Evaluation of Urban Resilience Based on Trio Spaces: An Empirical Study in Northeast China
Abstract
:1. Introduction
2. Literature Review
2.1. Connotation of Urban Resilience
2.2. Evaluation of Urban Resilience
3. Materials and Methods
3.1. Trio Spaces of Urban Resilience
3.2. Evaluation Index System Establishment
3.3. Evaluation Model of Urban Resilience Based on Trio Spaces
3.3.1. Determination of Indicator Weights
3.3.2. Evaluation Model Establishment
3.3.3. Evaluation Criteria
4. Data Sources and Results
4.1. Study Area and Data Sources
4.2. Results of Urban Resilience Comprehensive Evaluation
4.3. Results of Urban Resilience Sub-Space Evaluation
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Harbin | Changchun | Shenyang | Dalian |
---|---|---|---|---|
2014 | 0.482 | 0.497 | 0.491 | 0.503 |
2015 | 0.476 | 0.504 | 0.494 | 0.493 |
2016 | 0.485 | 0.507 | 0.496 | 0.496 |
2017 | 0.479 | 0.507 | 0.504 | 0.480 |
2018 | 0.473 | 0.507 | 0.495 | 0.496 |
2019 | 0.485 | 0.497 | 0.505 | 0.491 |
2020 | 0.475 | 0.498 | 0.501 | 0.490 |
References
- Statistical Bulletin on National Economic and Social Development of the People’s Republic of China in 2022. Available online: https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm (accessed on 28 February 2023).
- Crankshaw, O.; Borel-Saladin, J. Causes of urbanisation and counter-urbanisation in Zambia: Natural population increase or migration? Urban Stud. 2018, 56, 2005–2020. [Google Scholar] [CrossRef]
- Firman, T. Urban development in Indonesia, 1990–2001: From the boom to the early reform era through the crisis. Habitat Int. 2002, 26, 229–249. [Google Scholar] [CrossRef]
- Earle, L. Addressing urban crises: Bridging the humanitarian–development divide. Int. Rev. Red Cross 2016, 98, 215–224. [Google Scholar] [CrossRef]
- Deshpande, N.R.; Kulkarni, B.D. Changing pattern of heavy rainstorms in the Indus basin of India under global warming scenarios. J. Earth Syst. Sci. 2015, 124, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Goodman, D.; Mann, S. Managing public human resources following catastrophic events. Rev. Public Pers. Adm. 2008, 28, 3–19. [Google Scholar] [CrossRef]
- Reinhardt, G.Y.; Chatsiou, K. Using community education interventions to build resilience and avert crises: How accidental dwelling fires decreased in Essex County, UK. Local Gov. Stud. 2019, 45, 394–412. [Google Scholar] [CrossRef]
- Lai, F.T.T.; Huang, L.; Chui, C.S.L.; Wan, E.Y.F.; Li, X.; Wong, C.K.H.; Chan, E.W.W.; Ma, T.; Lum, D.H.; Leung, J.C.N.; et al. Multimorbidity and adverse events of special interest associated with Covid-19 vaccines in Hong Kong. Nat. Commun. 2022, 13, 411. [Google Scholar] [CrossRef]
- Tavares, J. The open society assesses its enemies: Shocks, disasters and terrorist attacks. J. Monet. Econ. 2004, 51, 1039–1070. [Google Scholar] [CrossRef]
- City Resilience Action Planning Tool (CityRAP). Available online: https://unhabitat.org/city-resilience-action-planning-tool-cityrap (accessed on 29 May 2023).
