Design and Experimental Analysis of Seismic Isolation Bearings for Nuclear Power Plant Containment Structures
Abstract
:1. Introduction
2. Optimization Design of Epoxy Plate Thick-Layer Rubber Isolation Bearings
2.1. Determination of Optimization Indicators for Epoxy Plate Thick-Layer Rubber Isolation Bearings
2.1.1. Horizontal Stiffness of Rubber Isolation Bearings
2.1.2. Vertical Stiffness of Rubber Isolation Bearings
2.1.3. Buckling Stress of Rubber Isolation Bearings
2.1.4. Concentrated Stress of Epoxy Plate Thick-Layer Rubber Isolation Bearings under Compressive Shear Action
- 1.
- Geometric dimensions of the bearing
- 2.
- Selection and parameter determination of rubber constitutive model
- 3.
- Establishing a finite element model
- 4.
- The stress state of compression shear simulation
2.2. Optimization Design of Epoxy Plate Thick-Layer Rubber Isolation Bearings
2.3. Optimization Design Results of Epoxy Plate Thick-Layer Rubber Isolation Bearings
3. Experimental and Numerical Simulation Study on Mechanical Properties of Epoxy Plate Thick-Layer Rubber Isolation Bearings
3.1. Adhesion Strength Test of Rubber and Epoxy Resin Board
3.2. Mechanical Performance Test of Epoxy Plate Thick-Layer Rubber Isolation Bearing
3.2.1. Test Model
3.2.2. Experimental Loading Mechanism
- 1.
- Vertical mechanical performance test
- 2.
- Horizontal mechanical performance test
3.2.3. Analysis of Vertical Stiffness Test Results of Bearings and Correction of Calculation Formulas
- 1.
- Analysis of vertical stiffness test results
- 2.
- Design vertical stiffness correction method
- (1)
- Linear correction method:
- (2)
- Integral correction method:
3.2.4. Experimental Results and Analysis of Horizontal Stiffness and Damping Ratio of Bearings
3.3. Finite Element Analysis of Epoxy Thick-Layer Rubber Isolation Bearings
3.3.1. Establishment of Finite Element Model
3.3.2. Verification of Finite Element Model of Bearing
- 1.
- Horizontal stiffness of bearing
- 2.
- Vertical stiffness of bearing
3.3.3. Stress Analysis of Bearing Stiffening Layer (Epoxy Resin Board) under Different Shear Deformations
4. Conclusions
- (1)
- The epoxy plate thick-layer rubber isolation bearing has smaller horizontal shear deformation and horizontal stiffness, which is beneficial for extending the natural vibration period of the structure and reducing its seismic response, the strengthening of the stiffness of the bearing under large deformation gives it greater horizontal stiffness, providing sufficient restoring force for the recovery of deformation of the bearing, which is conducive to dissipating the energy transmitted by earthquakes during the use of the support.
- (2)
- Under vertical pressure, the deviation between the calculated value of the vertical stiffness of the bearing and the experimental value is small. As the vertical pressure increases, the error of the linear correction method gradually increases, while the integral correction method and Lindley correction method can effectively describe the process of strengthening the vertical stiffness of the bearing.
