Optimizing PCM Integrated Wall and Roof for Energy Saving in Building under Various Climatic Conditions of Mediterranean Region
Abstract
:1. Introduction
2. Methodology
2.1. Model Description
2.2. Numerical Simulation
2.3. Climatic Conditions
2.4. PCM Properties
2.5. Wall and Roof Structure in the Building
- (i)
- Energy savings: It gives the total decrease in energy consumption resulting from the integration of PCMs.
- (ii)
- The annual percentage of heating and cooling energy consumption reduction due to the PCM integration, the rate R (in %), is given by the following equation:
3. Results and Discussion
3.1. Effect of PCM Melting Temperature
3.2. Effect of Building Envelope Type and PCM Location
3.3. Effect of PCM Layer Thickness
3.4. Effect of Double-Layer PCMs
3.5. CO2 Emission Reduction in the Optimum Cases
4. Conclusions
- Integrating PCM, either in the roof or wall, has a negligible influence on the cooling energy saving.
- The optimal location for the PCM implementation was found to be near the indoor, except for the Sousse region. The percentage energy saving for this optimal location and for the optimal PCM thickness of 40 mm was calculated as 41.61%, 37.34%, 34.93%, and 26.77% for Tozeur, Sousse, Tabarka, and Bizerte, respectively.
- Increasing the PCM thickness in the roof allows an increment in the total annual energy reduction, which varies from 7.97% to 31.42% depending on the climatic region.
- The PCM melting temperature has an important role in energy savings. The best melting temperature was 21 °C, the closest to the set point temperature, which is 21 °C in winter. However, in lower semi-arid regions (Sousse), the melting temperature, which allows the highest reduction in energy need, was 29 °C.
- The use of double-layer PCM with different melting temperatures at different locations represented an alternative for reducing energy consumption. The PCM with a low melting temperature (21 °C) favors heating energy savings, while PCM with a high melting point (29 °C) favors cooling energy savings. Besides, the double-layer systems composed of two different PCM represent a higher efficiency than a PCM single layer mainly in warm and arid regions (Sousse and Tozeur).
- Under optimal conditions of PCM integration in buildings, up to a 38.74% reduction in CO2 emissions can be achieved in Tozeur.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Rashed, A.; Alnaqi, A.; Alsarraf, J. Usefulness of loading PCM into envelopes in arid climate based on Köppen–Geiger classification-Annual assessment of energy saving and GHG emission reduction. J. Energy Storage 2021, 43, 103152. [Google Scholar] [CrossRef]
- Beltrán, R.D.; Martínez-Gomez, J. Analysis of phase change materials (PCM) for building wallboards based on the effect of environment. J. Build. Eng. 2019, 24, 100726. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Ma, L.; Arıcı, M.; Li, D.; Yıldız; Zhu, Y. Effect of sunspace and PCM louver combination on the energy saving of rural residences: Case study in a severe cold region of China. Sustain. Energy Technol. Assess. 2021, 45, 101126. [Google Scholar] [CrossRef]