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Glob. Environ. Chang. B Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to environmental change: Contributions of a resilience framework. Annu. Rev. Environ. Resour. 2007, 32, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Bozza, A.A. Developing an integrated framework to quantify resilience of urban systems against disasters. Nat. Hazards 2015, 78, 1729–1748. [Google Scholar] [CrossRef]
- Patel, D.A.; Lad, V.H.; Chauhan, K.A.; Patel, K.A. Development of bridge resilience index using multicriteria decision-making techniques. J. Bridge Eng. 2020, 25, 04020090. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Wang, Z.R.; Fu, H.Q.; Zhou, L. Multiple urban resilience evaluation of resource-based cities’ sustainable transformation effect. Resour. Conserv. Recy. 2023, 191, 106912. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.M.; Du, M.Z. Differences and drivers of urban resilience in eight major urban agglomerations: Evidence from China. Land 2022, 11, 1470. [Google Scholar] [CrossRef]
- Feng, X.; Xiu, C.; Bai, L.; Zhong, Y.; Wei, Y. Comprehensive evaluation of urban resilience based on the perspective of landscape pattern: A case study of Shenyang city. Cities 2020, 104, 102722. [Google Scholar] [CrossRef]
- Li, D.Q.; Selig, E.T. Resilient modulus for fine-Grained subgrade soils. Mech. Mater. ASCE Am. Soc. Civ. Eng. 1994, 120, 939–957. [Google Scholar] [CrossRef]
- Bacchi, S.; Licinio, J. Resilience and psychological distress in psychology and medical students. Acad. Psychiatr. 2016, 41, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Freshwater, D. Vulnerability and resilience: Two dimensions of rurality. Sociol. Rural. 2015, 55, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhang, X.Q.; Huang, C.H. Influence of population agglomeration on urban economic resilience in China. Sustainability 2022, 14, 10407. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, B.; Liu, Y.; Li, Y.; Wang, S.; Zhan, T.; Wang, Y.; Gao, D. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agric. For. Meteorol. 2022, 314, 108809. [Google Scholar] [CrossRef]
- van Hoek, R. Research opportunities for a more resilient post-COVID-19 supply chain–closing the gap between research findings and industry practice. Int. J. Oper. Prod. Man. 2020, 40, 341–355. [Google Scholar]
- Wilbanks, T.J. Enhancing the resilience of communities to natural and other hazards: What we know and what we can do. Nat. Hazards Obs. 2008, 32, 10–11. [Google Scholar]
- Sharma, N.; Tabandeh, A.; Gardoni, P. Resilience analysis: A mathematical formulation to model resilience of engineering systems. Sustain. D Resil. Infras. 2017, 3, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Allan, P.; Bryant, M. Resilience as a framework for urbanism and recovery. J. Landsc. Archit. 2011, 6, 34–45. [Google Scholar] [CrossRef]
- Kuang, D.; Liao, K.H. Learning from floods: Linking flood experience and flood resilience. J. Environ. Manag. 2020, 271, 111025. [Google Scholar] [CrossRef]
- Ouyang, M.; Liu, C.; Xu, M. Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions. Reliab. Eng. Syst. Saf. 2019, 190, 106506. [Google Scholar] [CrossRef]
