3D Modeling & Analysis Techniques for the Apollo Temple in Delphi
Abstract
:1. Introduction
1.1. 3D Modeling Techniques for HBIM and Structural Analysis
- Documentation of heritage buildings and artifacts for conservation and restoration purposes;
- Historical techniques and material studies;
- Building technique analysis;
- Digital reconstructions of destroyed or partially demolished buildings;
- Digital scenarios of reconstruction options
- Support of conservation, restoration, and strengthening studies
- Academic research;
- Archiving;
- Virtual tours;
- Tourism endorsement.
- Topometric: These survey methods are traditional, usually based on the triangulation principle. They are typically applied to buildings of small dimensions since their accuracy is limited. The maximum accuracy is around 5–10 cm for a scale of 1:50.
- Topographic: These methods are around 100 years old and are typically used for big buildings. The accuracy is around 1–1.5 cm for a scale of 1:50.
- Photogrammetric: These methods are based on taking several photos of the building from predetermined positions and later stitching all of those pictures together. The resulting pictures are geo-referenced with high accuracy. Results can be visualized on coordinates and maps or directly on 3D models.
- Laser scanner-based methods: Laser scanners capture both shape and texture. They operate quickly, are often contactless, and have high resolution and accuracy. Results are stored on a point cloud and can be processed to obtain 3D models. Laser scanners dominate the industry since they can scan practically anything, as long as it lies on their detection beam.
1.2. Historical Background
1.3. Research Aims and Objectives
2. Materials and Methods
2.1. 3D Scanning
2.2. 3D Modeling for FEM Analysis
- Increase point cloud density, adjusting the Level-of-Detail and the Point Size commands—this step is crucial since it affects the visibility of the point cloud and, therefore, the denser the points, the more precise the modeling.
- Drawing on floorplans, using the Polyline command to trace building elements on the horizontal plane and extruding the volumes along the Z-axis.
- Particular attention was paid to eliminating voids since FEM analysis expects water-tight meshes, and there could be no gaps between the blocks of the dry-stone columns. The resulting simplified CAD-crafted 3D model (see Figure 3 and Figure 4), devoid of its high LoD, could then be imported to FEM packages [10].
2.3. FEM Analysis
- Phase 1: problem definition—we chose structural analysis to solve static problems, whereas modal analysis was used to perform dynamic analysis;
- Phase 2: geometry input;
- Phase 3: material definition;
- Phase 4: mesh creation;
- Phase 5: input of active loads and bearing structure;
- Phase 6: resolution;
- Phase 7: presentation of results.
2.3.1. Material Definition
2.3.2. Meshing
3. Results
4. Discussion and Conclusions
- Modeling on point clouds has significant positive effects on precision, accuracy, and time compared to more traditional methods;
- A balance between representation accuracy and computational speed was pursued, and the results proved to be acceptable;
- During FEM analysis, using software commands (herein, ANSYS) was extremely beneficial, as voids were avoided and analysis could be properly performed;
- Stress analysis for static loading produced results as expected and was used for the final check of the model;
- Dynamic analysis demonstrated the vulnerability against earthquakes and the prevalence of horizontal vibration modes, as analyzed with eight modes;