- Al-Yasiri, Q.; Szabó, M. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Farouk, N.; El-Rahman, M.A.; Sharifpur, M.; Guo, W. Assessment of CO2 emissions associated with HVAC system in buildings equipped with phase change materials. J. Build. Eng. 2022, 51, 104236. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. Design, characteristic and application of phase change materials for sustainable and energy efficient buildings: A review. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Arumugam, C.; Shaik, S. Air-conditioning cost saving and CO2 emission reduction prospective of buildings designed with PCM integrated blocks and roofs. Sustain. Energy Technol. Assess. 2021, 48, 101657. [Google Scholar] [CrossRef]
- Zavrl, E.; Stritih, U. Improved thermal energy storage for nearly zero energy buildings with PCM integration. Sol. Energy 2019, 190, 420–426. [Google Scholar]
- Krarti, M. Multiple-Benefit Analysis of Scaling-Up Building Energy Efficiency Programs: The Case Study of Tunisia. ASME J. Eng. Sustain. Build. Cities 2020, 1, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Akeiber, H.; Nejat, P.; Majid, M.Z.A.; Wahid, M.A.; Jomehzadeh, F.; Famileh, I.Z.; Calautit, J.K.; Hughes, B.R.; Zaki, S.A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sustain. Energy Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Tunçbilek, E.; Arıcı, M.; Krajčík, M.; Li, Y.; Jurčević, M.; Nižetić, S. Impact of nano-enhanced phase change material on thermal performance of building envelope and energy consumption. Int. J. Energy Res. 2022, 46, 20249–20264. [Google Scholar] [CrossRef]
- Surulivel, T.; Geetha, N.B.; Rajkumar, S. Parametric analysis of thermal behavior of the building with phase change materials for passive cooling. Energy Sources Part A Recover. Util Env. Eff. 2022, 44, 5627–5639. [Google Scholar]
- Chelliah, A.; Saboor, S.; Ghosh, A.; Kontoleon, K.J. Thermal behaviour analysis and cost-saving opportunities of PCM-integrated terracotta brick buildings. Adv. Civ. Eng. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Li, D.; Yang, R.; Arıcı, M.; Wang, B.; Tunçbilek, E.; Wu, Y.; Liu, C.; Ma, Z.; Ma, Y. Incorporating phase change materials into glazing units for building applications: Current progress and challenges. Appl. Therm. Eng. 2022, 210, 118374. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, W.; Li, D.; Zhang, C.; Arıcı, M.; Yıldız; Zhang, X.; Ma, Y. Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows. Energy 2021, 222, 119916. [Google Scholar] [CrossRef]
- Lu, S.; Xu, B.; Tang, X. Experimental study on double pipe PCM floor heating system under different operation strategies. Renew. Energy 2020, 145, 1280–1291. [Google Scholar] [CrossRef]
- González, B.; Prieto, M. Radiant heating floors with PCM bands for thermal energy storage: A numerical analysis. Int. J. Therm. Sci. 2021, 162, 106803. [Google Scholar] [CrossRef]
- Meng, E.; Wang, J.; Yu, H.; Cai, R.; Chen, Y.; Zhou, B. Experimental study of the thermal protection performance of the high reflectivity-phase change material (PCM) roof in summer. Build. Environ. 2019, 164, 106381. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X. Adaptive building roof by coupling thermochromic material and phase change material: Energy performance under different climate conditions. Constr. Build. Mater. 2020, 262, 120481. [Google Scholar] [CrossRef]
