Study on Temperature Distribution along the Ultra-Long Underwater Tunnel: Based on the Long-Term Measured Results of the Shanghai Yangtze River Tunnel
Abstract
1. Introduction
2. Method
2.1. Tunnel Overview
2.2. Measuring Process
3. Results
3.1. Operation Monitoring Data
3.2. Field Measurement Data
3.3. Long-Term Measurement Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M. An overview of development of railways, tunnels and underground works in China. Tunn. Undergr. Space Technol. 2010, 30, 351–364. [Google Scholar] [CrossRef]
- Lai, J.; Wang, X.; Qiu, J.; Zhang, G.; Chen, J.; Xie, Y.; Luo, Y. A state-of-the-art review of sustainable energy-based freeze proof technology for cold-region tunnels in China. Tunn. Undergr. Space Technol. 2018, 82, 3554–3569. [Google Scholar] [CrossRef]
- Yasuda, N.; Tsukada, K.; Asakura, T. Field measurements of environmental parameter and pollutant dispersion in urban undersea road tunnel. Tunn. Undergr. Space Technol. 2019, 149, 100–108. [Google Scholar] [CrossRef]
- Srinavin, K.; Mohamed, S. Thermal environment and construction workers’ productivity: Some evidence from Thailand. Tunn. Undergr. Space Technol. 2003, 38, 339–345. [Google Scholar] [CrossRef]
- Yunpeng, H.; Mingnian, W.; Qiling, W.; Dagang, L.; Jianjun, T. Field test of thermal environment and thermal adaptation of workers in high geothermal tunnel. Tunn. Undergr. Space Technol. 2019, 160, 106174. [Google Scholar] [CrossRef]
- Tang, F.; He, Q.; Shi, Q. Experimental study on thermal smoke layer thickness with various upstream blockage–fire distances in a longitudinally ventilated tunnel. Tunn. Undergr. Space Technol. 2017, 170, 141–148. [Google Scholar] [CrossRef]
- Shi, Y. Study on Calculation Method of Natural Wind and Energy Saving Ventilation Technology on Tunnel. Ph.D. Dissertation, Southwest Jiaotong University, Chengdu, China, 2011. [Google Scholar]
- Cong, W.; He, K.; Yang, H.; Shi, L.; Cheng, X. Experimental study on temperature characteristics in a subway train carriage with lateral openings in a longitudinally ventilated tunnel. Tunn. Undergr. Space Technol. 2023, 131, 104814. [Google Scholar] [CrossRef]
- Yan, J.; Chen, G.; Liu, C.; Tang, L.; Chen, Q. Maximum smoke temperature beneath the ceiling in an enclosed channel with different fire locations. Appl. Therm. Eng. 2017, 111, 30–38. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Chen, J.; Yan, T.; Bao, Y.; Chen, J.; Qin, P.; Li, K.; Deng, T.; Yan, G. The maximum gas temperature rises beneath the ceiling in a longitudinally ventilated fire. Tunn. Undergr. Space Technol. 2021, 108, 103672. [Google Scholar] [CrossRef]
- Peng, M.; Cheng, X.; Cong, W.; Yang, H.; Shahid, M.U.; Yuen, R.; Zhang, H. Experimental study on temperature profile in long-narrow compartment fire with multiple lateral openings. Tunn. Undergr. Space Technol. 2021, 117, 104018. [Google Scholar] [CrossRef]
- Tsukahara, M.; Koshiba, Y.; Ohtani, H. Theoretical and experimental analysis of ceiling-jet flow in corridor fires. Tunn. Undergr. Space Technol. 2011, 26, 651–658. [Google Scholar] [CrossRef]
- Wan, H.; Xiao, Y.; Wei, S.; Zhang, Y. Performance of ceiling jet induced by dual unequal strong plumes in a naturally ventilated tunnel. Appl. Therm. Eng. 2022, 211, 118447. [Google Scholar] [CrossRef]
- Yi, L.; Lan, S.; Wang, X.; Bu, R.; Zhao, J.; Zhou, Y. Study on the air inlet velocity and temperature distribution in an inclined tunnel with single shaft under natural ventilation. Buildings 2023, 13, 842. [Google Scholar] [CrossRef]
- Collela, F.; Rein, G.; Borchiellini, R.; Carvel, R.; Torero, J.L.; Verda, V. Calculation and design of tunnel ventilation systems using a two-scale modeling approach. Tunn. Undergr. Space Technol. 2009, 44, 2357–2367. [Google Scholar] [CrossRef]
- Oka, Y.; Oka, H.; Imazeki, O. Ceiling-jet thickness and vertical distribution along flat-ceilinged horizontal tunnel with natural ventilation. Tunn. Undergr. Space Technol. 2016, 53, 68–77. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway. Tunn. Undergr. Space Technol. 2007, 22, 166–172. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Li, J.; Dong, B.; Bi, Q.; Li, Y.; Li, J. Experimental investigation on temperature profile with downstream vehicle in a longitudinally ventilated tunnel. Tunn. Undergr. Space Technol. 2019, 103, 149–156. [Google Scholar] [CrossRef]
- Tang, X.; Wang, M.; Tong, J.; Dong, C.; Zhang, C. Study on stress field and security of primary support in high rock temperature tunnel. Tunn. Undergr. Space Technol. 2019, 54, 32–38. [Google Scholar] [CrossRef]
- Zhao, K.; Yuan, Y.; Jiang, F.; Cao, X. Numerical investigation on temperature–humidity field under mechanical ventilation in the construction period of hot-humid tunnel along the Sichuan-Tibet Railway. Tunn. Undergr. Space Technol. 2023, 8, 123–143. [Google Scholar] [CrossRef]
