3):633. https://doi.org/10.3390/buildings13030633
Chicago/Turabian StyleMoscati, Annika, Peter Johansson, Rahel Kebede, Amy Pula, and Annie Törngren. 2023. "Information Exchange between Construction and Manufacturing Industries to Achieve Circular Economy: A Literature Review and Interviews with Swedish Experts" Buildings 13, no. 3: 633. https://doi.org/10.3390/buildings13030633
APA StyleMoscati, A., Johansson, P., Kebede, R., Pula, A., & Törngren, A. (2023). Information Exchange between Construction and Manufacturing Industries to Achieve Circular Economy: A Literature Review and Interviews with Swedish Experts. Buildings, 13(3), 633. https://doi.org/10.3390/buildings13030633