- Advance computational tools equipped with predictive non-linear dynamic analyses are essential for the seismic vulnerability of complex structural typologies [66].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pocobelli, D.P.; Boehm, J.; Bryan, P.; Still, J.; Grau-Bové, J. BIM for heritage science: A review. Herit. Sci. 2018, 6, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Kontoudaki, A.; Georgopoulos, A. Hbim Library Development for a Doric Temple Column. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2022, 43, 1153–1158. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Vintzileou, E.; Psycharis, I.N. Finite element analysis of the seismic response of ancient columns. Earthq. Eng. Struct. Dyn. 2019, 48, 1432–1450. [Google Scholar] [CrossRef]
- Asteris, P.G.; Chronopoulos, M.P.; Chrysostomou, C.Z.; Varum, H.; Plevris, V.; Kyriakides, N.; Silva, V. Seismic vulnerability assessment of historical masonry structural systems. Eng. Struct. 2014, 62–63, 118–134. [Google Scholar] [CrossRef]
- Autiero, F.; De Martino, G.; Di Ludovico, M.; Mauro, A.; Prota, A. Multidrum stone columns at the pompeii archaeological site: Analysis of geometrical properties and state of preservation. Heritage 2020, 3, 1069–1082. [Google Scholar] [CrossRef]
- Valente, M. Seismic vulnerability assessment and earthquake response of slender historical masonry bell towers in South-East Lombardia. Eng. Fail. Anal. 2021, 129, 105656. [Google Scholar] [CrossRef]
- Barbieri, G.; Valente, M.; Biolzi, L.; Togliani, C.; Fregonese, L.; Stanga, G. An insight in the late Baroque architecture: An integrated approach for a unique Bibiena church. J. Cult. Herit. 2017, 23, 58–67. [Google Scholar] [CrossRef]
- Fabbrocino, G.; Iervolino, I.; Manfredi, G. Damage mitigation by innovative materials for Temple C at Selinunte. Constr. Build. Mater. 2006, 20, 1040–1048. [Google Scholar] [CrossRef]
- Panagouli, O.K.; Christodoulou, A. Numerical investigation of the contribution of metallic dowels to the stability of multi-drum columns. Dev. Built Environ. 2022, 11, 100082. [Google Scholar] [CrossRef]
- Pitilakis, K.; Tsinidis, G.; Karafagka, S. Analysis of the seismic behavior of classical multi-drum and monolithic columns. Bull. Earthq. Eng. 2017, 15, 5281–5307. [Google Scholar] [CrossRef]
- Stavroulaki, M.E.; Riveiro, B.; Drosopoulos, G.A.; Solla, M.; Koutsianitis, P.; Stavroulakis, G.E. Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Adv. Eng. Softw. 2016, 101, 136–148. [Google Scholar] [CrossRef]
- Sarhosis, V.; Asteris, P.G.; Mohebkhah, A.; Xiao, J.; Wang, T. Three dimensional modelling of ancient colonnade structural systems subjected to harmonic and seismic loading. Struct. Eng. Mech. 2016, 60, 633–653. [Google Scholar] [CrossRef]
- Leftheris, B.P.; Stavroulaki, M.E.; Sapounaki, A.C.; Stavroulakis, G.E. Computational Mechanics for Heritage Structures; High Performance Structures and Materials, 9; WIT Press: Southampton, UK, 2006. [Google Scholar]
- Mania, K.; Psalti, A.; Lala, D.M.; Tsakoumaki, M.; Polychronakis, A.; Rempoulaki, A.; Xinogalos, M.; Maravelakis, E. Combining 3D Surveying with Archaeological Uncertainty: The Metopes of the Athenian Treasury at Delphi. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021. [Google Scholar] [CrossRef]
- Ursini, A.; Grazzini, A.; Matrone, F.; Zerbinatti, M. From scan-to-BIM to a structural finite elements model of built heritage for dynamic simulation. Autom. Constr. 2022, 142, 104518. [Google Scholar] [CrossRef]
- Bartoli, G.; Betti, M.; Galano, L.; Zini, G. Numerical insights on the seismic risk of confined masonry towers. Eng. Struct. 2019, 180, 713–727. [Google Scholar] [CrossRef]
- Azhar, S.; Khalfan, M.; Maqsood, T. Building information modeling (BIM): Now and beyond. Australas. J. Constr. Econ. Build. 2012, 12, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Bilalis, N.; Maravelakis, E. Advances in Manufacturing and Processing of Materials and Structures, 1st ed.; Bar-Cohen, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bartley, T. “BIM for Civil and Structural Engineers,” BSI, London, UK, 2017. Available online: https://biblus.accasoftware.com/en/wp-content/uploads/sites/2/2017/10/BIM-for-Civil-and-Structural-Engineers.pdf (accessed on 29 May 2023).