- Rathore PK, S.; Shukla, S.K. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Constr. Build. Mater. 2019, 225, 723–744. [Google Scholar] [CrossRef]
- Hamidi, Y.; Aketouane, Z.; Malha, M.; Bruneau, D.; Bah, A.; Goiffon, R. Integrating PCM into hollow brick walls: Toward energy conservation in Mediterranean regions. Energy Build. 2021, 248, 111214. [Google Scholar] [CrossRef]
- Kenzhekhanov, S.; Memon, S.A.; Adilkhanova, I. Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate. Energy 2020, 192, 116607. [Google Scholar] [CrossRef]
- Navarro, L.; de Gracia, A.; Castell, A.; Álvarez, S.; Cabeza, L.F. PCM incorporation in a concrete core slab as a thermal storage and supply system: Proof of concept. Energy Build. 2015, 103, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Royon, L.; Karim, L.; Bontemps, A. Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy Build. 2013, 63, 29–35. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X. Thermo and light-responsive building envelope: Energy analysis under different climate conditions. Sol. Energy 2019, 193, 866–877. [Google Scholar] [CrossRef]
- Kumar, S.; Sheeja, R.; Jospher, A.J.; Krishnan, G.S.; Chandrasekar; AroulRaj, A. Energy-saving potential of a passive cooling system for thermal energy management of a residential building in Jaipur City, India. Mater. Today: Proc. 2020, 43, 1471–1477. [Google Scholar] [CrossRef]
- Mechouet, A.; Oualim, E.M.; Mouhib, T. Effect of mechanical ventilation on the improvement of the thermal performance of PCM-incorporated double external walls: A numerical investigation under different climatic conditions in Morocco. J. Energy Storage 2021, 38, 102495. [Google Scholar] [CrossRef]
- Hagenau, M.; Jradi, M. Dynamic modeling and performance evaluation of building envelope enhanced with phase change material under Danish conditions. J. Energy Storage 2020, 30, 101536. [Google Scholar] [CrossRef]
- Fateh, A.; Borelli, D.; Weinläder, H.; Devia, F. Cardinal orientation and melting temperature effects for PCM-enhanced light-walls in different climates. Sustain. Cities Soc. 2019, 51, 101766. [Google Scholar] [CrossRef]
- Lee, K.O.; Medina, M.A.; Sun, X. Development and verification of an EnergyPlus-based algorithm to predict heat transfer through building walls integrated with phase change materials. J. Build. Phys. 2016, 40, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Tabares-Velasco, P.C.; Christensen, C.; Bianchi, M. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Build. Environ. 2012, 54, 186–196. [Google Scholar] [CrossRef]
- Kuznik, F.; Virgone, J. Experimental assessment of a phase change material for wall building use. Appl. Energy 2009, 86, 2038–2046. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.O. Advanced zone simulation in EnergyPlus: Incorporation of variable properties and phase change material (PCM) capability. In Proceedings of the Building Simulation, Beijing, China, 15 September 2007; pp. 1341–1345. [Google Scholar]
- Nghana, B.; Tariku, F. Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate. Build. Environ. 2016, 99, 221–238. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- National Institute of Meteorology of Tunisia. Available online: https://www.meteo.tn/en/ (accessed on 15 May 2022).
