Simple Nonlinear Numerical Modeling for Unreinforced and FRP-Reinforced Masonry Domes
Abstract
:1. Introduction
2. FE Modeling
2.1. Modeling for Nonlinear Analysis
2.2. Modeling of Joints by Means of Point Contacts
2.3. Load Distribution
2.4. Modeling of Joints by Means of Cutoff Bars
2.4.1. Joint Modeling
2.5. Modeling of FRP by Means of Cutoff Bars
3. Nonlinear Static Analyses
3.1. Unreinforced Dome
3.1.1. NTM Hypothesis: Sensitivity Analysis
3.1.2. Orthotropic Material: Sensitivity Analysis
3.2. Reinforced Dome
- Quickly evaluate the increase in the load-carrying capacity after reinforcement;
- Rapidly perform a trial and error procedure to determine the optimal position of the reinforcement. This last feature is possible thanks to the short preprocessing and computational time needed.
4. Conclusions
- Its adequacy for implementation in any commercial software (low-cost software included);
- The possibility of considering the failure of mortar joints under combined modes I and II;
- The ability to account for both orthotropy and NTM hypotheses (with the latter being on the safe side but, in some cases, responsible for the strong underestimation of the load-bearing capacity);
- The possibility of directly and straightforwardly introducing external retrofitting with innovative composite materials (e.g., FRP and FRCM);
- The ability to handle, with a simple trial and error procedure, the difficult problem related to the optimal disposition of external retrofitting layouts, which maximize the load-carrying capacity at the minimum cost (Pareto’s frontiers).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oliveira, D.V.; Basilio, I.; Lourenço, P.B. Experimental Behavior of FRP Strengthened Masonry Arches. J. Compos. Constr. 2010, 14, 312–322. [Google Scholar] [CrossRef]
- Cancelliere, I.; Imbimbo, M.; Sacco, E. Experimental tests and numerical modeling of reinforced masonry arches. Eng. Struct. 2010, 32, 776–792. [Google Scholar] [CrossRef]
- Basilio, I.; Fedele, R.; Lourenço, P.B.; Milani, G. Assessment of curved FRP-reinforced masonry prisms: Experiments and modeling. Constr. Build. Mater. 2014, 51, 492–505. [Google Scholar] [CrossRef]
- Foraboschi, P. Strengthening of Masonry Arches with Fiber-Reinforced Polymer Strips. J. Compos. Constr. 2004, 8, 191–202. [Google Scholar] [CrossRef]
- Formisano, A.; Vaiano, G.; Petrucci, N.J. Hemp-FRP for Seismic Retrofitting of Existing Masonry Buildings. In Proceedings of the Prohitech 2020 4th International Conference of Protection of Historical Constructions, Athens, Greece, 25–27 October 2021. [Google Scholar]
- Xian, G.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2022, 281, 115060. [Google Scholar] [CrossRef]
- Gomes, S.; Dias-da-Costa, D.; Neves, L.A.C.; Hadigheh, S.A.; Fernandes, P.; Júlio, E. Probabilistic-based characterisation of the mechanical properties of CFRP laminates. Constr. Build. Mater. 2018, 169, 132–141. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Y.; Li, C. Experimental Investigation of Fatigue Capacity of Bending-Anchored CFRP Cables. Polymers 2023, 15, 2483. [Google Scholar] [CrossRef] [PubMed]
- Takbash, M.R.; Morshedi, A.A.A.; Sabet, S.A. Experimental investigation into brick masonry arches’ (vault and rib cover) behavior reinforced by FRP strips under vertical load. Struct. Eng. Mech. 2018, 67, 481–492. [Google Scholar]
- Hamdy, G.A.; Kamal, O.A.; El-Hariri, M.O.R.; El-Salakawy, T.S. Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP. Struct. Eng. Mech. 2018, 65, 611–619. [Google Scholar]
