Flexural Fatigue Behavior of Glulam Beams Connected with Steel Splints and Bolts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of GBSB Beams
- (1)
- Nylon self-locking lock nut
- (2)
- Double-stack self-locking lock washers
2.2. Loading Program
2.3. Test Conditions
- (1)
- Loading condition
- (2)
- Loading frequency and stress ratio
- (3)
- Moisture content
- (4)
- Maximum fatigue load cycles
3. Static Testing Results and Analyses
4. Fatigue Test Results and Their Analysis
4.1. Destruction of the Beam
4.2. Mid-Span Deflection
4.3. Load–Deflection Ratio
4.4. Load–Strain Curve
5. Bending Stiffness Degradation
6. Fatigue Life and Fatigue Limit Load
7. Electron Microscope Analyses
8. Conclusions
- The fatigue failure of the GBSB mainly occurs near the loading point. Fracture in the tension zone is the final failure mode. Similar to the failure mode of the beam under a static load, two sides of the beam do not fail simultaneously. Under the cyclic loads, the elastic deformation and plastic deformation of the test beam coexist. After repeated fatigue loading, the strain in the compression zone increases faster than the strain in the tension zone.
- With the increase in the stress level, the fatigue life of GBSB decreases significantly. When the stress ratio is 0.2 and the stress level does not exceed 0.5 times the static limit load, the fatigue life is greater than 2 million load cycles, indicating a good fatigue performance. The linear regression analysis of load amplitude and the fatigue life predicts that the fatigue limit load of the GBSB is 0.5435 Fu.
- The bending stiffness of the GBSB decreases almost linearly with the increase in the number of load cycles. As the stress level increases, the stiffness degradation is more obvious. Equations for the stiffness degradation at different stress levels are presented.
- Analysis by electron microscopy shows that fatigue damage accumulation is an irreversible, energy-consuming evolution of the internal microstructure, which eventually manifests itself as macroscopic cracks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beudon, C.; Oudjene, M.; Djedid, A.; Annan, C.-D.; Fafard, M. Life Cycle Assessment of an Innovative Hybrid Highway Bridge Made of an Aluminum Deck and Glulam Timber Beams. Buildings 2022, 12, 1616. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Q.; Xu, T.; Qu, S.; Zhang, B. The bending-shear behaviors of steel reinforced fast-growing poplar glulam beams with different shear-span ratios. Constr. Build. Mater. 2021, 300, 124008. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, Y.; Mei, L.; Zhao, Y. Experimental Study on Flexural Performance of the Prestressed Glulam Continuous Beam after Long-Term Loading. Buildings 2022, 12, 895. [Google Scholar] [CrossRef]
- Šuhajdová, E.; Schmid, P.; Novotný, M.; Pěnčík, J.; Šuhajda, K.; Uhlík, O. Experimental Research on Hybrid Hardwood Glue-Laminated Beams. Buildings 2023, 13, 1055. [Google Scholar] [CrossRef]
- Thorhallsson, E.R.; Hinriksson, G.I.; Snæbjörnsson, J.T. Strength and stiffness of glulam beams reinforced with glass and bas-alt fibres. Compos. Part B Eng. 2017, 115, 300–307. [Google Scholar] [CrossRef]
- Tazarv, M.; Carnahan, Z.; Wehbe, N. Glulam timber bridges for local roads. Eng. Struct. 2019, 188, 11–23. [Google Scholar] [CrossRef]
