Proposal of an Artefact in the Design of BIM Systematizing Lean Concepts and Tools through Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase 1—Identification of the Problem
2.2. Phase 2—Awareness of the Problem
2.3. Phase 3—Structuring the System
2.4. Phase 4—Application of Neural Networks
2.5. Phase 5—Artefact Assessment
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BIM | Building Information Modelling |
UNB | Universidade de Brasília |
UFG | Universidade Federal de Goiás |
IFG | Instituto Federal de Educação, Ciência e Tecnologia de Goiás |
LC | Lean Construction |
CCI | Civil Construction Industry |
PPC | Production Planning and Control |
AEC | Architecture, Engineering and Civil Construction |
LII | Liquid Influence Index |
DOR | Digital Obeya Room |
PDCA | Plan-Do-Check-Act |
DSR | Design Science Research |
SLR | Systematic Literature Review |
HTTP | Hypertext Transfer Protocol |
HTTPS | Hypertext Transfer Protocol Secure |
FTPS | File Transfer Protocol |
FTPS | File Transfer Protocol Secure |
SCP | Secure Copy |
SFTP | Secure File Transfer Protocol |
TFTP | Trivial File Transfer Protocol |
LDAP | Lightweight Directory Access Protocol |
DAP | Directory Access Protocol |
SMTP | Simple Mail Transfer Protocol |
RTSP | Real-Time Streaming Protocol |
Appendix A
Citations | Causal Parameters | Authors |
---|---|---|
3 | Lack of concurrent BIM updates Lack of communication between stakeholders Lack of terminology and design inconsistency Insufficient documentation and inefficient design Project incompatibility Conflicts between stakeholders | [57,63,69] |
2 | Lack of interdisciplinary collaboration Lack of information standards | [17,65] |
8 | Making wrong decisions by professionals Lack of professional training Need for a cultural transformation Requirement for the training of new professionals Lack of specialists | [10,70,75,77,78,80,81,82] |
1 | Wrong decisions by customers | [70] |
1 | Misunderstanding of projects among stakeholders | [67] |
1 | Drastic reduction in project deadlines | [79] |
3 | Lack of commitment between upper and middle management | [59,60,61] |
7 | Lack of adequate software technologies Variety of software Need for knowledge of tools (software) Lack of communication between systems High costs for software acquisition | [17,60,71,72,76,77,79] |
6 | Different levels of LOD Project segment (hospital/residential/commercial/industrial) Desk size Unavailability of documentation from other disciplines | [17,62,63,64,66,71] |
8 | Changes in projects | [59,60,63,66,68,74,77,84] |
9 | Lack of implementation of a comprehensive BIM protocol Lack of optimization of models | [17,59,60,63,68,73,77,79,84] |
References
- Eliwa, H.; Jelodar, M.B.; Poshdar, M. Information technology and New Zealand construction industry: An empirical study towards strategic alignment of project and organization. In Proceedings of the 18th International Conference on Construction Applications of Virtual Reality (CONVR2018), Auckland, New Zealand, 22–23 November 2018; pp. 22–23. [Google Scholar]
- Harrison, H.; Birks, M.; Franklin, R.; Mills, J. Case study research: Foundations and methodological orientations. Forum Qual. Sozialforschung/Forum Qual. Soc. Res. 2017, 18, 1–17. Available online: https://www.qualitative-research.net/index.php/fqs/article/download/2655/4079?inline=1%3C/p%3E (accessed on 5 May 2019).
- Biton, N.; Howell, G. The Journey of Lean Construction Theory: Review and Reinterpretation. Iglc21 2013, 125–132. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c4bff629ffb120b4dc8465dfdaeb839b0261bd5d (accessed on 5 May 2019).
