A Monte Carlo-Based Approach to Assess the Reinforcement Depassivation Probability of RC Structures: Simulation and Analysis
Abstract
:1. Introduction
2. Modeling
2.1. Models for Mapping the CO2 or Cl− Diffusion in Concrete
2.2. Monte-Carlo Simulation
3. Case Study
4. Results
4.1. Deterministic Analysis
4.2. Probabilistic Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ellingwood, B.R.; Frangopol, D.M. Introduction to the State of the Art Collection: Risk-Based Lifecycle Performance of Structural Systems. J. Struct. Eng. 2016, 142, F2016001. [Google Scholar] [CrossRef]
- Al Fuhaid, A.F.; Niaz, A. Carbonation and Corrosion Problems in Reinforced Concrete Structures. Buildings 2022, 12, 586. [Google Scholar] [CrossRef]
- Felix, E.F. Modelagem Da Deformação Do Concreto Armado Devido à Formação Dos Produtos de Corrosão. Ph.D. Thesis, University of São Paulo, São Carlos, Brazil, 2018. [Google Scholar]
- Carmona, A.F.; Marega, A. Retrospectiva Da Patologia No Brasil: Estudo Estatístico. In Proceedings of the Jornadas em Español y Portugués sobre Estructuras y Materiales, Madrid, Spain, 23–27 May 1988; pp. 325–348. [Google Scholar]
- Dal Molin, D. Fissuras Em Estruturas de Concreto Armado: Análise Das Manifestações Típicas e Levantamento de Casos Ocorridos No Estado Do Rio Grande Do Sul. Ph.D. Thesis, Universidade federal do Rio Grande do Sul, Porto Alegre, Brazil, 1988. [Google Scholar]
- Andrade, C. Manual Para Diagnóstico de Obras Deterioradas Por Corrosão de Armaduras; Carmona, A., Helene, P., Eds.; PINI: São Paulo, Brazil, 1992. [Google Scholar]
- Geiker, M.R.; Polder, R.B. Experimental Support for New Electro Active Repair Method for Reinforced Concrete. Mater. Corros. 2016, 67, 600–606. [Google Scholar] [CrossRef]
- Kari, O.P.; Puttonen, J.; Skantz, E. Reactive Transport Modelling of Long-Term Carbonation. Cem. Concr. Compos. 2014, 52, 42–53. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Bary, B.; de Larrard, T. Coupled Carbonation-Rust Formation-Damage Modeling and Simulation of Steel Corrosion in 3D Mesoscale Reinforced Concrete. Cem. Concr. Res. 2015, 74, 95–107. [Google Scholar] [CrossRef]
- Karka, B.R.; Bruno, B.; Ngarmaïm, N.; Rimbarngaye, A. The Effects of Degradation Phenomena of the Steel-Concrete Interface in Reinforced Concrete Structures. J. Mater. Sci. Chem. Eng. 2023, 11, 1–21. [Google Scholar] [CrossRef]
- Zeng, B.; Wang, Y.; Gong, F.; Maekawa, K. Corrosion-Induced Cracking Pattern Analysis of RC Beam under Sustained Load Considering the Poromechanical Characteristics of Corrosion Products. Buildings 2022, 12, 2256. [Google Scholar] [CrossRef]
- Robuschi, S.; Tengattini, A.; Dijkstra, J.; Fernandez, I.; Lundgren, K. A Closer Look at Corrosion of Steel Reinforcement Bars in Concrete Using 3D Neutron and X-Ray Computed Tomography. Cem. Concr. Res. 2021, 144, 106439. [Google Scholar] [CrossRef]
- Helene, P. Corrosão Em Armaduras Para Concreto Armado; PINI: São Paulo, Brazil, 1986. [Google Scholar]
- Tuutti, K. Corrosion of Steel in Concrete; Cement-och betonginst: Stockholm, Sweden, 1982. [Google Scholar]
- Köliö, A.; Pakkala, T.A.; Hohti, H.; Laukkarinen, A.; Lahdensivu, J.; Mattila, J.; Pentti, M. The Corrosion Rate in Reinforced Concrete Facades Exposed to Outdoor Environment. Mater. Struct. 2017, 50, 23. [Google Scholar] [CrossRef]