- Azadeh, A.; Hasannia, K.M.; Salehi, V. The impact of redundancy on resilience engineering in a petrochemical plant by data envelopment analysis. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2016, 230, 285–296. [Google Scholar] [CrossRef]
- Zhao, R.D.; Fang, C.L.; Liu, J.; Zhang, L.F. The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities. Sustain. Cites Soc. 2022, 86, 104160. [Google Scholar] [CrossRef]
- Mu, X.; Fang, C.; Yang, Z. Spatio-temporal evolution and dynamic simulation of the urban resilience of Beijing-Tianjin-Hebei urban agglomeration. J. Geogr. Sci. 2022, 32, 1766–1790. [Google Scholar] [CrossRef]
- Qiu, H.; Pei, J.J. Urban stormwater resilience assessment method based on cloud model and TOPSIS. Int. J. Environ. Res. Public Health 2022, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Xue, Z.J.; Tang, L.Y.; Ge, H.Y. Research on resilience evaluation and enhancement of deep foundation pit construction safety system. Buildings 2022, 12, 1922. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Liu, E.; Hu, W. Exploring the resilience assessment framework of urban road network for sustainable cities. Phys. A 2022, 586, 126465. [Google Scholar] [CrossRef]
- Vogel, C.; Moser, S.C.; Kasperson, R.E.; Dabelko, G.D. Linking vulnerability, adaptation, and resilience science to practice: Pathways, players, and partnerships. Glob. Environ. Chang. 2007, 17, 349–364. [Google Scholar] [CrossRef]
- Eakin, H.C.; Wehbe, M.B. Linking local vulnerability to system sustainability in a resilience framework: Two cases from Latin America. Clim. Chang. 2008, 93, 355–377. [Google Scholar] [CrossRef]
- Brown, C.; Shaker, R.R.; Das, R. A review of approaches for monitoring and evaluation of urban climate resilience initiatives. Environ. Dev. Sustain. 2016, 20, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- He, J.S.; Fan, X.J.; Wu, L.C. Identification and evaluation of urban rail transit operation risk factors based on Entropy-AHP hybrid constrained DEA method. J. Adv. Transp. 2022, 2022, 6241096. [Google Scholar] [CrossRef]
- Datola, G.; Bottero, M.; De Angelis, E.; Romagnoli, F. Operationalising resilience: A methodological framework for assessing urban resilience through System Dynamics Model. Ecol. Model. 2022, 465, 109851. [Google Scholar] [CrossRef]
- Ostadtaghizadeh, A.; Ardalan, A.; Paton, D.; Jabbari, H.; Khankeh, H.R. Community disaster resilience: A systematic review on assessment models and tools. PLoS Curr. 2015, 7, 25905026. [Google Scholar] [CrossRef]
- Fang, D.P.; Li, Z.S.; Li, N.; Han, L.H.; Wu, J.P.; Lu, X.Z.; Kong, X.M.; Li, Y.; Lu, X.L. Urban resilience: A perspective of system of systems in trio spaces. China Civ. Eng. J. 2017, 50, 1–7. (In Chinese) [Google Scholar]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. Community and regional resilience: Perspectives from hazards, disasters, and emergency management. Geography 2008, 1, 2301–2306. [Google Scholar]
- Kasai, S.; Li, N.; Fang, D. A system-of-systems approach to understanding urbanization-state of the art and prospect. Smart Sustain. Built 2015, 4, 154–171. [Google Scholar] [CrossRef]