- Available online: http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#HR (accessed on 15 May 2022).
- Znouda, E.; Ghrab-Morcos, N.; Hadj-Alouane, A. Un algorithme génétique pour l’optimisation énergétique et économique des bâtiments méditerranéens. In Proceedings of the 6ème conférence Francophone de MOdélisation et SIMulation–MOSIM, Rabat, Morocco, 1 January 2006; Volume 6. [Google Scholar]
- Saffari, M.; de Gracia, A.; Fernández, C.; Cabeza, L.F. Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Appl. Energy 2017, 202, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Zhou, D.; Xue, F.; Cui, L. Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer. Energy Build. 2021, 241, 110966. [Google Scholar] [CrossRef]
- Sovetova, M.; Memon, S.A.; Kim, J. Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Sol. Energy 2019, 189, 357–371. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, K.; Jiang, Y.; Zhou, G. Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard. Energy Build. 2008, 40, 1771–1779. [Google Scholar] [CrossRef]
- Tunçbilek, E.; Arıcı, M.; Bouadila, S.; Wonorahardjo, S. Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. J. Therm. Anal. Calorim. 2020, 141, 613–624. [Google Scholar] [CrossRef]
- Tong, X.; Xiong, X. A Parametric Investigation on Energy-Saving Effect of Solar Building Based on Double Phase Change Material Layer Wallboard. Int. J. Photoenergy 2018, 2018, 1829298. [Google Scholar] [CrossRef] [Green Version]
- Cascone, Y.; Capozzoli, A.; Perino, M. Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Appl. Energy 2018, 211, 929–953. [Google Scholar] [CrossRef]
- Zhu, N.; Hu, P.; Xu, L. A simplified dynamic model of double layers shape-stabilized phase change materials wallboards. Energy Build. 2013, 67, 508–516. [Google Scholar] [CrossRef]
- Louanate, A.; El Otmani, R.; Kandoussi, K.; Boutaous, M. Dynamic modeling and performance assessment of single and double phase change material layer–integrated buildings in Mediterranean climate zone. J. Build. Phys. 2021, 44, 461–478. [Google Scholar] [CrossRef]
Region (City) | Climate Classification | Latitude | Longitude | Elevation [m] |
---|---|---|---|---|
Sousse | Lower semi-arid | 35°40′ N | 10°45′ E | 24 |
Bizerte | Lower humid | 37°15′ N | 9°48′ E | 5 |
Tabarka | Upper humid | 36°57′ N | 8°45′ E | 4.69 |
Tozeur | Saharian | 33°55′ N | 8°06′ E | 42 |
PCM18 | PCM21 | PCM23 | PCM25 | PCM29 | |
---|---|---|---|---|---|
Latent heat during the entire phase change (kJ/kg) | 200 | 200 | 200 | 200 | 200 |
Peak melting temperature for melting curve (°C) | 19 | 22 | 24 | 26 | 30 |
Peak melting temperature for freezing curve (°C) | 17 | 20 | 22 | 24 | 28 |
Liquid state thermal conductivity (W/(mK)) | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
Solid state thermal conductivity (W/(mK)) | 1.09 | 1.09 | 1.09 | 1.09 | 1.09 |
Liquid state density (kg/m3) | 1540 | 1540 | 1540 | 1540 | 1540 |
Solid state density (kg/m3) | 1540 | 1540 | 1540 | 1540 | 1540 |
Liquid state specific heat (J/(kgK)) | 3140 | 3140 | 3140 | 3140 | 3140 |
Solid state specific heat (J/(kgK)) | 3140 | 3140 | 3140 | 3140 | 3140 |
k (W/mK) | ρ (kg/m3) | Cp (J/kgK) | e (m) | |