- Broomfield, J. Corrosion of Steel in Concrete: Understanding, Investigation and Repair, 2nd ed.; CRC Press: London, UK, 2006. [Google Scholar]
- Hamada, M. Neutralization (Carbonation) of Concrete and Corrosion of Reinforcing Steel. In Proceedings of the 5th International Congress on the Chemistry of Cement, Tokyo, Japan, 7–11 October 1968. [Google Scholar]
- Felix, E.F.; Carrazedo, R.; Possan, E. Carbonation Model for Fly Ash Concrete Based on Artificial Neural Network: Development and Parametric Analysis. Constr. Build. Mater. 2021, 266, 121050. [Google Scholar] [CrossRef]
- Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. Fundamental Modeling and Experimental Investigation of Concrete Carbonation. ACI Mater. J. 1991, 88, 363–373. [Google Scholar] [CrossRef]
- Possan, E.; Andrade, J.J.O.; Dal Molin, D.C.C.; Ribeiro, J.L.D. Model to Estimate Concrete Carbonation Depth and Service Life Prediction. In Hygrothermal Behaviour and Building Pathologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 67–97. [Google Scholar]
- Felix, E.F.; Possan, E. Modeling the Carbonation Front of Concrete Structures in the Marine Environment through ANN. IEEE Lat. Am. Trans. 2018, 16, 1772–1779. [Google Scholar] [CrossRef]
- Felix, E.F.; Possan, E.; Carrazedo, R. Artificial Intelligence Applied in the Concrete Durability Study. In Hygrothermal Behaviour and Building Pathologies; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Liu, Q.; Cai, Y.; Peng, H.; Meng, Z.; Mundra, S.; Castel, A. A Numerical Study on Chloride Transport in Alkali-Activated Fly Ash/Slag Concretes. Cem. Concr. Res. 2023, 166, 107094. [Google Scholar] [CrossRef]
- Andrade, C.; Díez, J.M.; Alonso, C. Mathematical Modeling of a Concrete Surface “Skin Effect” on Diffusion in Chloride Contaminated Media. Adv. Cem. Based Mater. 1997, 6, 39–44. [Google Scholar] [CrossRef]
- Arora, P.; Popov, B.N.; Haran, B.; Ramasubramanian, M.; Popova, S.; White, R.E. Corrosion Initiation Time of Steel Reinforcement in a Chloride Environment—A One Dimensional Solution. Corros. Sci. 1997, 39, 739–759. [Google Scholar] [CrossRef]
- Zacchei, E.; Nogueira, C.G. Numerical Solutions for Chloride Diffusion Fluctuation in RC Elements from Corrosion Probability Assessments. Buildings 2022, 12, 1211. [Google Scholar] [CrossRef]
- Lehner, P.; Koubová, L.; Rosmanit, M. Study of Effect of Reference Time of Chloride Diffusion Coefficient in Numerical Modelling of Durability of Concrete. Buildings 2022, 12, 1443. [Google Scholar] [CrossRef]
- Liang, X.; Qi, W.; Fang, Z.; Zhang, S.; Fan, Y.; Shah, S.P. Study on the Relationship between Chloride Ion Penetration and Resistivity of NAC-Cement Concrete. Buildings 2022, 12, 2044. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Wang, Y.; Ju, X.; Li, Q. Modelling of Two-Dimensional Chloride Diffusion Concentrations Considering the Heterogeneity of Concrete Materials. Constr. Build. Mater. 2020, 243, 118213. [Google Scholar] [CrossRef]
- Silvestro, L.; Andrade, J.J.O.; Dal Molin, D.C.C. Evaluation of Service-Life Prediction Model for Reinforced Concrete Structures in Chloride-Laden Environments. J. Build. Pathol. Rehabil. 2019, 4, 20. [Google Scholar] [CrossRef]