- Arayici, Y. Towards building information modelling for existing structures. Struct. Surv. 2008, 26, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Dore, C.; Murphy, M. Semi-automatic techniques for as-built BIM façade modeling of historic buildings. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013. [Google Scholar] [CrossRef]
- Gaiani, M. Creare Sistemi informativi per studiare, conservare, gestire e comunicare sistemi architettonici e archeologici complessi. DisegnareCon 2012, 5, 9–20. [Google Scholar]
- Baik, A.; Boehm, J.; Robson, S. Jeddah historical building information modeling “JHBIM” Old Jeddah—Saudi Arabia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W2, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Arias, P.; Armesto, J.; Di-Capua, D.; González-Drigo, R.; Lorenzo, H.; Pérez-Gracia, V. Digital photogrammetry, GPR and computational analysis of structural damages in a mediaeval bridge. Eng. Fail. Anal. 2007, 14, 1444–1457. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Maravelakis, E.; Konstantaras, A.; Kritsotaki, A.; Angelakis, D.; Xinogalos, M. Analysing user needs for a unified 3D metadata recording and exploitation of cultural heritage monuments system. Lect. Notes Comput. Sci. 2013, 8034, 138–147. [Google Scholar] [CrossRef]
- Murphy, M.; Mcgovern, E.; Pavia, S. Historic building information modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Axaridou, A.; Chrysakis, I.; Georgis, C.; Theodoridou, M.; Doerr, M.; Konstantaras, A.; Maravelakis, E. 3D-SYSTEK: Recording and exploiting the production workflow of 3D-models in Cultural Heritage. In Proceedings of the IISA 2014, the 5th International Conference on Information, Intelligence, Systems and Applications, Chania, Greece, 7–9 July 2014; pp. 51–56. [Google Scholar] [CrossRef]
- Maravelakis, E.; Konstantaras, A.; Kabassi, K.; Chrysakis, I.; Georgis, C.; Axaridou, A. 3DSYSTEK web-based point cloud viewer. In Proceedings of the IISA 2014, the 5th International Conference on Information, Intelligence, Systems and Applications, Chania, Greece, 7–9 July 2014; pp. 262–266. [Google Scholar] [CrossRef]
- Ioannides, M.; Magnenat-Thalmann, N.; Fink, E.; Žarnić, R.; Yen, A.Y.; Quak, E. Digital Heritage: Progress in Cultural Heritage: Documentation, Preservation, and Protection: 5th International Conference, EuroMed 2014 Limassol, Cyprus, 3–8 November 2014 Proceedings; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8740, ISBN 9783319136943. [Google Scholar]
- Maravelakis, E.; Konstantaras, A.; Kilty, J.; Karapidakis, E.; Katsifarakis, E. Automatic building identification and features extraction from aerial images: Application on the historic 1866 square of Chania Greece. In Proceedings of the 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 28–29 November 2014; pp. 7–12. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
- Motsa, S.M.; Drosopoulos, G.A.; Stavroulaki, M.E.; Maravelakis, E.; Borg, R.P.; Galea, P.; d’Amico, S.; Stavroulakis, G.E. Structural investigation of Mnajdra megalithic monument in Malta. J. Cult. Herit. 2020, 41, 96–105. [Google Scholar] [CrossRef]
- Tapkin, S.; Tercan, E.; Motsa, S.; Drosopoulos, G.; Stavroulaki, M.; Maravelakis, E.; Stavroulakis, G. Structural Investigation of Masonry Arch Bridges Using Various Nonlinear Finite-Element Models. J. Bridg. Eng. 2022, 27, 04022053. [Google Scholar] [CrossRef]
- Calvano, M.; Guadagnoli, F. 3D reconstruction of the city of Amatrice. An “instant modelling” operation. Disegnarecon 2016, 9, 7.1–7.9. [Google Scholar]
- Cheng, J.C.P.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Stavroulakis, G.E.; Charalambidi, B.G.; Koutsianitis, P. Review of Computational Mechanics, Optimization, and Machine Learning Tools for Digital Twins Applied to Infrastructures. Appl. Sci. 2022, 12, 11997. [Google Scholar] [CrossRef]
