Impact of a Weather Predictive Control Strategy for Inert Building Technology on Thermal Comfort and Energy Demand
Abstract
:1. Introduction
1.1. Objective
1.1.1. Potential—Weather Data
1.1.2. Potential—Thermal Inertia
1.1.3. Potential—Thermal Comfort
1.2. Methodology
- Is it possible to optimize the thermal comfort of a room with a WPC?
- Is it possible to generate energy savings with a WPC?
1.3. Literature Review
1.3.1. ON/OFF Control
1.3.2. Proportional Integral Differential Control
1.3.3. Weather-Dependent Control
1.3.4. Model Predictive Control
1.3.5. Intelligent Control Strategies
2. Concept for Weather Predictive Control
2.1. WPC—Heating and Cooling System
2.2. WPC—Sun Shading System
2.3. WPC—Ventilation System
3. Thermal Simulation
3.1. Base Case Model
3.2. Results
3.3. Evaluation
- Is it possible to optimize the thermal comfort of a room with a WPC?
- Is it possible to generate energy savings with a WPC?
4. Discussion
4.1. Location of the Potentials
4.2. Utilization of the Potentials
4.3. Transformation of the Potentials
4.4. Limitations
5. Conclusions
- Performing an international study to investigate the potentials in different climates;
- Applying the concept to other use cases with higher representation in the building market;
- Introducing a further evaluation parameter, namely CO2, to transfer the potentials to holistic energy balance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Variable and parameters | ||
Overall predicted value of parameter | (-) | |
Weighting factor | (-) | |
Value of parameter t time steps ahead | (-) | |
t | Time steps ahead | (h) |
Tambm24 | Average ambient dry bulb air temperature over last 24 h | (°C) |
Tout | Return temperature | (°C) |
Supply temperature heating | (°C) | |
Supply temperature cooling | (°C) | |
mtot | Total mass flow | (kg/s) |
Solar radiation of a future time step | (W/CO2) | |
Ambient dry bulb air temperature at a future time step | (°C) | |
Temperature difference caused by incoming solar radiation | (°C) | |
Specific mass flow | (kg/s) | |
Conversion factor | (K J/hm2) | |
Heating power | (W) | |
Cooling power | (W) | |
Operative temperature of a room | (°C) | |
Air temperature of a room | (°C) | |
Radiation on surface | (W/m2) | |
Radiation on surface in the future | (W/m2) | |
fc-value | Reduction factor of a sun protection device | (-) |
Air change rate | (1/h) | |
Abbreviations | ||
TABS | Thermally activated building structures | |
DIN | Deutsches Institut für Normung | |
PID | Proportional integral derivative control | |
MPC | Model predictive control | |
ANN | Artificial neural networks | |
WPC | Weather predictive control | |
PMV | Predicted mean vote | |
PPD | Percentage of people dissatisfied | |
CFD | Computation fluid dynamics | |
VOC | Volatile organic compounds | |
CAD | Computer aided design | |
TRNSYS | Transient systems simulation | |
ASHRAE | American society heating, refrigerating and air-conditioning | engineers |
OTH | Over temperature hour | |
UTH | Under temperature hour |
References
- International Energy Agency; Global Alliance for Buildings and Construction. 2019 Global Status Report for Buildings and Construction; International Energy Agency; Global Alliance for Buildings and Construction: Paris, France, 2019.
- Presse- und Informationsamt der Bundesregierung. Generationenvertrag für das Klima. Available online: https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672 (accessed on 21 December 2022).
- Energieeinsparverordnung: Vom 24. Juli 2007 (BGBl. I S. 1519)]; Energieeinsparungsgesetz, Energieeinsparverordnung mit Anlagen, Bekanntmachungen, Landesrechtliche Vorschriften; [Regelungen über Energieausweise]; Textausgabe mit Ausführlichem Sachverzeichnis, 1st ed.; (dtv Beck-Texte im dtv 5775); Dt. Taschenbuch-Verl.: München, Germany, 2008.
- Fassbender, E.; Ludwig, F.; Hild, A.; Auer, T.; Hemmerle, C. Designing Transformation: Negotiating Solar and Green Strategies for the Sustainable Densification of Urban Neighbourhoods. Sustainability 2022, 14, 3438. [Google Scholar] [CrossRef]
- Fassbender, E.; Claudia, H.; Natalie, M. (Eds.) Multi-Criteria Design and Decision Support for Solar and Green Envelopes: Simplicity vs. Performance. 2021. Available online: https://pure.tudelft.nl/ws/portalfiles/portal/89352805/powerskin_proceedings_2021.pdf (accessed on 15 January 2023).