---|---|---|---|---|
Brick | 0.72 | 1920 | 840 | 0.20 |
Cement | 1.4 | 2200 | 940 | 0.025 |
Plaster coating | 1.2 | 1800 | 840 | 0.015 |
Concrete | 1.4 | 2100 | 840 | 0.1 |
Reinforced concrete | 2.3 | 2300 | 1000 | 0.15 |
e1 = 10 mm | e2 = 20 mm | e3 = 30 mm | e4 = 40 mm | ||
---|---|---|---|---|---|
Sousse | Heating (Wh/m2) | ||||
PCM-wall | 1862.87 (−3.50%) | 3688.96 (−6.93%) | 4834.89 (−9.09%) | 5514.46 (−10.36%) | |
PCM-roof | 7056.94 (−13.26%) | 13,703.54 (−25.76%) | 19,543.38 (−36.74%) | 21,476.14 (−40.37%) | |
Cooling (Wh/m2) | |||||
PCM-wall | 1241.79 (−3.33%) | 2105.36 (−5.65%) | 2344.13 (−6.29%) | 2330.63 (−6.26%) | |
PCM-roof | 1389.78 (−3.73%) | 2689.36 (−7.22%) | 3594.85 (−9.65%) | 5257.56 (−14.12%) | |
Heating and Cooling (Wh/m2) | |||||
PCM-wall | 3104.66 (−3.43%) | 5794.32 (−6.40%) | 7179.02 (−7.94%) | 7845.09 (−8.67%) | |
PCM-roof | 8446.72 (−9.34%) | 16,392.9 (−18.13%) | 16,392.9 (−18.13%) | 26,733.7 (−29.57%) | |
Bizerte | Heating (Wh/m2) | ||||
PCM-wall | 2953.44 (−4.26%) | 4092.55 (−5.90%) | 4565.82 (−6.59%) | 4852.72 (−7.00%) | |
PCM-roof | 7253.05 (−10.47%) | 12,206.94 (−17.62%) | 16,656.06 (−24.04%) | 18,763.45 (−27.08%) | |
Cooling (Wh/m2) | |||||
PCM-wall | 162.6 (−0.50%) | 299.2 (−0.93%) | 387.45 (−1.20%) | 425.04 (−1.32%) | |
PCM-roof | 963.84 (−3.00%) | 2340.42 (−7.29%) | 3102.68 (−9.67%) | 4579.27 (−14.27%) | |
Heating&Cooling (Wh/m2) | |||||
PCM-wall | 3116.04 (−3.07%) | 4391.75 (−4.33%) | 4953.27 (−4.88%) | 5277.76 (−5.20%) | |
PCM-roof | 8216.89 (−8.10%) | 14,547.36 (−14.35%) | 19,758.74 (−19.49%) | 23,342.72 (−23.03%) | |
Tabarka | Heating (Wh/m2) | ||||
PCM-wall | 3067.38 (−4.62%) | 3997.52 (−6.02%) | 4721.15 (−7.11%) | 5494.2 (−8.28%) | |
PCM-roof | 6029.15 (−9.09%) | 11,606.52 (−17.50%) | 15,731.54 (−23.72%) | 17,727.22 (−26.73%) | |
Cooling (Wh/m2) | |||||
PCM-wall | 192.55 (−0.78%) | 336.41 (−1.37%) | 444.68 (−1.81%) | 515.54 (−2.10%) | |
PCM-roof | 1212.54 (−4.94%) | 1001.02 (−4.07%) | 734.94 (−2.99%) | 958.68 (−3.9%) | |
Heating and Cooling (Wh/m2) | |||||
PCM-wall | 3259.93 (−3.59%) | 433.93 (−4.77%) | 5165.83 (−5.68%) | 6009.74 (−6.61%) | |
PCM-roof | 724,169 (−7.97%) | 13,820.08 (−15.21%) | 18,680.04 (−20.55%) | 21,634.4 (−23.80%) | |
Tozeur | Heating (Wh/m2) | ||||
PCM-wall | 3285.02 (−7.29%) | 4414.55 (−9.80%) | 5320.52 (−11.81%) | 5860.36 (−13.01%) | |
PCM-roof | 7525.08 (−16.70%) | 15,295.52 (−33.95%) | 20,391.24 (−45.26%) | 25,419.04 (−56.42%) | |
Cooling (Wh/m2) | |||||
PCM-wall | 189.19 (−0.36%) | 355.44 (−0.67%) | 516.83 (−0.97%) | 649.39 (−1.22%) | |
PCM-roof | 1478.44 (−2.79%) | 2810.79 (−5.30%) | 4370.75 (−8.24%) | 5407.76 (−10.19%) | |
Heating and Cooling (Wh/m2) | |||||
PCM-wall | 3474.21 (−3.54%) | 4769.99 (−4.86%) | 5837.35 (−5.95%) | 6509.75 (−6.64%) | |
PCM-roof | 9003.52 (−9.18%) | 18,106.31 (−18.45%) | 24,761.99 (−25.24%) | 30,826.8 (−31.42%) |
PCM | Heating/Cooling Energy Saving (Wh/m2) | Heating and Cooling Energy Saving (Wh/m2) | ||||
---|---|---|---|---|---|---|
Heating (Wh/m2) | Cooling (Wh/m2) | Energy Saving (Wh/m2) | Reduction (%) | |||
Sousse | Single layer | PCM21 | 2776.46 | 140.77 | 2917.23 | 3.22 |
PCM23 | 2107.87 | 246.35 | 2354.22 | 2.60 | ||
PCM25 | 1161.38 | 959.39 | 2120.77 | 2.34 | ||