- (3)
- According to the stress distribution law of the epoxy board inside the bearing under different vertical pressures and shear deformations, the stress of the epoxy resin board is mainly concentrated on the upper and lower sides of the board. As the shear deformation increases, the stress concentration position gradually moves towards the top and bottom of the bearing, and the stress value also increases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pei, Q.; Qi, P.F.; Ma, F.H.; Cui, D.; Xue, Z.C.; Ding, Y. Resistance of Gable Structure of Nuclear Island to Progressive Collapse in Conventional Island Shield Building of Nuclear Power Plants. Buildings 2023, 13, 1257. [Google Scholar] [CrossRef]
- Pei, Q.; Cai, B.W.; Zhang, L.X.; Xue, Z.C.; Qi, P.F.; Cui, D.; Wang, X.T. The Progressive Collapse Resistance Mechanism of Conventional Island Shield Buildings in Nuclear Power Plants. Buildings 2023, 13, 958. [Google Scholar] [CrossRef]
- Markou, G.; Genco, F. Seismic assessment of small modular reactors: NuScale case study for the 8.8 Mw earthquake in Chile. Nucl. Eng. Des. 2018, 12, 176–204. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhao, C.F.; Xu, Q.; Yuan, C.Y. Seismic analysis and evaluation of the base isolation system in AP1000 NI under SSE loading. Nucl. Eng. Des. 2014, 7, 117–133. [Google Scholar] [CrossRef]
- Sayed, M.A.; Go, S.; Cho, S.G.; Kim, D. Seismic responses of base-isolated nuclear power plant structures considering spatially varying ground motions. Struct. Eng. Mech. 2015, 54, 169–188. [Google Scholar] [CrossRef]
- Ali, A.; Hayah, N.A.; Kim, D.; Cho, S.G. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building. Nucl. Eng. Technol. 2017, 49, 825–837. [Google Scholar] [CrossRef]
- Hou, G.L.; Li, M.; Hai, S.; Song, T.S.; Wu, L.S.; Li, Y.; Zheng, G.; Shen, F.; Chen, Y.D. Innovative seismic resistant structure of shield building with base isolation and tuned-mass-damping for AP1000 nuclear power plants. Eng. Comput. 2019, 36, 1238–1257. [Google Scholar] [CrossRef]
- Whittaker, A.S.; Sollogoub, P.; Kim, M.K. Seismic isolation of nuclear power plants: Past, present and future. Nucl. Eng. Technol. 2018, 7, 290–299. [Google Scholar] [CrossRef]
- Kim, H.S.; Ju, O. A Study on Isolation Performance of High Damping Rubber Bearing Through Shaking Table Test and Analysis. J. Korea Acad.-Ind. Coop. Soc. 2016, 17, 601–611. [Google Scholar] [CrossRef]
- Bhuiyan, A.R.; Alam, M.S. Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing. Eng. Struct. 2012, 11, 396–407. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Feng, L.; Sun, Y.; Gong, H.; Zhu, C.H.; Chen, Z.J.; Dai, J.Q.; Hao, F.Z.; Zhong, X.T.; Qian, W.P. Seismic Response Analysis of a Large-Span Isolated Structure Equipped with TNRB-DSBs and LRBs. Buildings 2023, 13, 1288. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhang, J.J.; Huang, X.Y.; Xue, S.T. Seismic Performance of Building with Novel Steel Roller Isolation Bearing: Experimental and Numerical Studies. J. Earthq. Eng. 2022, 27, 2119–2144. [Google Scholar] [CrossRef]
- Weisman, J.; Warn, G.P. Stability of Elastomeric and Lead-Rubber Seismic Isolation Bearings. J. Struct. Eng. 2012, 138, 214–222. [Google Scholar] [CrossRef]
- Hou, G.L.; Liu, Y.; Li, M.; Sun, M.H.; Sun, F.; Zhu, X.Y.; Pan, R.; Zhang, D.Y. Seismic structural responses reduction of double-layered containment nuclear power plant via BIS-TMD. Eng. Comput. 2020, 37, 2111–2125. [Google Scholar] [CrossRef]
- Kumar, M.; Whittaker, A.S.; Constantinou, M.C. Extreme earthquake response of nuclear power plants isolated using sliding bearings. Nucl. Eng. Des. 2017, 316, 9–25. [Google Scholar] [CrossRef]
- Pan, P.; Shen, S.D.; Shen, Z.Y.; Gong, R.H. Experimental investigation on the effectiveness of laminated rubber bearings to isolate metro generated vibration. Measurement 2017, 122, 554–562. [Google Scholar] [CrossRef]
- Wu, P.S.; Ou, J.P. Performance Analysis and Comparison of Two Base Isolation Systems with Super-Large Displacement Friction Pendulum Bearings. Appl. Sci. 2020, 10, 8325. [Google Scholar] [CrossRef]