- Borin, P.; Cavazzini, F. Condition Assessment of RC Bridges. Integrating Machine Learning, Photogrammetry and BIM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Abbate, E.; Invernizzi, S. HBIM parametric modelling from clouds to perform structural analyses based on finite elements: A case study on a parabolic concrete vault. Appl. Geomat. 2022, 14, 79–96. [Google Scholar] [CrossRef]
- Alfio, V.S.; Costantino, D.; Pepe, M.; Garofalo, A.R. A Geomatics Approach in Scan to FEM Process Applied to Cultural Heritage Structure: The Case Study of the “Colossus of Barletta”. Remote Sens. 2022, 14, 664. [Google Scholar] [CrossRef]
- Moyano, J.; Gil-Arizón, I.; Nieto-Julián, J.E.; Marín-García, D. Analysis and management of structural deformations through parametric models and HBIM workflow in architectural heritage. J. Build. Eng. 2022, 45, 103274. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Garofalo, A.R. An efficient pipeline to obtain 3D model for HBIM and structural analysis purposes from 3D point clouds. Appl. Sci. 2020, 10, 1235. [Google Scholar] [CrossRef] [Green Version]
- Santini, S.; Canciani, M.; Borghese, V.; Sabbatini, V. From Digital Restitution to Structural Analysis of a Historical Adobe Building: The Escuela Jos é Mariano M é ndez in El Salvador. Heritage 2023, 6, 4362–4379. [Google Scholar] [CrossRef]
- Galanakis, D.; Maravelakis, E.; Phaedra, D.; Vidakis, N.; Petousis, M.; Konstantaras, A.; Tsakoumaki, M. SVD-based point cloud 3D stone by stone segmentation for cultural heritage structural analysis—The case of the Apollo Temple at Delphi. J. Cult. Herit. 2023, 61, 177–187. [Google Scholar] [CrossRef]
- Historic England 2018 3D Laser Scanning for Heritage: Advice and Guidance on the Use of Laser Scanning in Archaeology and Architecture. Swindon. Historic England. Available online: https://HistoricEngland.org.uk/advice/technical-advice/recording-heritage/ (accessed on 29 June 2023).
- Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R. DIGITAL 3D Borobodur: Integration of 3d surveying and modeling techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Vuoto, A.; Funari, M.F.; Lourenço, P.B. On the Use of the Digital Twin Concept for the Structural Integrity Protection of Architectural Heritage. Infrastructures 2023, 8, 86. [Google Scholar] [CrossRef]
- Amandry, P.; Hansen, E. Fouilles de Delphes, Tome II, Topographie et Architecture, Fascicule I, II et III, le Temple d’Apollon du IVe Siècle; E. De Boccard: Paris, France, 2010; ISBN 2869582056/2-86958-205-6. [Google Scholar]
- Bommelaer, J.-F. Guide de Delphes: Le Site; Ecole française d’Athènes EFA: Athens, Greece, 2016. [Google Scholar]
- De Vals, M.; Gastineau, R.; Perrier, A.; Rubi, R.; Moretti, I. The stones of the Sanctuary of Delphi—Northern shore of the Corinth Gulf—Greece. BSGF—Earth Sci. Bull. 2020, 191, 11. [Google Scholar] [CrossRef]
- Liritzis, I.; Guibert, P.; Foti, F.; Schvoerer, M. The temple of Apollo (Delphi) strengthens novel thermoluminescence dating method. Geoarchaeol. Int. J. 1997, 12, 479–496. [Google Scholar] [CrossRef]
- Liritzis, I.; Vlachos, A.; Georgopoulos, A.; Archaeology, M.; Engineering, S. The lighting of god’s face during solar stands in the Apollo temple in Delphi. Mediterr. Archaeol. Archaeom. 2018, 18, 225–246. [Google Scholar] [CrossRef]
- Idjaton, K.; Desquesnes, X.; Treuillet, S.; Brunetaud, X. Stone-by-Stone Segmentation for Monitoring Large Historical Monuments Using Deep Neural Networks. Lect. Notes Comput. Sci. 2021, 12667, 235–248. [Google Scholar] [CrossRef]
- Garagnani, S. Building Information Modeling and real world knowledge: A methodological approach to accurate semantic documentation for the built environment. In Proceedings of the 2013 Digital Heritage International Congress, Marseille, France, 28 October–1 November 2013. [Google Scholar] [CrossRef]