- Pintucchi, B.; Zani, N. A simple model for performing nonlinear static and dynamic analyses of unreinforced and FRP-strengthened masonry arches. Eur. J. Mech. A/Solids 2016, 59, 210–231. [Google Scholar] [CrossRef]
- Szołomicki, J.; Berkowski, P.; Barański, J. Computer modelling of masonry cross vaults strengthened with fiber reinforced polymer strips. Arch. Civ. Mech. Eng. 2015, 15, 751–766. [Google Scholar] [CrossRef]
- Como, M. Thrust evaluations of masonry domes. An application to the St. Peter’s dome. Int. J. Mason. Res. Innov. 2019, 4, 32–49. [Google Scholar] [CrossRef]
- Heyman, J. The Stone Skeleton; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Aita, D.; Milani, G.; Taliercio, A. Limit analysis of masonry domes with oculus and lantern: A comparison between different approaches. Math. Mech. Solids 2023, in press. [Google Scholar] [CrossRef]
- Szabó, S.; Funari, M.F.; Lourenço, P.B. Masonry patterns’ influence on the damage assessment of URM walls: Current and future trends. Dev. Built Environ. 2023, 13, 100119. [Google Scholar] [CrossRef]
- Faccio, P.; Foraboschi, P.; Siviero, E. Masonry vaults reinforced with FPR strips. l’Edilizia 1999, 7, 44–50. [Google Scholar]
- Creazza, G.; Saetta, A.V.; Matteazzi, R.; Vitaliani, R.V. Analyses of masonry vaulted structures by using 3-D damage model. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barcelona, Spain, 11–14 September 2000; pp. 11–14. [Google Scholar]
- Lourenço, P.B.; De Borst, R.; Rots, J.G. A plane stress softening plasticity model for orthotropic materials. Int. J. Numer. Methods Eng. 1997, 40, 4033–4057. [Google Scholar] [CrossRef]
- Milani, G. Simple lower bound limit analysis model for masonry double curvature structures. Comput. Struct. 2022, 269, 106831. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Tralli, A. A Genetic Algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults. Comput. Struct. 2017, 182, 187–204. [Google Scholar] [CrossRef]
- Milani, G.; Milani, E.; Tralli, A. Upper bound limit analysis model for FRP-reinforced masonry curved structures. Part II: Structural analyses. Comput. Struct. 2009, 87, 1534–1558. [Google Scholar] [CrossRef]
- Teschemacher, T.; Kalkbrenner, P.; Pelà, L.; Wüchner, R.; Bletzinger, K.-U. An orthotropic damage model for masonry walls with consistent damage evolution laws. Mater. Struct. Mater. Et Constr. 2023, 56, 151. [Google Scholar] [CrossRef]
- Milani, E.; Milani, G.; Tralli, A. Limit analysis of masonry vaults by means of curved shell finite elements and homogenization. Int. J. Solids Struct. 2008, 45, 5258–5288. [Google Scholar] [CrossRef]
- Milani, G. Closed form solutions in Limit Analysis for masonry cloister vaults and domes subjected to concentrated vertical loads applied at the top crown. Int. J. Mason. Res. Innov. 2023. [Google Scholar] [CrossRef]
- Varma, N.R.; Jangid, R.S.; Ghosh, S.; Milani, G.; Cundari, G.A.; Varma, M. Global Vipassana Pagoda: Main features and history of construction. In Proceedings of the 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), Milan, Italy, 29–31 May 2023. [Google Scholar]
- Varma, M.N.; Ghosh, S. Finite element thrust line analysis of axisymmetric masonry domes. Int. J. Mason. Res. Innov. 2016, 1, 59–73. [Google Scholar] [CrossRef]
- Varma, M.; Jangid, R.S.; Ghosh, S.; Milani, G.; Cundari, G.A.; Bakliwal, T. Global Vipassana Pagoda: Finite Element Thrust Line FETLA analyses. In Proceedings of the 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), Milan, Italy, 29–31 May 2023; pp. 1–6. [Google Scholar]