- Lin, W.S.; Liu, W. Resilience evaluation of ports along the Maritime Silk Road from the perspective of investment and construction. J. Adv. Transp. 2023, 2023, 8818667. [Google Scholar] [CrossRef]
- Liu, Z.; Xiu, C.; Ye, C. Improving urban resilience through green infrastructure: An integrated approach for connectivity conservation in the central city of Shenyang, China. Complexity 2020, 2020, 1653493. [Google Scholar] [CrossRef]
- Sharifi, A. Resilient urban forms: A macro-scale analysis. Cities 2019, 85, 1–14. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Gonçalves, L. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Abdollah, S.; Burden, L.I. Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports. Reliab. Eng. Syst. Saf. 2014, 132, 207–219. [Google Scholar]
- Yang, X.; Zhang, D.; Liu, L.; Niu, J.; Zhang, X.; Wang, X. Development trajectory for the temporal and spatial evolution of the resilience of regional tourism environmental systems in 14 cities of Gansu Province, China. Environ. Sci. Pollut. R. 2021, 28, 65094–65115. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Y.; Wang, E.D.; Wang, Y.; Zhang, J. Measuring urban infrastructure resilience via Pressure-State-Response framework in four Chinese Municipalities. Appl. Sci.-BASEL 2022, 12, 2819. [Google Scholar] [CrossRef]
- Li, H.Q.; Fan, Y.Q.; Yu, M.J. Deep Shanghai project—A strategy of infrastructure integration for megacities. Tunn. Undergr. Space Technol. 2018, 81, 547–567. [Google Scholar] [CrossRef]
- Wang, J.; Foley, K. Assessing the performance of urban open space for achieving sustainable and resilient cities: A pilot study of two urban parks in Dublin, Ireland. Urban For. Urban Green. 2021, 62, 127180. [Google Scholar] [CrossRef]
- Desouza, K.C.; Flanery, T.H. Designing, planning, and managing resilient cities: A conceptual framework. Cities 2013, 35, 89–99. [Google Scholar] [CrossRef]
- Xu, L.; Guo, Q.; Sheng, Y.; Muyeen, S.M.; Sun, H. On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective. Renew. Sustain. Energy Rev. 2021, 152, 111642. [Google Scholar] [CrossRef]
- Modares, H.; Lewis, F.L.; Naghibi-Sistani, M.B. Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems. Automatica 2014, 50, 193–202. [Google Scholar] [CrossRef]
- Wu, H.W.; Zhen, J.; Zhang, J. Urban rail transit operation safety evaluation based on an improved CRITIC method and cloud model. J. Rail Transp. Plan. Manag. 2020, 16, 100206. [Google Scholar] [CrossRef]
- Guo, J.; Feng, H.; Sun, J.; Cao, P.; Wang, W.; Chen, H.; Yu, Y. Application of cloud model to evaluation of forest soil fertility: A case in Chinese fir plantations in Southern China. Sustainability 2019, 11, 6286. [Google Scholar] [CrossRef] [Green Version]
- Chao, L.; Zhang, H.X.; Liu, S.; Guo, Y. Fishing capacity evaluation of fishing vessel based on cloud model. Sci. Rep. 2022, 12, 8976. [Google Scholar]
- Hu, Y.; Wu, L.; Pan, X.; Wang, Z.; Xu, X. Comprehensive evaluation of cloud manufacturing service based on Fuzzy Theory. Int. J. Fuzzy Syst. 2021, 23, 1755–1764. [Google Scholar] [CrossRef]