- Spiesz, P.; Brouwers, H.J.H. The Apparent and Effective Chloride Migration Coefficients Obtained in Migration Tests. Cem Concr Res 2013, 48, 116–127. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, L.; Wang, W.; Jiang, Y. Influence of CaCl2 and NaCl from Different Sources on Chloride Threshold Value for the Corrosion of Steel Reinforcement in Concrete. Constr. Build. Mater. 2011, 25, 663–669. [Google Scholar] [CrossRef]
- Andrade, J.J.D.O. Contribuição à Previsão Da Vida Útil Das Estruturas de Concreto Armado Atacadas Pela Corrosão de Armaduras: Iniciação Por Cloretos. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2001. [Google Scholar]
- Ramezanianpour, A.A.; Tarighat, A.; Miyamoto, A. Concrete Carbonation Modelling and Monte Carlo Simulation Method for Uncertainty Analysis of Stochastic Front Depth. Mem. Fac. Eng. Yamaguchi Univ. 2000, 50, 149–152. [Google Scholar]
- Liberati, E.A.P.; Leonel, E.D.; Nogueira, C.G. Influence of the Reinforcement Corrosion on the Bending Moment Capacity of Reinforced Concrete Beams: A Structural Reliability Approach. Rev. Ibracon Estrut. Mater. 2014, 7, 379–413. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.P.; Frangopol, D.M. Probabilistic Analysis of Resistance Degradation of Reinforced Concrete Bridge Beams under Corrosion. Eng. Struct. 1998, 20, 960–971. [Google Scholar] [CrossRef]
- Kirkpatrick, T.J.; Weyers, R.E.; Anderson-Cook, C.M.; Sprinkel, M.M. Probabilistic Model for the Chloride-Induced Corrosion Service Life of Bridge Decks. Cem. Concr. Res. 2002, 32, 1943–1960. [Google Scholar] [CrossRef]
- Li, Q.; Li, K.; Zhou, X.; Zhang, Q.; Fan, Z. Model-Based Durability Design of Concrete Structures in Hong Kong–Zhuhai–Macau Sea Link Project. Struct. Saf. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Aslani, F.; Dehestani, M. Probabilistic Impacts of Corrosion on Structural Failure and Performance Limits of Reinforced Concrete Beams. Constr. Build. Mater. 2020, 265, 120316. [Google Scholar] [CrossRef]
- Saassouh, B.; Lounis, Z. Probabilistic Modeling of Chloride-Induced Corrosion in Concrete Structures Using First- and Second-Order Reliability Methods. Cem. Concr. Compos. 2012, 34, 1082–1093. [Google Scholar] [CrossRef]
- Al-alaily, H.S.; Hassan, A.A.A.; Hussein, A.A. Probabilistic and Statistical Modeling of Chloride-Induced Corrosion for Concrete Containing Metakaolin. J. Mater. Civ. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Ann, K.Y.; Pack, S.-W.; Hwang, J.-P.; Song, H.-W.; Kim, S.-H. Service Life Prediction of a Concrete Bridge Structure Subjected to Carbonation. Constr. Build. Mater. 2010, 24, 1494–1501. [Google Scholar] [CrossRef]
- Marek, P.; Guštar, M.; Tikalsky, P.J. Monte Carlo Simulation—Tool for Better Understanding of LRFD. J. Struct. Eng. 1993, 119, 1586–1599. [Google Scholar] [CrossRef]
- Lizarazo-Marriaga, J.; Higuera, C.; Guzmán, I.; Fonseca, L. Probabilistic Modeling to Predict Fly-Ash Concrete Corrosion Initiation. J. Build. Eng. 2020, 30, 101296. [Google Scholar] [CrossRef]
- Yu, B.; Liu, J.; Chen, Z. Probabilistic Evaluation Method for Corrosion Risk of Steel Reinforcement Based on Concrete Resistivity. Constr. Build. Mater. 2017, 138, 101–113. [Google Scholar] [CrossRef]
- Shim, H. Design & Analysis of Corrosion Free Service Life of Concrete Structures Using Monte Carlo Method. KSCE J. Civ. Eng. 2005, 9, 377–384. [Google Scholar] [CrossRef]
- NBR 6118; Projeto de Estruturas de Concreto-Procedimento. Associação Brasileira de normas Técnicas: Rio de Janeiro, Brazil, 2014.