- Zou, X.G.; Yang, W.G.; Liu, P.; Wang, M. Shaking table tests and numerical study of a sliding isolation bearing for the seismic protection of museum artifacts. J. Build. Eng. 2022, 65, 105725. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Pan, R.; Li, J.B.; Lin, G. Study of isolation effectiveness of nuclear reactor building with three-dimensional seismic base isolation. Eng. Comput. 2020, 39, 1209–1233. [Google Scholar] [CrossRef]
- Peng, T.B.; Guan, J.Y.; Wu, Y.C. Numerical and Experimental Investigation of the Seismic Effect of a Two-Stage Seismic Isolation Method. Sustainability 2023, 15, 4883. [Google Scholar] [CrossRef]
- Liang, Q.H.; Luo, W.L.; Zhou, Y.; Ke, X.B.; Li, J.R. Seismic performance of a novel three-dimensional isolation bearing. J. Build. Eng. 2022, 57, 104818. [Google Scholar] [CrossRef]
- Zhang, H.D.; Liang, X.; Gao, Z.Y.; Zhu, X.Q. Seismic performance analysis of a large-scale single-layer lattice dome with a hybrid three-directional seismic isolation system. Eng. Struct. 2020, 214, 110627. [Google Scholar] [CrossRef]
- Han, Q.H.; Jing, M.; Lu, Y.; Liu, M.J. Mechanical behaviors of air spring-FPS three-dimensional isolation bearing and isolation performance analysis. Soil Dyn. Earthq. Eng. 2021, 149, 106872. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, M.Q.; Yuan, K.; Zhang, Y.W. Research on linear/nonlinear viscous damping and hysteretic damping in nonlinear vibration isolation systems. Appl. Math. Mech.-Engl. Ed. 2020, 41, 983–998. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.H.; Zheng, R.; Tang, Z.; Chen, B.B. Analysis and design of the power law damping based on the nonlinear vessel isolation system. Adv. Mech. Eng. 2019, 10, 1687814018817194. [Google Scholar] [CrossRef]
- Kang, X.F.; Li, S.; Hu, J. Design and Parameter Optimization of the Reduction-Isolation Control System for Building Structures Based on Negative Stiffness. Buildings 2023, 13, 489. [Google Scholar] [CrossRef]
- Mofidian, S.M.M.; Bardaweel, H. Displacement transmissibility evaluation of vibration isolation system employing nonlinear-damping and nonlinear-stiffness elements. J. Vib. Control 2018, 24, 4247–4259. [Google Scholar] [CrossRef]
- Shi, S.J.; Zhou, P.Z.; Lu, Z.H.; Du, J.B. Design Synthesis of Vibration Isolation System Considering Host Structure, Damping Layer, and Resilient Mounts. J. Vib. Eng. Technol. 2022, 11, 2037–2055. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Li, J.W.; Wang, L.B.; Wu, H. Study on the Seismic Performance of Different Combinations of Rubber Bearings for Continuous Beam Bridges. Adv. Civ. Eng. 2020, 2020, 8810874. [Google Scholar] [CrossRef]
- Yuan, Y.; Wei, W.; Ni, Z.B. Analytical and experimental studies on an innovative steel damper reinforced polyurethane bearing for seismic isolation applications. Eng. Struct. 2021, 239, 112254. [Google Scholar] [CrossRef]
- Peng, J.; Li, Y.F. Seismic Analysis of Reticulated Shell Structure Based on Sensor Network for Smart Transportation Seismic Isolation Bearings. J. Adv. Transp. 2022, 2022, 5985542. [Google Scholar] [CrossRef]
- Anas, S.M.; Alam, M.; Umair, M. Experimental and numerical investigations on performance of reinforced concrete slabs under explosive-induced air-blast loading: A state-of-the-art review. Structures 2021, 31, 428–461. [Google Scholar] [CrossRef]
- Anas, S.M.; Alam, M.; Umair, M. Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: A review. Int. J. Prot. Struct. 2021, 13, 99–139. [Google Scholar] [CrossRef]
- Architectural Institute of Japan. Recommendation for the Design of Base Isolated Buildings; Seismological Press: Beijing, China, 2006. [Google Scholar]
- Lan, Z.Y. Comparative Study on Static and Dynamic Performance of Lead Rubber Isolation Bearings; Guangzhou University: Guangzhou, China, 2016. [Google Scholar]
- GB/T 20688.1-2007; Rubber Bearings—Part 1: Seismic-Protection Isolators test Methods. China Standards Publishing House: Beijing, China, 2007.