- Lu, H.A.; Zhao, Y.M.; Zhou, X.; Wei, Z.K. Selection of agricultural machinery based on improved CRITIC-Entropy weight and GRA-TOPSIS method. Processes 2022, 10, 266. [Google Scholar] [CrossRef]
- Pei, J.J.; Liu, W.; Han, L. Research on evaluation index system of Chinese city safety resilience based on Delphi method and cloud model. Int. J. Environ. Res. Public Health 2019, 16, 3802. [Google Scholar] [CrossRef] [Green Version]
- Craciun, I.; Inoan, D.; Popa, D.; Tudose, L. Generalized Golden Ratios defined by means. Appl. Math. Comput. 2015, 250, 221–227. [Google Scholar] [CrossRef]
- Ma, X. Is big data a big dilemma or a big opportunity in China? Intellectual property protection in the era of big data. China WTO Rev. 2018, 4, 67–92. [Google Scholar] [CrossRef] [Green Version]
Target | Guideline | Code | Indicator (Units) | Sources |
---|---|---|---|---|
Physical Space | Robustness | P1 | 10,000 people have paved road (10,000 square meters) | [46,50,51,52] |
P2 | Number of days to meet air quality standards (days) | |||
Efficiency | P3 | Density of water supply and drainage network in the built-up area (km/km2) | ||
P4 | Centralized sewage treatment rate (%) | |||
Resourcefulness | P5 | Number of domestic air routes (No.) | ||
P6 | Growth rate of fixed asset investment (%) | |||
Redundancy | P7 | Greening coverage of built-up areas (%) | ||
P8 | The proportion of urban traffic trunk lines in the national traffic trunk lines (%) | |||
Adaptation | P9 | Urban construction and maintenance tax (million yuan) | ||
P10 | Electricity consumption of 10,000 Yuan GDP (kWh/Yuan) | |||
Societal Space | Robustness | S1 | Registered unemployment rate (%) | [17,53,54] |
S2 | Per capita disposable income (yuan) | |||
S3 | Number of health care institutions (pcs) | |||
Efficiency | S4 | Number of doctors per 10,000 people (persons) | ||
S5 | GDP growth rate (%) | |||
Resourcefulness | S6 | Tertiary sector to GDP (%) | ||
S7 | Growth rate of medical bed capacity (%) | |||
Redundancy | S8 | Urban basic pension insurance coverage rate (%) | ||
S9 | Urban basic medical insurance coverage rate (%) | |||
Adaptation | S10 | Public finance revenue as a percentage of GDP (%) | ||
S11 | Foreign trade dependence (%) | |||
Cyberspace | Robustness | I1 | Number of Internet broadband users per 10,000 people (households) | [46,55,56] |
I2 | Public library collection per 100 people (books) | |||
Efficiency | I3 | Number of cell phones per 10,000 people (units) | ||
Resourcefulness | I4 | Share of science and technology expenditure in fiscal expenditure (%) | ||
Redundancy | I5 | Research and experimental development expenditure as a proportion of GDP (%) | ||
I6 | Growth rate of technology market contract turnover (%) | |||
Adaptation | I7 | Number of patents applied for by 10,000 people (pieces) | ||
I8 | Number of students in general higher education schools for 10,000 people (people) |
Levels | Zone | Parameter Characteristics (Ex, En, He) |
---|---|---|
Very poor | [0.0, 0.2) | (0.000, 0.103, 0.013) |
Poor | (0.2, 0.4) | (0.309, 0.064, 0.008) |
Qualified | (0.4, 0.6) | (0.500, 0.039, 0.005) |