- Gao, X.; Qu, Y.; Xiao, Y. A numerical method for the cooling and dehumidifying process of air flowing through a deeply buried underground tunnel with unsaturated condensation model. Tunn. Undergr. Space Technol. 2019, 159, 113891. [Google Scholar] [CrossRef]
- Kang, F.; Li, Y.; Tang, C. Numerical study on the airflow temperature field in a high-temperature tunnel with insulation layer. Tunn. Undergr. Space Technol. 2020, 179, 115654. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Chen, J.; Yan, T.; Bao, Y.; Chen, J.; Qin, P.; Li, K.; Deng, T.; Yan, G. A Study on the Heat Transfer of Surrounding Rock-Supporting Structures in High-Geothermal Tunnels. Tunn. Undergr. Space Technol. 2020, 10, 2307. [Google Scholar] [CrossRef]
- Wang, Y. Case study on ventilation and cooling control technology of multi-heat source coupling in long-distance subsea tunnel construction. Tunn. Undergr. Space Technol. 2021, 26, 101061. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, Z.; Wang, W.; Mei, X.; Zhao, X.; Shen, S.; Na, T. Field test and numerical investigation on the thermal environment of a tunnel with air layer structure. Tunn. Undergr. Space Technol. 2021, 203, 108105. [Google Scholar] [CrossRef]
- Lin, M.; Zhou, P.; Jiang, Y.; Zhou, F.; Lin, J.; Wang, Z. Numerical investigation on the comprehensive control system of cooling and heat insulation for high-geothermal tunnel: A case study on the highway tunnel with the highest temperature in China. Tunn. Undergr. Space Technol. 2022, 173, 107385. [Google Scholar] [CrossRef]
- Wang, X. Feasibility Study on Cumulative Temperature Rise and Spray Cooling in Chongming Tunnel Operation. Master’s Thesis, Tongji University, Shanghai, China, 2007. [Google Scholar]
- Shan, M. Study on the Applicability of Natural Ventilation in Urban Underground Transportation Link Tunnels. Master’s Thesis, Tongji University, Shanghai, China, 2015. [Google Scholar]
- Guo, C.; Wang, M.; Yang, L.; Sun, Z.; Zhang, Y.; Xu, J. A review of energy consumption and saving in extra-long tunnel operation ventilation in China. Renew. Sustain. Energy Rev. 2016, 53, 1558–1569. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, H.; Liu, G.; Liu, F.; Wang, G. A robust numerical method for modeling ventilation through long tunnels in high-temperature regions based on 1D pipe model. Tunn. Undergr. Space Technol. 2021, 105, 104050. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Chen, J.; Yan, T.; Bao, Y.; Chen, J.; Qin, P.; Li, K.; Deng, T.; Yan, G. Analysis of calculation of fresh-air demand for road tunnel ventilation design in China. Tunn. Undergr. Space Technol. 2020, 103, 103469. [Google Scholar] [CrossRef]
- Ciocanea, A.; Dragomirescu, A. Modular ventilation with twin air curtains for reducing dispersed pollution. Tunn. Undergr. Space Technol. 2013, 37, 180–198. [Google Scholar] [CrossRef]
- Chu, B.; Kim, D.; Hong, D.; Park, J.; Chung, J.T.; Chung, J.H.; Kim, T.H. GA-based fuzzy controller design for tunnel ventilation systems. Autom. Constr. 2008, 17, 130–136. [Google Scholar] [CrossRef]
- He, X.; Li, A.; Ning, Y. Optimization of outdoor design temperature for summer ventilation for undersea road tunnel using field measurement and statistics. Build. Environ. 2020, 167, 106457. [Google Scholar] [CrossRef]
- Yang, C.; Luo, W.; Liu, Y.; Gao, R.; Zhang, S.; Li, A.; Du, W.; Zhang, B.; Zhang, J. A novel type of unpowered air curtain at a tunnel portal to reduce the intrusion of cold air. Build. Environ. 2022, 218, 109113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Guo, W.; Ma, M.; Hou, Y.; Zhang, R.; Zeng, L.; Zhang, C.; Xu, Y.; Wei, X.; Cao, C. Study on Temperature Distribution along the Ultra-Long Underwater Tunnel: Based on the Long-Term Measured Results of the Shanghai Yangtze River Tunnel. Buildings 2023, 13, 1804. https://doi.org/10.3390/buildings13071804
Gao J, Guo W, Ma M, Hou Y, Zhang R, Zeng L, Zhang C, Xu Y, Wei X, Cao C. Study on Temperature Distribution along the Ultra-Long Underwater Tunnel: Based on the Long-Term Measured Results of the Shanghai Yangtze River Tunnel. Buildings. 2023; 13(7):1804. https://doi.org/10.3390/buildings13071804
Chicago/Turabian StyleGao, Jun, Weichen Guo, Mingyao Ma, Yumei Hou, Ruiyan Zhang, Lingjie Zeng, Chengquan Zhang, Yukun Xu, Xiaobin Wei, and Changsheng Cao. 2023. "Study on Temperature Distribution along the Ultra-Long Underwater Tunnel: Based on the Long-Term Measured Results of the Shanghai Yangtze River Tunnel" Buildings 13, no. 7: 1804. https://doi.org/10.3390/buildings13071804
APA StyleGao, J., Guo, W., Ma, M., Hou, Y., Zhang, R., Zeng, L., Zhang, C., Xu, Y., Wei, X., & Cao, C. (2023). Study on Temperature Distribution along the Ultra-Long Underwater Tunnel: Based on the Long-Term Measured Results of the Shanghai Yangtze River Tunnel. Buildings, 13(7), 1804. https://doi.org/10.3390/buildings13071804