- GB/T 7760-2003; Rubber, Vulcanized or Thermoplastic—Determination of Adhesion to a Rigid Substrate—90 Degrees Peel Method. China Standards Publishing House: Beijing, China, 2003.
- GB/T 20688.3-2006; Rubber Bearings—Part 3: Elastomeric Seismic-Protection Isolators for Buildings. China Standards Publishing House: Beijing, China, 2007.
- JG/T118-2018; Rubber Isolation Bearings for Buildings. China Standards Publishing House: Beijing, China, 2018.
Scheme | D0 (mm) | G (MPa) | δ | n |
---|---|---|---|---|
1 | 30 | 1.0 | 1.5 | 9 |
2 | 30 | 1.1 | 2.0 | 10 |
3 | 30 | 1.2 | 2.5 | 11 |
4 | 30 | 1.3 | 3.0 | 12 |
5 | 40 | 1.0 | 2.0 | 11 |
6 | 40 | 1.1 | 1.5 | 12 |
7 | 40 | 1.2 | 3.0 | 9 |
8 | 40 | 1.3 | 2.5 | 10 |
9 | 50 | 1.0 | 2.5 | 12 |
10 | 50 | 1.1 | 3.0 | 11 |
11 | 50 | 1.2 | 1.5 | 10 |
12 | 50 | 1.3 | 2.0 | 9 |
13 | 60 | 1.0 | 3.0 | 10 |
14 | 60 | 1.1 | 2.5 | 9 |
15 | 60 | 1.2 | 2.0 | 12 |
16 | 60 | 1.3 | 1.5 | 11 |
Scheme | Buckling Stress (MPa) | Maximum Shear Stress (MPa) | Kh (kN/mm) | Kv (kN/mm) | Y |
---|---|---|---|---|---|
1 | 15.207 | 178.80 | 0.494 | 76.227 | 0.835 |
2 | 15.387 | 199.30 | 0.495 | 72.381 | 0.780 |
3 | 16.666 | 171.50 | 0.507 | 82.482 | 0.793 |
4 | 18.856 | 229.10 | 0.526 | 100.246 | 0.719 |
5 | 14.839 | 176.70 | 0.446 | 77.837 | 0.846 |
6 | 21.646 | 191.40 | 0.543 | 127.195 | 0.819 |
7 | 12.077 | 266.30 | 0.477 | 43.733 | 0.752 |
8 | 16.541 | 229.60 | 0.542 | 71.669 | 0.762 |
9 | 13.735 | 241.50 | 0.413 | 68.763 | 0.813 |
10 | 12.684 | 217.60 | 0.433 | 51.558 | 0.774 |
11 | 19.258 | 145.80 | 0.580 | 88.802 | 0.829 |
12 | 16.223 | 196.70 | 0.567 | 62.600 | 0.788 |
13 | 10.135 | 241.70 | 0.385 | 37.264 | 0.783 |
14 | 10.975 | 226.60 | 0.442 | 35.151 | 0.801 |
15 | 18.379 | 188.70 | 0.519 | 85.590 | 0.800 |
16 | 23.158 | 152.80 | 0.619 | 111.985 | 0.783 |
Scheme | D0 (mm) | G (MPa) | δ | n | Y |
---|---|---|---|---|---|
1 | 30 | 1.0 | 1.5 | 9 | 0.835 |
2 | 30 | 1.1 | 2.0 | 10 | 0.780 |
3 | 30 | 1.2 | 2.5 | 11 | 0.793 |
4 | 30 | 1.3 | 3.0 | 12 | 0.719 |
5 | 40 | 1.0 | 2.0 | 11 | 0.846 |
6 | 40 | 1.1 | 1.5 | 12 | 0.819 |
7 | 40 | 1.2 | 3.0 | 9 | 0.752 |
8 | 40 | 1.3 | 2.5 | 10 | 0.762 |
9 | 50 | 1.0 | 2.5 | 12 | 0.813 |
10 | 50 | 1.1 | 3.0 | 11 | 0.774 |
11 | 50 | 1.2 | 1.5 | 10 | 0.829 |
12 | 50 | 1.3 | 2.0 | 9 | 0.788 |
13 | 60 | 1.0 | 3.0 | 10 | 0.783 |
