Modeling the Environmental Impact of Passenger Cars Driven on Hilly Roads in Austria: A More Accurate Valuation of Greenhouse Gas Emissions and Further Environmental Indicators for Integral Life Cycle Assessments of Road Infrastructures
Abstract
:1. Introduction
2. Background
2.1. Sustainable Goals and Problems of Traffic
2.2. The Austrian Car Stock
2.3. Discussion of Evaluation Systems
3. Methods—Life Cycle Assessment for the Cars Driven in Austria
3.1. Goals
3.2. Scope of the Study
3.2.1. Functional Unit
3.2.2. System Boundaries
3.3. Life Cycle Inventory (LCI)
3.3.1. General
3.3.2. LCI of the Cars Driven in Austria
3.3.3. LCI of Driving Uphill/Downhill
3.4. Life Cycle Impact Assessment
- Global Warming Potential—total (GWP-total) [kg CO2 eq.];
- Ozone Depletion Potential (ODP) [kg CFC 11 eq.];
- Acidification Potential (AP) [mol H+ eq.];
- Eutrophication Potential aquatic freshwater (EP-freshwater) [kg PO4 eq.];
- Eutrophication Potential aquatic marine (EP-marine) [kg N eq.];
- Eutrophication Potential terrestrial (EP-terrestrial) [mol N eq.];
- Formation Potential of Tropospheric ozone (POCP) [kg NMVOC eq.];
- Abiotic depletion potential for non-fossil resources (ADP-minerals & metals) [kg Sb eq.];
- Abiotic depletion for fossil resources potential (ADP-fossil) [MJ, net calorific value];
- Water (user) deprivation potential, deprivation-weighted water consumption (WDP) [m3 world eq. deprived];
- Potential incidence of disease due to particulate matter emissions (PM) [Disease incidence];
- Potential Comparative Toxic Unit for ecosystems (ETP-fw) [CTUe];
- Potential Comparative Toxic Unit for humans (HTP-c) [CTUh];
- Potential Comparative Toxic Unit for humans (HTP-nc) [CTUh];
- Potential soil quality index (SQP) [dimensionless];
- Total use of renewable primary energy resources (PERT) [MJ, net calorific value];
- Total use of non-renewable primary energy resources (PENRT) [MJ, net calorific value];
- Use of secondary material (SM) [kg];
- Materials for recycling (MFR) [kg];
4. Results
4.1. General
4.2. Driving Uphill/Downhill
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Program. 2022 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Program: Nairobi, Kenya, 2022; ISBN 978-92-807-3984-8.
- European Commission. Umsetzung des Europäischen Grünen Deals. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_de#nachhaltige-gestaltung-des-verkehrs (accessed on 17 November 2023).
- Österreichische Bautechnik Vereinigung. Ökologisierung & Nachhaltigkeit im Bauwesen—Sachstand; Österreichische Bautechnik Vereinigung: Wien, Austria, 2022; Available online: www.bautechnik.pro (accessed on 17 March 2023).
- Hausberger, L.; Gschösser, F. Nachhaltigkeit von Verkehrsinfrastrukturen: Bewertung auf drei Ebenen. Bauaktuell 2023, 14, 154. [Google Scholar]
- Friedrichsen, S. 2. Auflage. In Nachhaltiges Planen, Bauen und Wohnen: Kriterien für Neubau und Bauen im Bestand; Springer Vieweg: Berlin, Germany, 2018; ISBN 978-3-662-56553-7. [Google Scholar]
- Gschösser, F.; Schneider, R.; Tautschnig, A.; Feix, J. Retrofitting Measure vs. Replacement—LCA Study for a Railway Bridge. In Expanding Boundaries; vdf Hochschulverlag AG an der ETH Zurich: Zurich, Switzerland, 2016. [Google Scholar] [CrossRef]
- Gschösser, F.; Purrer, W.; Sander, P. Environmental Effects of an Alpine Summit Tunnel. In Expanding Boundaries; vdf Hochschulverlag AG an der ETH Zurich: Zurich, Switzerland, 2016. [Google Scholar] [CrossRef]
- Breemersch, T.; De Ceuster, G.; Chiffi, C.; Fiorello, D.; Ntziachristos, L.; Kouridis, C.; Knörr, W. Final Report—Update and Further Development of Transport Model TREMOVE; European Commission: Brussels, Belgium, 2010; Available online: https://climate.ec.europa.eu/system/files/2016-11/2010_tremove_en.pdf (accessed on 5 July 2023).
- De Ceuster, G.; van Herbruggen, B.; Logghe, S.; Proost, S. TREMOVE. 2004. Available online: https://www.asser.nl/upload/eel-webroot/www/documents/TREMOVEreport.pdf (accessed on 5 July 2023).