- Severin Beucker, S.H. Einsparpotenziale aus der Optimierung von Heizungsanlagen in Wohngebäuden. Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/einsparpotenziale-aus-der-optimierung-von-heizungsanlagen-in-wohngebaeuden.pdf?__blob=publicationFile&v=6 (accessed on 21 December 2022).
- Schmelas, M. Entwicklung und Evaluierung Eines Adaptiv-Prädiktiven Algorithmus’ für Thermoaktive Bauteilsysteme. Ph.D. Thesis, Universitätsbibliothek Freiburg, Breisgau, Germany, 2017. [Google Scholar] [CrossRef]
- Jungwirth, J. Lastmanagement in Gebäuden; Technische Universität München, Diss.: München, Germany, 2015. [Google Scholar]
- Schmid, T.; Hepf, C.; Wagner, T.; Meile, S.; Bratoev, I.; Schubert, G.J. Dezentrale MSR: Konzeptentwicklung zur Dezentralen Mess-, Steuer- und Regelungstechnik in Gebäuden im Kontext des Internet of Things = Decentralized MCT: Design of a Decentralized Measurement and Control Technology Concept for Building Services in the Context of the Internet of Things; (Forschungsinitiative Zukunft Bau F 3160); Fraunhofer IRB Verlag: Stuttgart, Germany, 2019. [Google Scholar]
- Auer, T.; Hamacher, T.; Wagner, U.; Atabay, D.; de-Borja-Torrejón, M.; Dornmair, R.; Kuhn, P.; Maderspacher, J.; Sänger, F.; Laenge, J.; et al. Gebäude als Intelligenter Baustein im Energiesystem: Lastmanagement-Potenziale von Gebäuden im Kontext der Zukünftigen Energieversorgungsstruktur in Deutschland; (Forschungsinitiative Zukunft Bau F 3054); Fraunhofer IRB Verlag: Stuttgart, Germany, 2017. [Google Scholar]
- Hausladen, G.; Auer, T.; Schneegans, J.; Klimke, K.; Riemer, H. Lastverhalten von Gebäuden unter Berücksichtigung Unterschiedlicher Bauweisen und Technischer Systeme—Speicher- und Lastmanagementpotenziale in Gebäuden: Endbericht; (Forschungsinitiative Zukunft Bau F 2920); Fraunhofer IRB Verlag: Stuttgart, Germany, 2014. [Google Scholar]
- Dornmair, R.; Atabay, D.; Sänger, F.; de Borja Torrejón, M.; Maderspacher, J. Einfluss von Gebäuden als Wärmespeicher auf das Energiesystem. In 10. Internationale Energiewirtschaftstagung der TU Wien; IEWT: Vienna, Austria, 2017; Available online: https://mediatum.ub.tum.de/doc/1350554/1350554.pdf (accessed on 15 January 2023).
- Hausladen, G.; de Saldanha, M.; Liedl, P. ClimaDesign: Lösungen für Gebäude, die mit Weniger Technik Mehr Können, 1st ed.; Callwey: München, Germnay, 2004. [Google Scholar]
- Deutscher Wetterdienst. Numerical Methods. Available online: https://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/01_num_vorhersagemodelle/01a_num_methoden/numerischemethoden_node.html (accessed on 21 December 2022).
- Kheybari, A.G.; Alwalidi, M.; Hepf, C.; Auer, T.; Hoffmann, S. A multi-objective evaluation for envelope refurbishments with electrochromic glazing. Results Eng. 2022, 14, 100417. [Google Scholar] [CrossRef]
- Energetische Bewertung von Gebäuden: 1–10, 18599 1–10, 2018; Deutsches Institut für Normung e.V.: Berlin, Germany, 2022.
- Wärmeschutz und Energie-Einsparung in Gebäuden: 1–11, 4108, 2018; Deutsches Institut für Normung e.V.: Berlin, Germany, 2013.
- Hepf, C.; Bausch, K.; Lauss, L.; Koth, S.C.; Auer, T. Impact of Dynamic Emission Factors of the German Electricity Mix on the Greenhouse Gas Balance in Building Operation. Buildings 2022, 12, 2215. [Google Scholar] [CrossRef]
- Statistisches Bundesamt, (Destatis). Umweltökonomische Gesamtrechnungen: Energieverbrauch der Privaten Haushalte für Wohnen. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/energieverbrauch-haushalte.html (accessed on 30 January 2023).