14 | 60 | 1.1 | 2.5 | 9 | 0.801 |
15 | 60 | 1.2 | 2.0 | 12 | 0.800 |
16 | 60 | 1.3 | 1.5 | 11 | 0.783 |
K1 | 0.816 | 0.819 | 0.782 | 0.794 | |
K2 | 0.803 | 0.794 | 0.795 | 0.788 | |
K3 | 0.792 | 0.793 | 0.801 | 0.799 | |
K4 | 0.757 | 0.763 | 0.792 | 0.788 | |
R | 0.059 | 0.056 | 0.019 | 0.011 |
Scheme | buckling Stress (MPa) | Maximum Shear Stress (MPa) | Kh (kN/mm) | Kv (kN/mm) | Y |
---|---|---|---|---|---|
1 | 16.960 | 114.70 | 0.496 | 94.802 | 0.851 |
2 | 16.947 | 168.10 | 0.496 | 87.896 | 0.818 |
3 | 18.182 | 226.70 | 0.509 | 98.349 | 0.733 |
4 | 16.205 | 176.00 | 0.447 | 92.909 | 0.816 |
5 | 13.089 | 220.20 | 0.459 | 54.229 | 0.781 |
6 | 22.075 | 138.30 | 0.591 | 120.655 | 0.755 |
7 | 12.598 | 212.40 | 0.412 | 57.740 | 0.785 |
8 | 20.818 | 144.50 | 0.535 | 113.901 | 0.777 |
9 | 15.910 | 193.90 | 0.526 | 66.536 | 0.769 |
5a | 13.181 | 142.10 | 0.446 | 77.837 | 0.818 |
Scheme | Buckling Stress (MPa) | Maximum Shear Stress (MPa) | Kh (kN/mm) | Kv (kN/mm) | Y |
---|---|---|---|---|---|
1 | 17.041 | 43.70 | 0.501 | 99.125 | 0.832 |
2 | 17.242 | 52.31 | 0.502 | 94.140 | 0.787 |
3 | 18.681 | 60.73 | 0.515 | 107.361 | 0.759 |
4 | 16.644 | 83.47 | 0.457 | 103.453 | 0.806 |
5 | 13.181 | 105.30 | 0.468 | 58.098 | 0.773 |
6 | 22.440 | 71.59 | 0.603 | 131.740 | 0.726 |
7 | 12.832 | 157.50 | 0.425 | 64.607 | 0.809 |
8 | 21.376 | 93.52 | 0.552 | 129.503 | 0.812 |
9 | 16.015 | 120.80 | 0.542 | 72.765 | 0.735 |
1b | 16.960 | 114.70 | 0.496 | 94.802 | 0.775 |
Name | Parameter Value | |
---|---|---|
rubber | shear modulus (G)/MPa | 1.0 |
elastic modulus (E0)/MPa | 5.1 | |
bulk modulus (E∞)/MPa | 2160 | |
rubber correction coefficient (k) | 0.874 | |
rubber layer | Thickness (tr)/mm | 10.88 |
Number (n) | 9 | |
total thickness (TR)/mm | 97.92 | |
internal epoxy resin board | thickness (tf)/mm | 7.26 |
number (n − 1) | 8 | |
total thickness (Tf)/mm | 58.08 | |
design axial pressure/kN | 300 | |
design stress/MPa | 6.37 | |
first shape coefficient (S1) | 5.74 | |
second shape coefficient (S2) | 2.55 | |
effective diameter of bearing (D)/mm | 250 | |
thickness of protective layer rubber/mm | 12 | |
thickness of upper and lower sealing plates/mm | 12 | |
thickness of connecting plate/mm | 20 | |
total height of bearing/mm | 220 | |
horizontal stiffness/(kN/mm) | 0.501 | |
vertical stiffness/(kN/mm) | 99.125 | |