PCM29 | 32.77 | 2668.14 | 2700.91 | 2.98 | ||
Double layer (Case 1) | PCM29-PCM21 | 2512.36 | 554.99 | 3067.35 | 3.39 | |
PCM25-PCM21 | 2236 | 544.3 | 2780.3 | 3.07 | ||
PCM23-PCM21 | 2157.28 | 329.89 | 2487.17 | 2.75 | ||
PCM21-PCM21 | 2012.97 | 167.12 | 2180.09 | 2.41 | ||
Double layer (Case 2) | PCM21-PCM29 | 1828.2 | 1982.51 | 3810.71 | 4.21 | |
PCM21-PCM25 | 2074.1 | 608.87 | 2682.97 | 2.96 | ||
Bizerte | PCM21 | 2953.44 | 162.6 | 3116.04 | 3.07 | |
Single layer | PCM23 | 1555.36 | 390.6 | 1945.96 | 1.92 | |
PCM25 | 1130.85 | 906.57 | 2037.42 | 2.01 | ||
PCM29 | 82.01 | 2168.96 | 2250.97 | 2.22 | ||
Double layer (Case 1) | PCM29-PCM21 | 2150.6 | 406.79 | 2557.39 | 2.52 | |
PCM25-PCM21 | 1980.6 | 583.17 | 2563.77 | 2.52 | ||
PCM23-PCM21 | 1884.18 | 364.32 | 2248.5 | 2.21 | ||
PCM21-PCM21 | 1724.75 | 213.3 | 1938.05 | 1.91 | ||
Double layer (Case 2) | PCM21-PCM29 | 1385.87 | 1712.64 | 3098.51 | 3.06 | |
PCM21-PCM25 | 1640.34 | 672.65 | 2312.99 | 2.28 | ||
Tabarka | Single layer | PCM21 | 3067.38 | 192.55 | 3259.93 | 3.58 |
PCM23 | 1851.81 | 353.44 | 2205.25 | 2.42 | ||
PCM25 | 995.52 | 1005.07 | 2000.59 | 2.20 | ||
PCM29 | 106.89 | 1533.01 | 1639.9 | 1.80 | ||
PCM29-PCM21 | 2357.6 | 345.36 | 2702.96 | 2.97 | ||
Double layer (Case 1) | PCM25-PCM21 | 2311.21 | 547.57 | 2858.78 | 3.14 | |
PCM23-PCM21 | 2247.06 | 379.76 | 2626.82 | 2.89 | ||
PCM21-PCM21 | 2182.08 | 230.29 | 2412.37 | 2.65 | ||
Double layer (Case 2) | PCM21-PCM29 | 1903.66 | 1280.05 | 3183.71 | 3.50 | |
PCM21-PCM25 | 2005.68 | 714.41 | 2720.09 | 2.99 | ||
Tozeur | PCM21 | 3285.02 | 189.19 | 3474.21 | 3.54 | |
Single layer | PCM23 | 2977.94 | 241.46 | 3219.4 | 3.28 | |
PCM25 | 1399.59 | 795.99 | 2195.58 | 2.23 | ||
PCM29 | 144.85 | 2249.85 | 2394.7 | 2.44 | ||
Double layer (Case 1) | PCM21-PCM29 | 2893 | 606.61 | 3499.61 | 3.56 | |
PCM21-PCM25 | 2429.33 | 484.71 | 2914.04 | 2.97 | ||
PCM23-PCM21 | 2386.02 | 296.7 | 2682.72 | 2.73 | ||
PCM21-PCM21 | 2335.7 | 187.68 | 2523.38 | 2.57 | ||
Double layer (Case 2) | PCM21-PCM29 | 2244.52 | 1670.59 | 3915.11 | 3.99 | |
PCM21-PCM25 | 2713.79 | 493.31 | 3207.1 | 3.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dardouri, S.; Tunçbilek, E.; Khaldi, O.; Arıcı, M.; Sghaier, J. Optimizing PCM Integrated Wall and Roof for Energy Saving in Building under Various Climatic Conditions of Mediterranean Region. Buildings 2023, 13, 806. https://doi.org/10.3390/buildings13030806
Dardouri S, Tunçbilek E, Khaldi O, Arıcı M, Sghaier J. Optimizing PCM Integrated Wall and Roof for Energy Saving in Building under Various Climatic Conditions of Mediterranean Region. Buildings. 2023; 13(3):806. https://doi.org/10.3390/buildings13030806
Chicago/Turabian StyleDardouri, Sana, Ekrem Tunçbilek, Othmen Khaldi, Müslüm Arıcı, and Jalila Sghaier. 2023. "Optimizing PCM Integrated Wall and Roof for Energy Saving in Building under Various Climatic Conditions of Mediterranean Region" Buildings 13, no. 3: 806. https://doi.org/10.3390/buildings13030806
APA StyleDardouri, S., Tunçbilek, E., Khaldi, O., Arıcı, M., & Sghaier, J. (2023). Optimizing PCM Integrated Wall and Roof for Energy Saving in Building under Various Climatic Conditions of Mediterranean Region. Buildings, 13(3), 806. https://doi.org/10.3390/buildings13030806