- Albalkhy, W.; Sweis, R. Barriers to adopting lean construction in the construction industry: A literature review. Int. J. Lean Six Sigma 2021, 12, 210–236. [Google Scholar] [CrossRef]
- Sarhan, J.G.; Xia, B.; Fawzia, S.; Karim, A.; Olanipekun, A.O.; Coffey, V. Framework for the implementation of lean construction strategies using the interpretive structural modelling (ISM) technique: A case of the Saudi construction industry. Eng. Constr. Archit. Manag. 2019, 27, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Farrell, P.; Mashali, A.; Zewein, W. Critical success factors for adopting building information modelling (BIM) and lean construction practices on construction mega-projects: A Delphi survey. J. Eng. Des. Technol. 2021, 19, 537–556. [Google Scholar] [CrossRef]
- Villalba-Diez, J.; Ordieres-Meré, J.B. Strategic Lean Organizational Design: Towards Lean World-Small World Configurations through Discrete Dynamic Organizational Motifs. Math. Probl. Eng. 2016, 2016, 1825410. [Google Scholar] [CrossRef]
- Villalba-Diez, J.; Ordieres-Meré, J.; Molina, M.; Rossner, M.; Lay, M. Lean dendrochronology: Complexity reduction by representation of KPI dynamics looking at strategic organizational design. Manag. Prod. Eng. Rev. 2018, 9, 3–9. [Google Scholar] [CrossRef]
- Rosso, C.B.; Saurin, T.A. The joint use of resilience engineering and lean production for work system design: A study in healthcare. Appl. Ergon. 2018, 71, 45–56. [Google Scholar] [CrossRef]
- Wang, T.K.; Yang, T.; Yang, C.Y.; Chan, F.T. Lean principles and simulation optimization for emergency department layout design. Ind. Manag. Data Syst. 2015, 115, 678–699. [Google Scholar] [CrossRef]
- Kazmane, J. Proposal and analysis of a model for design and development of lean supply chain strategy. Int. J. Eng. Res. Afr. 2018, 37, 158–171. [Google Scholar] [CrossRef]
- Jing, S.; Tang, Y.; Yan, J. The application of fuzzy VIKOR for the design scheme selection in lean management. Math. Probl. Eng. 2018, 2018, 9253643. [Google Scholar] [CrossRef] [Green Version]
- Das, K. Integrating lean systems in the design of a sustainable supply chain model. Int. J. Prod. Econ. 2018, 198, 177–190. [Google Scholar] [CrossRef]
- Bortolini, R.; Formoso, C.T.; Viana, D.D. Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling. Autom. Constr. 2019, 98, 248–264. [Google Scholar] [CrossRef]
- Al Hattab, M.; Hamzeh, F. Using social network theory and simulation to compare traditional versus BIM-lean practice for design error management. Autom. Constr. 2015, 52, 59–69. [Google Scholar] [CrossRef]
- Toledo, M.; Olivares, K.; González, V. Exploration of a Lean-Bim Planning Framework: A Last Planner System and Bim-Based Case Study. In Proceedings of the 24th Annual Conference of the International Group for Lean Construction, Boston, MA, USA, 18–24 July 2016; pp. 3–12. [Google Scholar]
- Nascimento, D.; Caiado, R.; Tortorella, G.; Ivson, P.; Meiriño, M. Digital Obeya Room: Exploring the synergies between BIM and lean for visual construction management. Innov. Infrastruct. Solut. 2018, 3, 19. [Google Scholar] [CrossRef]
- Afolabi, A.; Ibem, E.; Aduwo, E.; Tunji-Olayeni, P.; Oluwunmi, O. Critical success factors (CSFs) for e-Procurement adoption in the Nigerian construction industry. Buildings 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Georgiadou, M.C. An overview of benefits and challenges of building information modelling (BIM) adoption in UK residential projects. Constr. Innov. 2019, 19, 298–320. [Google Scholar] [CrossRef]
- Tennakoon, T.; Kulatunga, U.; Jayasena, H.S. Influence of organisational culture on knowledge management in BIM-enabled construction environments. VINE J. Inf. Knowl. Manag. Syst. 2022, 52, 224–242. [Google Scholar]
- Jang, S.; Lee, G. Impact of organizational factors on delays in bim-based coordination from a decision-making view: A case study. J. Civ. Eng. Manag. 2018, 24, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Fentzloff, W.; Rothe, S.; Stahn, C.; Papantonakis, D. BIM meets Lean–Logistics study of a long tunnel using BIM and Lean methods. Geomech. Tunn. 2021, 14, 286–297. [Google Scholar] [CrossRef]
- Onyango, A.F. Interaction between Lean Construction and BIM. Master’s Thesis, Department of Real Estate and Construction Management, Royal Institute of Technology, Stockholm, Sweden, 2016. [Google Scholar]
- Vestermo, A.; Murvold, V.; Svalestuen, F.; Lohne, J.; Lædre, O. BIM-stations: What it is and how it can be used to implement lean principles. In Proceedings of the IGLC 2016—24th Annual Conference of the International Group for Lean Construction, Boston, MA, USA, 18–24 July 2016; pp. 33–42. [Google Scholar]
- Gurevich, U.; Sacks, R. Examination of the effects of a KanBIM production control system on subcontractors’ task selections in interior works. Autom. Constr. 2014, 37, 81–87. [Google Scholar] [CrossRef]
- Arayici, Y.; Koseoglu, O.; Sakin, M. Exploring the BIM and lean synergies in the Istanbul Grand Airport construction project. Eng. Constr. Archit. Manag. 2018, 25, 1339–1354. [Google Scholar]