buckling stress/MPa | 17.041 |
Sample Number | Specimen Width (mm) | Maximum Peeling Force (N) | Peel Bonding Strength (N/mm) | Mean Peel Adhesion Strength (N/mm) |
---|---|---|---|---|
1 | 25 | 138.25 | 5.53 | 5.55 |
2 | 25 | 140.75 | 5.64 | |
3 | 25 | 137.25 | 5.49 | |
4 | 25 | 208.50 | 8.34 | 8.35 |
5 | 25 | 206.25 | 8.25 | |
6 | 25 | 211.50 | 8.44 |
P0 (kN) | Amplitude | Number of Cycles |
---|---|---|
75 | ±30% | 3 |
150 | ±30% | 3 |
200 | ±30% | 3 |
300 | ±30% | 3 |
Shear Strain γ | Vertical Pressure (kN) | Loading Frequency (Hz) | Number of Cycles | Displacement (mm) |
---|---|---|---|---|
50% | 75 | 0.02 | 3 | 49 |
150 | 0.02 | 3 | ||
200 | 0.02 | 3 | ||
300 | 0.02 | 3 | ||
100% | 75 | 0.02 | 3 | 98 |
150 | 0.02 | 3 | ||
200 | 0.02 | 3 | ||
300 | 0.02 | 3 |
Shear Strain γ | Vertical Pressure (kN) | Equivalent Horizontal Stiffness (kN/mm) | Equivalent Damping Ratio (%) | Post Yield Stiffness (kN/mm) |
---|---|---|---|---|
50% | 75 | 0.66 | 9.1 | 0.64 |
150 | 0.59 | 10.2 | 0.41 | |
200 | 0.55 | 11.4 | 0.36 | |
300 | 0.46 | 13.0 | 0.35 | |
100% | 75 | 0.62 | 8.3 | 0.43 |
150 | 0.55 | 9.0 | 0.42 | |
200 | 0.50 | 9.7 | 0.36 | |
300 | 0.42 | 11.1 | 0.33 |
Material Constitutive | Material parameters (MPa) | C01/C10 | Elastic Modulus E = 6 (C10 + C01) (MPa) | Shear Modulus G = 2 (C10 + C01) (MPa) | |
---|---|---|---|---|---|
C10 | C01 | ||||
Mooney–Rivlin | 0.40 | 0.10 | 0.25 | 3.00 | 1.00 |
Mooney–Rivlin | 0.44 | 0.11 | 0.25 | 3.30 | 1.10 |
Mooney–Rivlin | 0.48 | 0.12 | 0.25 | 3.60 | 1.20 |
Mooney–Rivlin | 0.52 | 0.13 | 0.25 | 3.90 | 1.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Q.; Qi, P.; Xue, Z.; Zhong, J.; Zhang, Y. Design and Experimental Analysis of Seismic Isolation Bearings for Nuclear Power Plant Containment Structures. Buildings 2023, 13, 2366. https://doi.org/10.3390/buildings13092366
Pei Q, Qi P, Xue Z, Zhong J, Zhang Y. Design and Experimental Analysis of Seismic Isolation Bearings for Nuclear Power Plant Containment Structures. Buildings. 2023; 13(9):2366. https://doi.org/10.3390/buildings13092366
Chicago/Turabian StylePei, Qiang, Pengfei Qi, Zhicheng Xue, Jintu Zhong, and Yao Zhang. 2023. "Design and Experimental Analysis of Seismic Isolation Bearings for Nuclear Power Plant Containment Structures" Buildings 13, no. 9: 2366. https://doi.org/10.3390/buildings13092366