- Pavlovic, M.; Reccia, E.; Cecchi, A. A Procedure to Investigate the Collapse Behavior of Masonry Domes: Some Meaningful Cases. Int. J. Archit. Herit. 2016, 10, 67–83. [Google Scholar] [CrossRef]
- Como, M. Equilibrium and collapse analysis of masonry bodies. Meccanica 1992, 27, 185–194. [Google Scholar] [CrossRef]
- Block, P.; Ochsendorf, J. Thrust network analysis: A new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell Spat. Struct. 2007, 48, 167–173. [Google Scholar]
- Varma, M.; Milani, G.; Ghosh, S. Finite element thrust line analysis of cracked axisymmetric masonry domes reinforced with tension rings. Int. J. Mason. Res. Innov. 2018, 3, 72–78. [Google Scholar] [CrossRef]
- Pingaro, N.; Milani, G. Simple non-linear numerical modelling of masonry arches reinforced with SRG using elasto-fragile and elasto-ductile truss finite elements. Eng. Struct. 2023, 293, 116637. [Google Scholar] [CrossRef]
- Ruggieri, S.; Liguori, F.S.; Leggieri, V.; Bilotta, A.; Madeo, A.; Casolo, S.; Uva, G. An archetype-based automated procedure to derive global-local seismic fragility of masonry building aggregates: META-FORMA-XL. Int. J. Disaster Risk Reduct. 2023, 95, 103903. [Google Scholar] [CrossRef]
- Heyman, J. Arches, Vaults and Buttresses: Masonry Structures and Their Engineering; Variorum Ashgate Publishing: Aldershot, UK, 1996. [Google Scholar]
- Heyman, J. The safety of masonry arches. Int. J. Mech. Sci. 1969, 11, 363–385. [Google Scholar] [CrossRef]
- Alliney, S.; Tralli, A.; Alessandri, C. Boundary variational formulations and numerical solution techniques for unilateral contact problems. Comput. Mech. 1990, 6, 247–257. [Google Scholar] [CrossRef]
- Fichera, G. Elastostatic Problems with Unilateral Constraints: The Signorini Problem with Ambigous Boundary Conditions; Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force: Dayton, OH, USA, 1964. (In Italian) [Google Scholar]
- Fichera, G. Boundary Value Problems of Elasticity with Unilateral Constraints. In Linear Theories of Elasticity and Thermoelasticity; Truesdell, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Strand7 Pty Ltd. Theoretical Manual: Theoretical Background to the Straus7 Finite Element Analysis System; Strand7 Pty Ltd.: Sydney, Australia, 2004. [Google Scholar]
- Varma, M.N.; Jangid, R.S.; Achwal, V.G. Tension Ring in Masonry Domes. In Structural Analysis of Historical Constructions; MacMillan: New Delhi, India, 2006; pp. 1–8. [Google Scholar]
- CNR-DT 200 R1/2013; Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Interventi di Consolidamento Statico Mediante l’Utilizzo di Compositi Fibrorinforzati Materiali, Strutture di c.a. e di c.a.p., Strutture Murarie. Consiglio Nazionale delle Ricerche (CMR): Rome, Italy, 2013.
- Grande, E.; Milani, G.; Sacco, E. Modelling and analysis of FRP-strengthened masonry panels. Eng. Struct. 2008, 30, 1842–1860. [Google Scholar] [CrossRef]
- Aita, D.; Barsotti, R.; Bennati, S. Collapse of Masonry Arches in Romanesque and Gothic Constructions. 2007. Available online: https://www.researchgate.net/publication/276205523 (accessed on 20 December 2023).
- Milani, G.; Tralli, A. A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures. Int. J. Solids Struct. 2012, 49, 808–834. [Google Scholar] [CrossRef]
- Pingaro, N.; Calabrese, A.S.; Milani, G.; Poggi, C. Debonding sawtooth analytical model and FE implementation with in-house experimental validation for SRG-strengthened joints subjected to direct shear. Compos. Struct. 2023, 319, 117113. [Google Scholar] [CrossRef]