- Nieto-Julián, J.E.; Farratell, J.; Bouzas Cavada, M.; Moyano, J. Collaborative Workflow in an HBIM Project for the Restoration and Conservation of Cultural Heritage. Int. J. Archit. Herit. 2022, 1–20. [Google Scholar] [CrossRef]
- Treccani, D.; Balado, J.; Fernández, A.; Adami, A.; Díaz-Vilariño, L. A Deep Learning Approach for the Recognition of Urban Ground Pavements in Historical Sites. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2022, 43, 321–326. [Google Scholar] [CrossRef]
- Liu, Z.; Brigham, R.; Long, E.R.; Wilson, L.; Frost, A.; Orr, S.A.; Grau-Bové, J. Semantic segmentation and photogrammetry of crowdsourced images to monitor historic facades. Herit. Sci. 2022, 10, 27. [Google Scholar] [CrossRef]
- Poux, F.; Neuville, R.; Billen, R. Point Cloud Classification of Tesserae from Terrestrial Laser Data Combined with Dense Image Matching for Archaeological Information Extraction. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Valero, E.; Bosché, F.; Forster, A. Automatic segmentation of 3D point clouds of rubble masonry walls, and its application to building surveying, repair and maintenance. Autom. Constr. 2018, 96, 29–39. [Google Scholar] [CrossRef]
- Barsanti, S.G.; Guidi, G.; Luca, L. De Segmentation of 3d Models for Cultural Heritage Structural Analysis—Some Critical Issues. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Pepe, M.; Alfio, V.S.; Costantino, D.; Scaringi, D. Data for 3D reconstruction and point cloud classification using machine learning in cultural heritage environment. Data Brief 2022, 42, 108250. [Google Scholar] [CrossRef]
- Kyriakaki-Grammatikaki, S.; Stathopoulou, E.K.; Grilli, E.; Remondino, F.; Georgopoulos, A. Geometric Primitive Extraction From Semantically Enriched Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2022, 46, 291–298. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Milani, G.; de Miranda, S.; Castellazzi, G.; Sarhosis, V. Stability analysis of leaning historic masonry structures. Autom. Constr. 2018, 92, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Baudouin, T.C.; Remacle, J.F.; Marchandise, E.; Henrotte, F.; Geuzaine, C. A frontal approach to hex-dominant mesh generation. Adv. Model. Simul. Eng. Sci. 2014, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Valente, M. Seismic behavior and damage assessment of two historical fortified masonry palaces with corner towers. Eng. Fail. Anal. 2022, 134, 106003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maravelakis, E.; Giannioti, G.; Psalti, A.; Tsakoumaki, M.; Pocobelli, D.P.; Xinogalos, M.; Galanakis, D.; Bilalis, N.; Stavroulakis, G. 3D Modeling & Analysis Techniques for the Apollo Temple in Delphi. Buildings 2023, 13, 1730. https://doi.org/10.3390/buildings13071730
Maravelakis E, Giannioti G, Psalti A, Tsakoumaki M, Pocobelli DP, Xinogalos M, Galanakis D, Bilalis N, Stavroulakis G. 3D Modeling & Analysis Techniques for the Apollo Temple in Delphi. Buildings. 2023; 13(7):1730. https://doi.org/10.3390/buildings13071730
Chicago/Turabian StyleMaravelakis, Emmanuel, Georgia Giannioti, Athanasia Psalti, Marilena Tsakoumaki, Danae Phaedra Pocobelli, Michael Xinogalos, Demitrios Galanakis, Nikolaos Bilalis, and Georgios Stavroulakis. 2023. "3D Modeling & Analysis Techniques for the Apollo Temple in Delphi" Buildings 13, no. 7: 1730. https://doi.org/10.3390/buildings13071730
APA StyleMaravelakis, E., Giannioti, G., Psalti, A., Tsakoumaki, M., Pocobelli, D. P., Xinogalos, M., Galanakis, D., Bilalis, N., & Stavroulakis, G. (2023). 3D Modeling & Analysis Techniques for the Apollo Temple in Delphi. Buildings, 13(7), 1730. https://doi.org/10.3390/buildings13071730