- Nascimento, D.L.d.M.; Sotelino, E.D.; Lara, T.P.S.; Caiado, R.G.G.; Ivson, P. Constructability in industrial plants construction: A BIM-Lean approach using the Digital Obeya Room framework. J. Civ. Eng. Manag. 2017, 23, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Koseoglu, O.; Nurtan-Gunes, E.T. Mobile BIM implementation and lean interaction on construction site: A case study of a complex airport project. Eng. Constr. Archit. Manag. 2018, 25, 1298–1321. [Google Scholar] [CrossRef]
- McArthur, J.J.; Bortoluzzi, B. Lean-Agile FM-BIM: A demonstrated approach. Facilities 2018, 36, 676–695. [Google Scholar] [CrossRef]
- Nath, T.; Attarzadeh, M.; Tiong, R.L.; Chidambaram, C.; Yu, Z. Productivity improvement of precast shop drawings generation through BIM-based process re-engineering. Autom. Constr. 2015, 54, 54–68. [Google Scholar] [CrossRef]
- Likita, A.J.; Jelodar, M.B.; Vishnupriya, V.; Rotimi, J.O.B.; Vilasini, N. Lean and BIM Implementation Barriers in New Zealand Construction Practice. Buildings 2022, 12, 1645. [Google Scholar] [CrossRef]
- Zhan, Z.; Tang, Y.; Wang, C.; Yap, J.B.H.; Lim, Y.S. System dynamics outlook on BIM and LEAN interaction in construction quantity surveying. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 3947–3962. [Google Scholar] [CrossRef]
- Ojo, J.S.; Ijomah, C.K.; Akinpelu, S.B. Artificial neural networks for earth-space link applications: A prediction approach and inter-comparison of rain-influenced attenuation models. Int. J. Intell. Syst. Appl. (IJISA) 2022, 14, 47–58. [Google Scholar] [CrossRef]
- Erpen, M.L.; Souza, A.L.A.d.C.; Neumann, C.; Coelho, M.C.B. Proposed model of analysis of the perception of the relative importance of Critical Success Factors (CSF) in the civil construction industry (CCI) using Artificial Neural Networks (ANNs): Application in the academic universe. Gestão Produção 2021, 19. [Google Scholar] [CrossRef]
- Indrawal, D.; Sharma, A. Multi-Module Convolutional Neural Network Based Optimal Face Recognition with Minibatch Optimization. Int. J. Image, Graph. Signal Process. 2022, 3, 32–46. [Google Scholar] [CrossRef]
- Rabunal, J.R.; Dorado, J. Artificial Neural Networks in Real-Life Applications; IGI Global: Hershey, PA, USA, 2005. [Google Scholar]
- Han, H.; Qiao, J. Nonlinear model-predictive control for industrial processes: An application to wastewater treatment process. IEEE Trans. Ind. Electron. 2013, 61, 1970–1982. [Google Scholar] [CrossRef]
- Liu, W.C.; Chung, C.E. Enhancing the predicting accuracy of the water stage using a physical-based model and an artificial neural network-genetic algorithm in a river system. Water 2014, 6, 1642–1661. [Google Scholar] [CrossRef] [Green Version]
- Na, J.; Ren, X.; Shang, C.; Guo, Y. Adaptive neural network predictive control for nonlinear pure feedback systems with input delay. J. Process Control 2012, 22, 194–206. [Google Scholar] [CrossRef]
- Zenooz, A.M.; Ashtiani, F.Z.; Ranjbar, R.; Nikbakht, F.; Bolouri, O. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation. Prep. Biochem. Biotechnol. 2017, 47, 570–577. [Google Scholar] [CrossRef]
- Haykin, S. Redes Neurais: Princípios e Prática; Bookman Editora: Porto Alegre, Brazil, 2001. [Google Scholar]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Gupta, M.; Jin, L.; Homma, N. Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kovács, Z.L. Redes Neurais Artificiais; Editora Livraria da Fisica: São Paulo, Brazil, 2006. [Google Scholar]
- March, S.; Storey, V.C. Design science in the information systems discipline: An introduction to the special issue on design science research. MIS Q. 2008, 32, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Bayazit, N. Investigating Design: A Review of Forty Years of Design Research. Mass. Inst. Technol. 2004, 20, 16–29. [Google Scholar] [CrossRef]
- Dresch, A.; Lacerda, D.; Antunes, J. Design Science Research: Método de Pesquisa para Avanço da Ciência e Tecnologia; Bookman: Porto Alegre, Brasil, 2015; p. 181. [Google Scholar]
- Olawumi, T.; Chan, D.; Wong, J. Evolution in the intellectual structure of BIM research: A bibliometric analysis. J. Civ. Eng. Manag. 2017, 23, 1060–1081. [Google Scholar] [CrossRef]
- Osborn, A. Applied Imagination, 3rd ed.; Scribners: New York, NY, USA, 1993; p. 317. [Google Scholar]
- Montibeller, G.; Belton, V. Causal maps and the evaluation of decision options—A review. J. Oper. Res. Soc. 2006, 57, 779–791. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis Methods and Applications; University of Cambridge: Cambridge, UK, 1994; p. 819. [Google Scholar]
- Nelson, R.; Mathews, K. Cause Maps and Social Network Analysis in Organizational Diagnosis. J. Appl. Behav. Sci. 1991, 27, 379–397. [Google Scholar] [CrossRef]
- Sommerville, I. Software Engineering, 9th ed.; Addison-Wesley: Harlow, UK, 2010. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software. 2015. Available online: tensorflow.org (accessed on 27 January 2020).
- Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in EHealth, HCI, Information Retrieval and Pervasive Technologies; NLD: Amsterdam, The Netherlands, 2007; pp. 3–24. [Google Scholar]
- Andrukhiv, A.; Sokil, M.; Fedushko, S.; Syerov, Y.; Kalambet, Y.; Peracek, T. Methodology for increasing the efficiency of dynamic process calculations in elastic elements of complex engineering constructions. Electronics 2020, 10, 40. [Google Scholar] [CrossRef]
- Mehrbod, S.; Staub-French, S.; Tory, M. Bim-based building design coordination: Processes, bottlenecks, and considerations. Can. J. Civ. Eng. 2020, 47, 25–36. [Google Scholar] [CrossRef]
- Mazlum, S.K.; Pekerİçlİ, M.K. Lean Design Management—An Evaluation of Waste Items for Architectural Design Process; Department of Architecture, Middle East Technical University: AnKara, Turkey, 2016; pp. 1–20. [Google Scholar] [CrossRef]
- Arokiaprakash, A.; Kannan, S.; Manikanda Prabhu, S. Formulize construction and operation management by integrating BIM and lean. Int. J. Civ. Eng. Technol. 2017, 8, 991–1001. [Google Scholar]
- Michaud, M.; Forgues, E.C.; Carignan, V.; Forgues, D.; Ouellet-Plamondon, C. A lean approach to optimize BIM information flow using value stream mapping. J. Inf. Technol. Constr. 2019, 24, 472–488. [Google Scholar] [CrossRef]
- Soetara, A.; Machfud; Affandi, M.J.; Maulana, A. The design on conceptual model for continuation of Lean Manufacturing (LM) implementation in Indonesia wood processing factory using soft system methodology. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1302–1306. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, R.; Wójtowicz, M. BIM maturity levels in teaching the design process. World Trans. Eng. Technol. Educ. 2019, 17, 170–175. [Google Scholar]
- Mehrbod, S.; Staub-French, S.; Mahyar, N.; Tory, M. Characterizing interactions with BIM tools and artifacts in building design coordination meetings. Autom. Constr. 2019, 98, 195–213. [Google Scholar] [CrossRef]
- Abou-Ibrahim, H.; Hamzeh, F. Enabling lean design management: An LOD based framework. Lean Constr. J. 2016, 2016, 12–24. [Google Scholar]
- Andersen, M.T.; Findsen, A.L. Exploring the benefits of structured information with the use of virtual design and construction principles in a BIM life-cycle approach. Archit. Eng. Des. Manag. 2019, 15, 83–100. [Google Scholar] [CrossRef]
- Chang, Y.F.; Shih, S.G. BIM-based computer-aided architectural design. Comput.-Aided Des. Appl. 2013, 10, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, P.; Seppänen, O.; Lappalainen, E.; Peltokorpi, A.; Olivieri, H. Applying level of detail in a BIM-based project: An overall process for lean design management. Buildings 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Abrishami, S.; Goulding, J.; Rahimian, F. Generative BIM workspace for AEC conceptual design automation: Prototype development. Eng. Constr. Archit. Manag. 2020, 28, 482–509. [Google Scholar] [CrossRef]
- Paik, S.M.; Leviakangas, P.; Choi, J. Making most of BIM in design: Analysis of the importance of design coordination. Int. J. Constr. Manag. 2020, 22, 1–9. [Google Scholar] [CrossRef]
- Fadoul, A.; Tizani, W.; Kochc, C. A BIM-based model for constructability assessment of conceptual design. Adv. Comput. Des. 2018, 3, 367–384. [Google Scholar] [CrossRef]
- Delavar, M.; Bitsuamlak, G.T.; Dickinson, J.K.; Costa, L.M.F. Automated BIM-based process for wind engineering design collaboration. Build. Simul. 2020, 13, 457–474. [Google Scholar] [CrossRef]