Good | (0.6, 0.8) | (0.691, 0.064, 0.008) |
Excellent | (0.8, 1.0] | (1.000, 0.103, 0.013) |
Code | Year | ||||||
---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
P1 | 0.0328 | 0.0306 | 0.0375 | 0.0303 | 0.0390 | 0.0349 | 0.0404 |
P2 | 0.0274 | 0.0293 | 0.0307 | 0.0313 | 0.0306 | 0.0330 | 0.0340 |
P3 | 0.0396 | 0.0456 | 0.0296 | 0.0417 | 0.0321 | 0.0283 | 0.0368 |
P4 | 0.0268 | 0.0266 | 0.0288 | 0.0449 | 0.0291 | 0.0327 | 0.0309 |
P5 | 0.0279 | 0.0281 | 0.0313 | 0.0297 | 0.0307 | 0.0341 | 0.0397 |
P6 | 0.0405 | 0.0356 | 0.0516 | 0.0274 | 0.0244 | 0.0458 | 0.0317 |
P7 | 0.0256 | 0.0291 | 0.0272 | 0.0269 | 0.0273 | 0.0427 | 0.0252 |
P8 | 0.0272 | 0.0289 | 0.0305 | 0.0282 | 0.0243 | 0.0268 | 0.0268 |
P9 | 0.0264 | 0.0265 | 0.0263 | 0.0255 | 0.0254 | 0.0258 | 0.0243 |
P10 | 0.0528 | 0.0406 | 0.0349 | 0.0327 | 0.0412 | 0.0408 | 0.0420 |
S1 | 0.0370 | 0.0306 | 0.0321 | 0.0348 | 0.0282 | 0.0279 | 0.0292 |
S2 | 0.0283 | 0.0318 | 0.0319 | 0.0332 | 0.0314 | 0.0330 | 0.0453 |
S3 | 0.0406 | 0.0361 | 0.0282 | 0.0271 | 0.0323 | 0.0293 | 0.0354 |
S4 | 0.0262 | 0.0269 | 0.0284 | 0.0299 | 0.0287 | 0.0287 | 0.0325 |
S5 | 0.0353 | 0.0388 | 0.0338 | 0.0272 | 0.0314 | 0.0341 | 0.0473 |
S6 | 0.0422 | 0.0345 | 0.0386 | 0.0382 | 0.0368 | 0.0411 | 0.0402 |
S7 | 0.0389 | 0.0343 | 0.0323 | 0.0334 | 0.0284 | 0.0309 | 0.0302 |
S8 | 0.0330 | 0.0408 | 0.0392 | 0.0540 | 0.0544 | 0.0483 | 0.0322 |
S9 | 0.0339 | 0.0402 | 0.0473 | 0.0321 | 0.0330 | 0.0310 | 0.0314 |
S10 | 0.0327 | 0.0505 | 0.0401 | 0.0345 | 0.0346 | 0.0346 | 0.0297 |
S11 | 0.0264 | 0.0277 | 0.0269 | 0.0265 | 0.0255 | 0.0270 | 0.0256 |
I1 | 0.0447 | 0.0509 | 0.0559 | 0.0604 | 0.0643 | 0.0646 | 0.0433 |
I2 | 0.0314 | 0.0300 | 0.0333 | 0.0323 | 0.0308 | 0.0317 | 0.0332 |
I3 | 0.0267 | 0.0296 | 0.0356 | 0.0403 | 0.0483 | 0.0300 | 0.0327 |
I4 | 0.0404 | 0.0430 | 0.0339 | 0.0376 | 0.0482 | 0.0380 | 0.0263 |
I5 | 0.0382 | 0.0287 | 0.0289 | 0.0433 | 0.0284 | 0.0296 | 0.0319 |
I6 | 0.0523 | 0.0302 | 0.0291 | 0.0353 | 0.0388 | 0.0317 | 0.0328 |
I7 | 0.0298 | 0.0417 | 0.0415 | 0.0322 | 0.0378 | 0.0271 | 0.0464 |
I8 | 0.0351 | 0.0329 | 0.0346 | 0.0293 | 0.0346 | 0.0366 | 0.0428 |
Year | Harbin | Changchun | Shenyang | Dalian |
---|---|---|---|---|
2014 | (0.481, 0.321, 0.001) | (0.497, 0.319, 0.001) | (0.491, 0.325, 0.001) | (0.503, 0.320, 0.001) |
2015 | (0.476, 0.322, 0.001) | (0.504, 0.321, 0.001) | (0.494, 0.327, 0.001) | (0.493, 0.322, 0.001) |
2016 | (0.485, 0.322, 0.001) | (0.507, 0.322, 0.001) | (0.496, 0.323, 0.001) | (0.496, 0.323, 0.001) |
2017 | (0.479, 0.321, 0.001) | (0.507, 0.319, 0.001) | (0.504, 0.324, 0.001) | (0.480, 0.323, 0.001) |
2018 | (0.473, 0.322, 0.001) | (0.507, 0.320, 0.001) | (0.495, 0.322, 0.001) | (0.496, 0.320, 0.001) |
2019 | (0.485, 0.324, 0.001) | (0.497, 0.318, 0.001) | (0.505, 0.325, 0.001) | (0.491, 0.320, 0.001) |
2020 | (0.475, 0.325, 0.001) | (0.498, 0.323, 0.001) | (0.501, 0.326, 0.001) | (0.490, 0.325, 0.001) |
Year | City | Physical Space | Societal Space | Cyberspace |
---|---|---|---|---|
2014 | Harbin | (0.472, 0.247, 0.001) | (0.492, 0.260, 0.001) | (0.409, 0.242, 0.001) |