- Eurocode 2; Design of Concrete Structures Part 1-1: General Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Pellizzer, G.P.; Leonel, E.D. Probabilistic Corrosion Time Initiation Modelling in Reinforced Concrete Structures Using the BEM. Rev. Ibracon Estrut. Mater. 2020, 13, e13409. [Google Scholar] [CrossRef]
- Ghanooni-Bagha, M.; YekeFallah, M.R.; Shayanfar, M.A. Durability of RC Structures against Carbonation-Induced Corrosion under the Impact of Climate Change. KSCE J. Civ. Eng. 2020, 24, 131–142. [Google Scholar] [CrossRef]
- Monteiro, A.V.; Gonçalves, A. Probabilistic Assessment of the Depassivation Limit State of Reinforced Concrete Structures Based on Inspection Results. J. Build. Eng. 2022, 49, 104063. [Google Scholar] [CrossRef]
- Zhu, X.; Zi, G.; Lee, W.; Kim, S.; Kong, J. Probabilistic Analysis of Reinforcement Corrosion Due to the Combined Action of Carbonation and Chloride Ingress in Concrete. Constr. Build. Mater. 2016, 124, 667–680. [Google Scholar] [CrossRef]
- Jacquemart, D.; Morio, J.; Le Gland, F.; Balesdent, M. Special Developments for Time-Variant Systems. In Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 137–153. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Effect of Aggregate, Cement, and Mineral Admixtures on the Microstructure of the Transition Zone. MRS Proc. 1987, 114, 65. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Sistonen, E.; Puttonen, J. CaPrM: Carbonation Prediction Model for Reinforced Concrete Using Machine Learning Methods. Constr. Build. Mater. 2015, 100, 70–82. [Google Scholar] [CrossRef]
- Kobayashi, K.; Uno, Y. Mechanism of Carbonation of Concrete. Concr. Libr. JSCE 1990, 16, 139–151. [Google Scholar]
- Ishida, T.; Maekawa, K. Modeling of ph Profile in Pore Water Based on Mass Transport and Chemical Equilibrium Theory. Doboku Gakkai Ronbunshu 2000, 2000, 203–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maekawa, K.; Ishida, T.; Kishi, T. Multi-Scale Modeling of Concrete Performance. J. Adv. Concr. Technol. 2003, 1, 91–126. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.J.O.; Possan, E.; Dal Molin, D.C.C. Considerations about the Service Life Prediction of Reinforced Concrete Structures Inserted in Chloride Environments. J. Build. Pathol. Rehabil. 2017, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T. Confiabilidade e Segurança Das Estruturas; Elsevier: Rio de Janeiro, Brasil, 2019. [Google Scholar]
- Instituto Nacional de Meteorologia (BDMEP/INMET) Banco de Dados Meteorológicos Para Ensino e Pesquisa. Temperaturas Máximas e Mínimas e Humidade Relativa Do Ar Anos 2012/2022. Available online: http://www.inmet.gov.br/projetos/rede/pesquisa/ (accessed on 9 March 2023).
- 2 Degrees Institute CO2 Mudial Concentration.Data of Global CO2 levels (december, 2022). Available online: https://www.2degreesinstitute.org/ (accessed on 9 March 2023).
- Helene, P.R.; Terzian, P. Manual de Dosagem e Controle Do Concreto; PINI: São Paulo, Brazil, 1993. [Google Scholar]
- Felix, E.F.; Carrazedo, R.; Possan, E. Análise Paramétrica Da Carbonatação Em Estruturas de Concreto Armado via Redes Neurais Artificiais. Rev. Alconpat 2017, 7, 302. [Google Scholar] [CrossRef] [Green Version]
- NBR 15575-1; Edifícios Habitacionais-Desempenho: Parte 1: Requisitos Gerais. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2013.
- Fluge, F. Marine Chlorides. A Probabilistic Approach to Derive Provisions for EN206-1. In Proceedings of the 3rd DuraNet Workshop, Tromso, Norway, 10 July 2001. [Google Scholar]
- Possan, E.; Thomaz, W.A.; Aleandri, G.A.; Felix, E.F.; dos Santos, A.C.P. CO2 Uptake Potential Due to Concrete Carbonation: A Case Study. Case Stud. Constr. Mater. 2017, 6, 147–161. [Google Scholar] [CrossRef]
- ISO:13823; General Principles on the Design of Structures for Durability. International Organization for Standardization: Geneve, Switzerland, 2008.