- Rawal, R.; Shukla, Y.; Vardhan, V.; Asrani, S.; Schweiker, M.; de Dear, R.; Garg, V.; Mathur, J.; Prakash, S.; Diddi, S.; et al. Adaptive thermal comfort model based on field studies in five climate zones across India. Build. Environ. 2022, 219, 109187. [Google Scholar] [CrossRef]
- de Dear, R.; Brager, G. Developing an Adaptive Model of Thermal Comfort and Preference. Available online: https://escholarship.org/uc/item/4qq2p9c6 (accessed on 5 January 2023).
- Energetische Bewertung von Gebäuden—Lüftung von Gebäuden—Teil 1: Eingangsparameter für das Innenraumklima zur Auslegung und Bewertung der Energieeffizienz von Gebäuden bezüglich Raumluftqualität, Temperatur, Licht und Akustik: 1–11, 16798; Deutsches Institut für Normung e.V.: Berlin, Germany, 2022.
- Ivanova, Y.M.; Pallubinsky, H.; Kramer, R.; Lichtenbelt, W.V.M. The influence of a moderate temperature drift on thermal physiology and perception. Physiol. Behav. 2020, 229, 113257. [Google Scholar] [CrossRef] [PubMed]
- Keith, S.W.; Redden, D.T.; Katzmarzyk, P.T.; Boggiano, M.M.; Hanlon, E.C.; Benca, R.M.; Ruden, D.; Pietrobelli, A.; Barger, J.L.; Fontaine, K.R.; et al. Putative contributors to the secular increase in obesity: Exploring the roads less traveled. Int. J. Obes. 2006, 30, 1585–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Kramer, R.; de Kort, Y.; Rense, P.; Lichtenbelt, W.V.M. The effects of a novel personal comfort system on thermal comfort, physiology and perceived indoor environmental quality, and its health implications–Stimulating human thermoregulation without compromising thermal comfort. Indoor Air 2021, 32, e12951. [Google Scholar] [CrossRef] [PubMed]
- Schellen, L.; Lichtenbelt, W.D.V.M.; Loomans, M.G.L.C.; Toftum, J.; De Wit, M.H. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition. Indoor Air 2010, 20, 273–283. [Google Scholar] [CrossRef] [PubMed]
- van Marken Lichtenbelt, W.; Hanssen, M.; Pallubinsky, H.; Kingma, B.; Schellen, L. Healthy excursions outside the thermal comfort zone. Build. Res. Inf. 2017, 45, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Kramer, R.; Schellen, H.; van Schijndel, A. Impact of ASHRAE’s museum climate classes on energy consumption and indoor climate fluctuations: Full-scale measurements in museum Hermitage Amsterdam. Energy Build. 2016, 130, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Koth, S.C.; Kobas, B.; Bausch, K.; Auer, T. Mitigating climate change through healthy discomfort. IOP Conf. Series: Earth Environ. Sci. 2022, 1078, 12034. [Google Scholar] [CrossRef]
- Kobas, B.; Koth, S.C.; Nkurikiyeyezu, K.; Giannakakis, G.; Auer, T. Effect of Exposure Time on Thermal Behaviour: A Psychophysiological Approach. Signals 2021, 2, 863–885. [Google Scholar] [CrossRef]
- Christian, H. Energy Optimization of a Geothermal Heat-Pump System through Dynamic System Simulation: A Case Study for the International Airport Calgary. Master’s Thesis, TUM School of Engineering and Design, Chair of Building Technology and Climate Responsive Design, Technical University of Munich, München, Germany, 2018. Available online: https://mediatum.ub.tum.de/node?id=1694272 (accessed on 15 January 2023).