Changchun | (0.559, 0.251, 0.001) | (0.491, 0.267, 0.001) | (0.446, 0.218, 0.001) | |
Shenyang | (0.490, 0.248, 0.001) | (0.490, 0.279, 0.001) | (0.489, 0.232, 0.001) | |
Dalian | (0.461, 0.246, 0.001) | (0.501, 0.267, 0.001) | (0.538, 0.222, 0.001) | |
2015 | Harbin | (0.468, 0.250, 0.001) | (0.470, 0.257, 0.001) | (0.391, 0.245, 0.001) |
Changchun | (0.549, 0.254, 0.001) | (0.504, 0.263, 0.001) | (0.469, 0.218, 0.001) | |
Shenyang | (0.506, 0.254, 0.001) | (0.495, 0.276, 0.001) | (0.506, 0.236, 0.001) | |
Dalian | (0.475, 0.247, 0.001) | (0.503, 0.267, 0.001) | (0.535, 0.222, 0.001) | |
2016 | Harbin | (0.541, 0.252, 0.001) | (0.455, 0.265, 0.001) | (0.429, 0.229, 0.001) |
Changchun | (0.551, 0.250, 0.001) | (0.480, 0.265, 0.001) | (0.515, 0.220, 0.001) | |
Shenyang | (0.452, 0.254, 0.001) | (0.515, 0.263, 0.001) | (0.492, 0.231, 0.001) | |
Dalian | (0.483, 0.253, 0.001) | (0.517, 0.269, 0.001) | (0.488, 0.223, 0.001) | |
2017 | Harbin | (0.503, 0.245, 0.001) | (0.469, 0.263, 0.001) | (0.369, 0.242, 0.001) |
Changchun | (0.509, 0.256, 0.001) | (0.460, 0.264, 0.001) | (0.589, 0.225, 0.001) | |
Shenyang | (0.519, 0.252, 0.001) | (0.544, 0.267, 0.001) | (0.454, 0.235, 0.001) | |
Dalian | (0.489, 0.246, 0.001) | (0.498, 0.264, 0.001) | (0.405, 0.244, 0.001) | |
2018 | Harbin | (0.507, 0.248, 0.001) | (0.465, 0.264, 0.001) | (0.391, 0.236, 0.001) |
Changchun | (0.526, 0.259, 0.001) | (0.473, 0.256, 0.001) | (0.539, 0.219, 0.001) | |
Shenyang | (0.498, 0.251, 0.001) | (0.547, 0.268, 0.001) | (0.436, 0.235, 0.001) | |
Dalian | (0.505, 0.253, 0.001) | (0.493, 0.262, 0.001) | (0.479, 0.216, 0.001) | |
2019 | Harbin | (0.504, 0.251, 0.001) | (0.475, 0.268, 0.001) | (0.436, 0.229, 0.001) |
Changchun | (0.471, 0.249, 0.001) | (0.467, 0.258, 0.001) | (0.548, 0.214, 0.001) | |
Shenyang | (0.510, 0.257, 0.001) | (0.550, 0.274, 0.001) | (0.459, 0.227, 0.001) | |
Dalian | (0.496, 0.245, 0.001) | (0.497, 0.264, 0.001) | (0.466, 0.219, 0.001) | |
2020 | Harbin | (0.480, 0.253, 0.001) | (0.449, 0.267, 0.001) | (0.452, 0.233, 0.001) |
Changchun | (0.503, 0.262, 0.001) | (0.501, 0.254, 0.001) | (0.471, 0.229, 0.001) | |
Shenyang | (0.510, 0.258, 0.001) | (0.530, 0.266, 0.001) | (0.453, 0.238, 0.001) | |
Dalian | (0.463, 0.246, 0.001) | (0.470, 0.275, 0.001) | (0.525, 0.231, 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, X.; Lu, D. Evaluation of Urban Resilience Based on Trio Spaces: An Empirical Study in Northeast China. Buildings 2023, 13, 1695. https://doi.org/10.3390/buildings13071695
Zhang J, Yang X, Lu D. Evaluation of Urban Resilience Based on Trio Spaces: An Empirical Study in Northeast China. Buildings. 2023; 13(7):1695. https://doi.org/10.3390/buildings13071695
Chicago/Turabian StyleZhang, Jiayu, Xiaodong Yang, and Dagang Lu. 2023. "Evaluation of Urban Resilience Based on Trio Spaces: An Empirical Study in Northeast China" Buildings 13, no. 7: 1695. https://doi.org/10.3390/buildings13071695
APA StyleZhang, J., Yang, X., & Lu, D. (2023). Evaluation of Urban Resilience Based on Trio Spaces: An Empirical Study in Northeast China. Buildings, 13(7), 1695. https://doi.org/10.3390/buildings13071695