- Jiang, L.; Lin, B.; Cai, Y. A Model for Predicting Carbonation of High-Volume Fly Ash Concrete. Cem. Concr. Res. 2000, 30, 699–702. [Google Scholar] [CrossRef]
- Rasheduzzafar, S.S.; Al-Saadam, F.H.; Dakhil, A.S.; Al-Gahtani, C.L. Corrosion of Reinforcement in Concrete; Elsevier Applied Science: London, UK, 1990; pp. 213–226. [Google Scholar]
- Palm, V.; Maran, A.P.; Barreto, M.F.F.M.; Molin, D.C.D.; Masuero, J.R. Influência Da Distribuição de Espaçadores No Cobrimento e Na Vida Útil de Lajes Maciças. Ambiente Construído 2020, 20, 671–686. [Google Scholar] [CrossRef]
Cement Type | Concrete Characteristics | Environmental Conditions | |||
---|---|---|---|---|---|
Cement | fc | Mineral Admixture | CO2 | RH | |
Kc | Kfc | Kad | KCO2 | KRH | |
CEM I 1 | 19.80 | 1.70 | 0.24 | 18.00 | 1300 |
CEM II/A-L 2 | 21.68 | 1.50 | 0.24 | 18.00 | 1100 |
CEM II/A-S 3 | |||||
CEM II/B-S 3 | 22.48 | 1.50 | 0.32 | 15.50 | 1300 |
CEM II/A-V 4 | 23.66 | 1.50 | 0.32 | 15.50 | 1300 |
CEM III/A 5 | 30.50 | 1.70 | 0.32 | 15.50 | 1300 |
Exposure Conditions | Coefficient Kce |
---|---|
Indoor, sheltered from rain | 1.30 |
Outdoor, sheltered from rain | 1.00 |
Outdoor, exposed to rain | 0.65 |
Cement Type | Coefficient K1 |
---|---|
CEM I | 0.95 |
CEM II/A-L | 1.00 |
CEM II/A-SCEM II/B-S | 0.98 |
CEM II/A-V | 1.05 |
CEM III/A | 1.21 |
CEM IV/ACEM IV/B | 1.17 |
CEM I | 0.95 |
CEM II/A-L | 1.00 |
Admixture Type | Coefficient K2 |
---|---|
Active Silica or without admixture | 1.00 |
Metakaolin | 0.97 |
Rice husk ash | 0.76 |
Variable | City | Mean | Deviation | Distribution Function |
---|---|---|---|---|
T (°C) | Brasília | 21.71 | 1.44 | Normal |
Florianópolis | 21.08 | 3.33 | Normal with Johnson transformation | |
Fortaleza | 27.23 | 0.52 | Normal | |
Manaus | 27.99 | 1.14 | Log-normal | |
São Paulo | 20.38 | 2.41 | Normal | |
RH (%) | Brasília | 63.54 | 13.24 | Normal with Johnson transformation |
Florianópolis | 79.29 | 2.81 | Normal | |
Fortaleza | 77.46 | 4.71 | Normal with Johnson transformation | |
Manaus | 77.96 | 6.42 | Normal with Johnson transformation | |
São Paulo | 73.39 | 4.80 | Logistic |
Variable | Mean | Deviation | Distribution |
---|---|---|---|
CO2 concentration (%) | 0.041 | 0.0043 | Normal |
Cl− concentration (%) | 1.15 | 0.575 | Log-normal |
Concrete compressive strength (MPa) | 27.40 | 3.14 | Normal |
Concrete cover (mm) | 30 or 40 | 3.6 or 4.8 | Normal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix, E.F.; Falcão, I.d.S.; dos Santos, L.G.; Carrazedo, R.; Possan, E. A Monte Carlo-Based Approach to Assess the Reinforcement Depassivation Probability of RC Structures: Simulation and Analysis. Buildings 2023, 13, 993. https://doi.org/10.3390/buildings13040993
Félix EF, Falcão IdS, dos Santos LG, Carrazedo R, Possan E. A Monte Carlo-Based Approach to Assess the Reinforcement Depassivation Probability of RC Structures: Simulation and Analysis. Buildings. 2023; 13(4):993. https://doi.org/10.3390/buildings13040993
Chicago/Turabian StyleFélix, Emerson Felipe, Isabela da Silva Falcão, Larissa Gabriela dos Santos, Rogério Carrazedo, and Edna Possan. 2023. "A Monte Carlo-Based Approach to Assess the Reinforcement Depassivation Probability of RC Structures: Simulation and Analysis" Buildings 13, no. 4: 993. https://doi.org/10.3390/buildings13040993
APA StyleFélix, E. F., Falcão, I. d. S., dos Santos, L. G., Carrazedo, R., & Possan, E. (2023). A Monte Carlo-Based Approach to Assess the Reinforcement Depassivation Probability of RC Structures: Simulation and Analysis. Buildings, 13(4), 993. https://doi.org/10.3390/buildings13040993