- Milani, G. Simple model with in-parallel elasto-fragile trusses to characterize debonding on FRP-reinforced flat substrates. Compos. Struct. 2022, 296, 115874. [Google Scholar] [CrossRef]
- Caporale, A.; Feo, L.; Hui, D.; Luciano, R. Debonding of FRP in multi-span masonry arch structures via limit analysis. Compos. Struct. 2014, 108, 856–865. [Google Scholar] [CrossRef]
- Mercuri, M.; Pathirage, M.; Gregori, A.; Cusatis, G. Masonry vaulted structures under spreading supports: Analyses of fracturing behavior and size effect. J. Build. Eng. 2022, 45, 103396. [Google Scholar] [CrossRef]
- Mercuri, M.; Pathirage, M.; Gregori, A.; Cusatis, G. Influence of self-weight on size effect of quasi-brittle materials: Generalized analytical formulation and application to the failure of irregular masonry arches. Int. J. Fract. 2023, 244, 1–28. [Google Scholar] [CrossRef]
Mechanical Properties | ||
---|---|---|
Young’s Modulus (MPa) | E | 1700 |
Poisson Ratio (-) | ν | 0 |
Density (kg/m3) | ρ | 2000 |
Nonlinear Type | Elastic Plastic | |
Yield Criterion | Von Mieses |
Joint | Position | Type | Friction Coefficients | Stiffness Values | ||
---|---|---|---|---|---|---|
C1 | C2 | Initial k0 (kN/mm) | Initial kiter | |||
Parallel | IN | Tension | - | - | 61.2 | - |
OUT | Tension | - | - | 30.6 | - | |
Meridian | IN | Normal | 1 | 1 | 93.84 | ✓ |
OUT | Normal | 1 | 1 | 46.92 | ✓ |
Mechanical Properties | ||
---|---|---|
Rigid Beams (Load Plate) | ||
Young’s Modulus (MPa) | E | 1.7 · 108 |
Cross-section Area (mm2) | A | 100 |
Inertia, Principal Axes I11 = I22 (mm4) | I | 8.33 · 102 |
Point Contact | ||
Type | Tension | |
Initial Stiffness (kN/mm) | K0 | 1.0 · 103 |
Max Tension (kN) | Tmax | 0 |
Mechanical Properties | ||
---|---|---|
Rigid Beams (Joints) | ||
Young’s Modulus (MPa) | E | 1.0 · 103 |
Section Area (mm2) | A | 100 |
I11 = I22 (mm4) | I | 8.33 · 102 |
Shear Truss (CoB) | ||
Young’s Modulus (MPa) | E | 1.7 · 104 |
Initial Stiffness (kN/mm) | K0 | 1.00 |
Max Compression (kN) | Cmax | 1.0 ∙ 1011 |
Max Tension (kN) | Tmax | 1.0 · 1011 |
CFRP Properties | ||
---|---|---|
Thickness (mm) | tfibre | 0.2 |
Width (mm) | 100 | |
Young’s Modulus (MPa) | EFRP | 1.6 · 105 |
Factor c1 (-) | c1 | 0.015 |
Reducing code factor (-) | γfd | 1.2 |
Masonry partial safety factor (-) | γM | 1 |
Fracture Energy (kN/mm) | ΓFK | 0.073 |
Design Bond Strength (MPa) | ffdd | 164 |
Added #CoBs (0.2 × 33 mm2) * | λu | λincr./λorig. | |||
---|---|---|---|---|---|
Simulation | Springing | Middle | Top | (kN) | (%) |
Original ** | 0 | 0 | 0 | 84.69 | 100% |
1 | 1 | 0 | 0 | 85.28 | 101% |
2 | 1 | 1 | 0 | 92.25 | 109% |
3 | 1 | 1 | 1 | 92.64 | 109% |
4 | 2 | 0 | 0 | 86.11 | 102% |
5 | 2 | 2 | 0 | 99.72 | 118% |
6 | 3 | 0 | 0 | 87.17 | 103% |
7 | 3 | 3 | 0 | 107.25 | 127% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandolfi, A.; Pingaro, N.; Milani, G. Simple Nonlinear Numerical Modeling for Unreinforced and FRP-Reinforced Masonry Domes. Buildings 2024, 14, 166. https://doi.org/10.3390/buildings14010166
Gandolfi A, Pingaro N, Milani G. Simple Nonlinear Numerical Modeling for Unreinforced and FRP-Reinforced Masonry Domes. Buildings. 2024; 14(1):166. https://doi.org/10.3390/buildings14010166
Chicago/Turabian StyleGandolfi, Alessandro, Natalia Pingaro, and Gabriele Milani. 2024. "Simple Nonlinear Numerical Modeling for Unreinforced and FRP-Reinforced Masonry Domes" Buildings 14, no. 1: 166. https://doi.org/10.3390/buildings14010166
APA StyleGandolfi, A., Pingaro, N., & Milani, G. (2024). Simple Nonlinear Numerical Modeling for Unreinforced and FRP-Reinforced Masonry Domes. Buildings, 14(1), 166. https://doi.org/10.3390/buildings14010166