- Jockwer, R.; Steiger, R.; Frangi, A.; Serrano, E. Load-carrying capacity and failure modes of glulam beams with reinforced notches. Eur. J. Wood Wood Prod. 2015, 74, 481–482. [Google Scholar] [CrossRef]
- Odin, C.C. Fatigue in Wood an Investigation in Tension Perpendicular to the Grain; Danmarks Tekniske Universitet: Kongens Lyngby, Danmarks, 2001; pp. 1–109. [Google Scholar]
- Madhoushi, M.; Ansell, M.P. Experimental study of static and fatigue strengths of pultruded GFRP rods bonded into LVL and glulam. Int. J. Adhes. Adhes. 2004, 24, 319–325. [Google Scholar] [CrossRef]
- Kyanka, G.H. Fatigue properties of wood and wood composites. Int. J. Fract. 1980, 16, 609–616. [Google Scholar] [CrossRef]
- Molina, J.C.; Calil Junior, C.; Carreira, M.R. Pullout strength of axially loaded steel rods bonded in glulam at a 450 angle to the grain. Mater. Res. 2009, 12, 427–432. [Google Scholar] [CrossRef]
- Chaplain, M.; Nafa, Z.; Guenfoud, M. Damage of Glulam Beams Under Cyclic Torsion: Experiments and Modelling. In Damage and Fracture Mechanics; Springer: Dordrecht, The Netherlands, 2009; pp. 349–356. [Google Scholar]
- Enam, M.; Mtenga, P.; Tawfiq, K.; Yazdani, N. Behavior of structural composite lumber T-lumber bridge girdersafter fatigue loading. J. Bridge Eng. 2011, 16, 471–478. [Google Scholar] [CrossRef]
- Hansen, L.P. Experimental investigation of fatigue properties of laminated wood beams. In Proceedings of the 1991 International Timber Engineering Conference, London, UK, 2–5 September 1991; pp. 203–210. [Google Scholar]
- Shi, H.; Fang, H.; Liu, W.; Xia, Z. Flexural fatigue behavior and life prediction of web reinforced GFRP-balsa sandwich beams. Int. J. Fatigue 2020, 136, 105592. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.; Fang, H.; Shi, H.; Liu, W.; Zhu, D. An experimental investigation of static and fatigue behaviour of GFRP sandwich beams with a web reinforced wood core. Constr. Build. Mater. 2020, 253, 119194. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Z.; He, L.; Tam, L.-H. Experimental study on the static and fatigue performances of GFRP-timber bolted connections. Compos. Struct. 2023, 304, 116435. [Google Scholar] [CrossRef]
- Li, L.; Gong, M.; Smith, I.; Li, D. Exploratory study on fatigue behaviour of laterally loaded, nailed timber joints, based on a dissipated energy criterion. Holzforschung 2012, 66, 863–869. [Google Scholar] [CrossRef]
- Tannert, T.; Zhu, H.; Myslicki, S.; Walther, F.; Vallée, T. Tensile and fatigue investigations of timber joints with glued-in FRP rods. J. Adhes. 2016, 93, 926–942. [Google Scholar] [CrossRef]
- Madhoushi, M.; Ansell, M.P. Behaviour of timber connections using glued-in GFRP rods under fatigue loading. Part I: In-line beam to beam connections. Compos. Part B Eng. 2008, 39, 243–248. [Google Scholar] [CrossRef]
- Yeoh, D.; Fragiacomo, M.; Carradine, D. Fatigue behaviour of timber–concrete composite connections and floor beams. Engi-Neering Struct. 2013, 56, 2240–2248. [Google Scholar] [CrossRef]
- Weaver, C.A.; Davids, W.G.; Dagher, H.J. Testing and analysis of partially composite fibre-reinforced polymer-glulam concrete bridge girders. Bridge Eng. 2004, 9, 316–325. [Google Scholar] [CrossRef]
- Davids, W.G.; Nagy, E.; Richie, M.C. Fatigue behaviour of composite-reinforced glulam bridge girders. Bridge Eng. 2008, 13, 183–191. [Google Scholar] [CrossRef]