- Lai, H.; Deng, X.; Chang, T.Y.P. BIM-Based Platform for Collaborative Building Design and Project Management. J. Comput. Civ. Eng. 2019, 33, 1–15. [Google Scholar] [CrossRef]
- Hamidavi, T.; Abrishami, S.; Ponterosso, P.; Begg, D.; Nanos, N. OSD: A framework for the early stage parametric optimisation of the structural design in BIM-based platform. Constr. Innov. 2020, 20, 149–169. [Google Scholar] [CrossRef]
- Zaker, R.; Coloma, E. Virtual reality-integrated workflow in BIM-enabled projects collaboration and design review: A case study. Vis. Eng. 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Hamid, A.B.A.; Embi, M.R. Key factors of bim implementation for interior design firms in Malaysia. Int. J. Sustain. Constr. Eng. Technol. 2020, 11, 175–184. [Google Scholar] [CrossRef]
- Lee, S.; Yu, J. Comparative Study of BIM Acceptance between Korea and the United States. J. Constr. Eng. Manag. 2016, 142, 05015016. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ö.H.; Çağdaş, G. Enhancing decision making processes in early design stages: Opportunities of BIM to achieve energy efficient design solutions. A|Z ITU J. Fac. Archit. 2018, 15, 53–64. [Google Scholar] [CrossRef]
- Tezel, A.; Taggart, M.; Koskela, L.; Tzortzopoulos, P.; Hanahoe, J.; Kelly, M. Lean construction and BIM in small and medium-sized enterprises (SMEs) in construction: A systematic literature review. Can. J. Civ. Eng. 2020, 47, 186–201. [Google Scholar] [CrossRef]
- Donato, V.; Lo Turco, M.; Bocconcino, M.M. BIM-QA/QC in the architectural design process. Archit. Eng. Des. Manag. 2018, 14, 239–254. [Google Scholar] [CrossRef]
- Abdirad, H.; Dossick, C.S. BIM curriculum design in architecture, engineering, and construction education: A systematic review. J. Inf. Technol. Constr. 2016, 21, 250–271. [Google Scholar]
- Markiewicz-Zahorski, P. Teaching building construction design using BIM: The benefits and difficulties. World Trans. Eng. Technol. Educ. 2019, 17, 54–59. [Google Scholar]
- Tulubas Gokuc, Y.; Arditi, D. Adoption of BIM in architectural design firms. Archit. Sci. Rev. 2017, 60, 483–492. [Google Scholar] [CrossRef]
- Von Bertalanffy, L. Teoria Geral dos Sistemas; Vozes: Petrópolis, Brazil, 1975. [Google Scholar]
- Chelyshkov, P.; Lysenko, D. Use of BIM in design of standard facilities. Int. J. Appl. Eng. Res. 2017, 12, 24. [Google Scholar]
Work | Richness | |
---|---|---|
Work | 0 | 1 |
Richness | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcão, T.F.; Carvalho, M.T.M.; de Oliveira Brandstetter, M.C.G. Proposal of an Artefact in the Design of BIM Systematizing Lean Concepts and Tools through Neural Networks. Buildings 2023, 13, 1020. https://doi.org/10.3390/buildings13041020
Falcão TF, Carvalho MTM, de Oliveira Brandstetter MCG. Proposal of an Artefact in the Design of BIM Systematizing Lean Concepts and Tools through Neural Networks. Buildings. 2023; 13(4):1020. https://doi.org/10.3390/buildings13041020
Chicago/Turabian StyleFalcão, Thiago Faria, Michele Tereza Marques Carvalho, and Maria Carolina Gomes de Oliveira Brandstetter. 2023. "Proposal of an Artefact in the Design of BIM Systematizing Lean Concepts and Tools through Neural Networks" Buildings 13, no. 4: 1020. https://doi.org/10.3390/buildings13041020
APA StyleFalcão, T. F., Carvalho, M. T. M., & de Oliveira Brandstetter, M. C. G. (2023). Proposal of an Artefact in the Design of BIM Systematizing Lean Concepts and Tools through Neural Networks. Buildings, 13(4), 1020. https://doi.org/10.3390/buildings13041020