- Amato, V.; Hedegaard, R.; Knudsen, M.; Petersen, S. Room-level load shifting of space heating in a single-family house—A field experiment. Energy Build. 2023, 281, 112750. [Google Scholar] [CrossRef]
- Bollin, E.; Schmelas, M. TABS—Thermoaktive Bauteilsysteme: Selbstlernendes und Vorausschauendes Steuern mit AMLR; Springer Vieweg: Wiesbaden/Heidelberg, Germany, 2021. [Google Scholar]
- Gwerder, M.; Tödtli, J.; Lehmann, B.; Dorer, V.; Güntensperger, W.; Renggli, F. Control of thermally activated building systems (TABS) in intermittent operation with pulse width modulation. Appl. Energy 2009, 86, 1606–1616. [Google Scholar] [CrossRef]
- Ulpiani, G.; Borgognoni, M.; Romagnoli, A.; DI Perna, C. Comparing the performance of on/off, PID and fuzzy controllers applied to the heating system of an energy-efficient building. Energy Build. 2016, 116, 1–17. [Google Scholar] [CrossRef]
- Pistohl, W. Allgemeines, Sanitär, Elektro, Gas, 7th ed.; (Handbuch der Gebäudetechnik 1); Werner: Köln, Germany, 2009. [Google Scholar]
- Thieblemont, H.; Haghighat, F.; Ooka, R.; Moreau, A. Predictive control strategies based on weather forecast in buildings with energy storage system: A review of the state-of-the art. Energy Build. 2017, 153, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Oldewurtel, F.; Jones, C.N.; Parisio, A.; Morari, M. Stochastic Model Predictive Control for Building Climate Control. IEEE Trans. Control Syst. Technol. 2013, 22, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Schildbach, G.; Sturzenegger, D.; Morari, M. Scenario-Based MPC for Energy-Efficient Building Climate Control under Weather and Occupancy Uncertainty. In Proceedings of the 2013 European Control Conference (ECC), Zürich, Switzerland, 17–19 July 2013. [Google Scholar]
- Van Dronkelaar, C.; Dowson, M.; Burman, E.; Spataru, C.; Mumovic, D. A Review of the Regulatory Energy Performance Gap and Its Underlying Causes in Non-domestic Buildings. Front. Mech. Eng. 2016, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Doda, V. Occupants Mind the (Performance) Gap. Available online: https://issuu.com/climadesign/docs/20171114_brosch_c3_bcre_20cd_202017 (accessed on 15 January 2023).
- Lee, J.-Y.; Yeo, M.-S.; Kim, K.-W. Predictive Control of the Radiant Floor Heating System in Apartment Buildings. J. Asian Arch. Build. Eng. 2002, 1, 105–112. [Google Scholar] [CrossRef]
- Paleček, T. Controlling a Heating System Using Deep Reinforcement Learning; Bachelor Project, Faculty of Electrical Engineering, Department of Cybernetics, Technical University Prague: Prague, Czech Republic, 2018. [Google Scholar]
- Nagy, Á.; Kazmi, H.S.; Cheaib, F.; Driesen, J. Deep Reinforcement Learning for Optimal Control of Space Heating. arXiv 2018, arXiv:Abs/1805.03777. [Google Scholar]
- Hausladen, G.; Tichelmann, K. Ausbau Atlas; DETAIL—Institut für Internationale Architektur-Dokumentation GmbH & Co. KG: Munich, Germany, 2009. [Google Scholar]
- Hopfe, C.J. Uncertainty and Sensitivity Analysis in Building Performance Simulation for Decision Support and Design Optimization. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Hepf, C.; Schmid, T.; Brunet, F.; Auer, T. Validation of a Thermodynamic building Model Based on Weather and Thermal Measurement. In Proceedings of the BauSim Conference 2022: 9 Conference of IBPSA—Germany and Austria, Weminar, Germany, 20–22 September 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hepf, C.; Overhoff, L.; Koth, S.C.; Gabriel, M.; Briels, D.; Auer, T. Impact of a Weather Predictive Control Strategy for Inert Building Technology on Thermal Comfort and Energy Demand. Buildings 2023, 13, 996. https://doi.org/10.3390/buildings13040996
Hepf C, Overhoff L, Koth SC, Gabriel M, Briels D, Auer T. Impact of a Weather Predictive Control Strategy for Inert Building Technology on Thermal Comfort and Energy Demand. Buildings. 2023; 13(4):996. https://doi.org/10.3390/buildings13040996
Chicago/Turabian StyleHepf, Christian, Lennard Overhoff, Sebastian Clark Koth, Martin Gabriel, David Briels, and Thomas Auer. 2023. "Impact of a Weather Predictive Control Strategy for Inert Building Technology on Thermal Comfort and Energy Demand" Buildings 13, no. 4: 996. https://doi.org/10.3390/buildings13040996
APA StyleHepf, C., Overhoff, L., Koth, S. C., Gabriel, M., Briels, D., & Auer, T. (2023). Impact of a Weather Predictive Control Strategy for Inert Building Technology on Thermal Comfort and Energy Demand. Buildings, 13(4), 996. https://doi.org/10.3390/buildings13040996