- Chuanyao, C. Fatigue and Fracture; Huazhong University of Science and Technology Press: Wuhan, China, 2001; pp. 17–25. (In Chinese) [Google Scholar]
- Zhou, X.; Cao, L.; Zeng, D.; He, C. Analysis of Flexural Bearing Capacity of Glulam Beams. Archit. Struct. 2015, 45, 91–96. (In Chinese) [Google Scholar]
- Cao, L.; Zhang, Z.; Zeng, D.; He, G.; Cai, J. Experimental research on fatigue behavior of larch glulam beams. J. Build. Struct. 2016, 37, 27–35. (In Chinese) [Google Scholar]
Specimen Number | Frequency/Hz | Fmax/Fu | Fmax/kN | Fmin/kN | ΔF/kN |
---|---|---|---|---|---|
F1 | 3 | 40% | 29.72 | 5.94 | 23.78 |
F2 | 3 | 50% | 37.15 | 7.43 | 29.72 |
F3 | 3 | 57% | 42.35 | 8.47 | 33.88 |
F4 | 3 | 60% | 44.58 | 8.92 | 35.66 |
F5 | 3 | 65% | 48.30 | 9.66 | 38.64 |
F6 | 3 | 70% | 52.00 | 10.40 | 41.60 |
Specimen Number | Fu/kN | f/mm | σ/MPa | Mc/% |
---|---|---|---|---|
G1 | 74.20 | 86.50 | 63.23 | 10.84 |
G2 | 71.68 | 83.95 | 61.09 | 11.25 |
G3 | 77.12 | 88.63 | 65.73 | 10.60 |
Specimen Number | Average Static Ultimate Load | Static Load Values after Fatigue Testing | Decrease in Percentage |
---|---|---|---|
F1 | 74.30 kN | 71.90 kN | 3.23% |
F2 | 74.30 kN | 65.89 kN | 11.31% |
N | BN/(kN·m2) | N | BN/(kN·m2) | |||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | ||
0 | 867.42 | 889.74 | 0 | 915.70 | 952.33 | 960.09 |
10 | 863.22 | 884.25 | 5 | 911.52 | 943.95 | 940.18 |
30 | 855.79 | 871.89 | 10 | 905.87 | 934.45 | 935.84 |
60 | 844.09 | 855.02 | 20 | 897.38 | 917.04 | 914.52 |
90 | 834.52 | 837.14 | 40 | 880.86 | 883.60 | — |
120 | 821.40 | 822.65 | 60 | 860.96 | — | — |
150 | 809.46 | 803.52 | 80 | 842.90 | — | — |
180 | 798.53 | 784.98 | 100 | 824.42 | — | — |
200 | 794.09 | 779.87 | — | — | — | — |
Specimen Number | B0/ | λ/10−4 | R2 | Bf/ | Bf/B0 |
---|---|---|---|---|---|
(kN·m2) | (kN·m2) | ||||
F1 | 867.42 | 0.375 | 0.998 | 794.09 | 0.915 |
F2 | 889.74 | 0.562 | 0.989 | 779.87 | 0.876 |
F3 | 915.70 | 0.914 | 0.976 | 823.47 | 0.899 |
F4 | 952.33 | 1.693 | 0.998 | 868.37 | 0.911 |
F5 | 960.09 | 1.940 | 0.982 | 911.07 | 0.948 |
Specimen Number | σmax/MPa | ∆σ/MPa | Nf |
---|---|---|---|
F1 | 25.340 | 20.272 | >2,000,000 |
F2 | 31.675 | 25.34 | >2,000,000 |
F3 | 36.106 | 28.885 | 1,013,545 |
F4 | 38.010 | 30.408 | 487,512 |
F5 | 41.178 | 32.942 | 236,748 |
F6 | 44.345 | 35.476 | 11,308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Chen, A.; Zhou, J.; He, G.; Wang, H.; Li, C. Flexural Fatigue Behavior of Glulam Beams Connected with Steel Splints and Bolts. Buildings 2023, 13, 1218. https://doi.org/10.3390/buildings13051218
Yang L, Chen A, Zhou J, He G, Wang H, Li C. Flexural Fatigue Behavior of Glulam Beams Connected with Steel Splints and Bolts. Buildings. 2023; 13(5):1218. https://doi.org/10.3390/buildings13051218
Chicago/Turabian StyleYang, Lei, Aijun Chen, Jianhua Zhou, Guojing He, Haolei Wang, and Cong Li. 2023. "Flexural Fatigue Behavior of Glulam Beams Connected with Steel Splints and Bolts" Buildings 13, no. 5: 1218. https://doi.org/10.3390/buildings13051218
APA StyleYang, L., Chen, A., Zhou, J., He, G., Wang, H., & Li, C. (2023). Flexural Fatigue Behavior of Glulam Beams Connected with Steel Splints and Bolts. Buildings, 13(5), 1218. https://doi.org/10.3390/buildings13051218