- Notter, B.; Wüthrich, P.; Heidt, C.; Knörr, W.; Mellios, G.; Papadimitriou, G.; Kouridis, C. Vergleich COPERT—TREMOD, Bern, Heidelberg und Thessaloniki. 2016. Available online: https://bast.opus.hbz-nrw.de/opus45-bast/frontdoor/deliver/index/docId/1891/file/7307b_COPERT_TREMOD_BAST_Schlussbericht.pdf (accessed on 5 July 2023).
- INFRAS. HBEFA—Handbook Emission Factors for Road Transport. Available online: https://www.hbefa.net/ (accessed on 27 November 2023).
- ÖNORM EN 17472; Nachhaltigkeit von Bauwerken—Bewertung der Nachhaltigkeit von Ingenieurbauwerken—Rechenverfahren. Austrian Standards International: Wien, Austria, 2022.
- ÖNORM EN 15804; Nachhaltigkeit von Bauwerken—Umweltproduktdeklarationen—Grundregeln für die Produktkategorie Bauprodukte. Austrian Standards International: Wien, Austria, 2022.
- Ecoinvent. Ecoinvent v3.9 Database. Available online: https://ecoinvent.org/the-ecoinvent-database/ (accessed on 23 November 2023).
- ÖNORM EN ISO 14040; Umweltmanagement—Ökobilanz—Grundsätze und Rahmenbedingungen. Austrian Standards International: Wien, Austria, 2021.
- ÖNORM EN ISO 14044; Umweltmanagement—Ökobilanz—Anforderungen und Anleitungen. Austrian Standards International: Wien, Austria, 2021.
- Liebl, J.; Lederer, M.; Rohde-Brandenburger, K.; Biermann, J.-W.; Roth, M.; Schäfer, H. Energiemanagement im Kraftfahrzeug; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; ISBN 978-3-658-04450-3. [Google Scholar]
- United Nations. THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 19 January 2023).
- Alt, R.; Antrekowitsch, H.; Baumann, M.; Borrmann, J.; Brandauer, W.; Eggler, L.; Eichlseder, H.; Eichlseder, W.; Fichtinger, M.; Geringer, B.; et al. ÖAMTC Expertenbericht "Mobilität & Klimaschutz 2030“, Wien. 2018. Available online: https://www.oeamtc.at/club/oeamtc-expertenbericht-mobilitaet-klimaschutz-2030-25873728 (accessed on 5 July 2023).
- Bundesministerium für Verkehr, Innovation und Technologie; Bundesministerium Nachhaltigkeit und Tourismus. #mission2030: Die Österreichische Klima- und Energiestrategie, Wien. 2018. Available online: https://www.bmk.gv.at/dam/bmvitgvat/content/themen/klima/klimaschutz/mission2030/mission2030_oe_klimastrategie_ua.pdf (accessed on 17 November 2023).
- Heinfellner, H. Sachstandsbericht Mobilität und mögliche Zielpfade zur Erreichung der Klimaziele 2050 mit dem Zwischenziel 2030: Kurzbericht; Umweltbundesamt: Wien, Germany, 2018; ISBN 978-3-99004-486-5. [Google Scholar]
- Statistik Austria. Fahrzeuge. Available online: https://www.statistik.at/statistiken/tourismus-und-verkehr/fahrzeuge (accessed on 22 November 2023).
- European Commission. Eurostat: Database—Transport. Available online: https://ec.europa.eu/eurostat/web/transport/data/database (accessed on 22 November 2023).
- Statistik Austria. Kfz-Neuzulassungen. 2022. Available online: https://www.statistik.at/statistiken/tourismus-und-verkehr/fahrzeuge/kfz-neuzulassungen (accessed on 5 July 2023).
- Bundesministerium für Verkehr, Innovation und Technologie. Erlass betreffend Einstufung in Euro-Abgasklassen: BMVIT-185.321/0005-IV/ST5/2019; Bundesministerium für Verkehr, Innovation und Technologie: Vienna, Austria, 2019. [Google Scholar]
- European Environment Agency. Monitoring of CO2 Emissions from Passenger Cars—Regulation (EU) 2019/631: (EU) No 2019/631; European Environment Agency: Copenhagen, Denmark, 2022. [Google Scholar]
- Wirtschaftskammer Österreich. Feststellung der richtigen Euro-Abgasklasse. Available online: https://www.wko.at/transport/abgasklassenzuordnung (accessed on 22 November 2023).
- Ericsson, E.; Nolinder, E.; Persson, A.; Steven, H. Work Programme 2016–2018 for HBEFA Version 4.1 Report of the Work Carried out for Work Package 2, Bern. 2019. Available online: https://assets.website-files.com/6207922a2acc01004530a67e/625e8c74c30e26e022b319c8_HBEFA41_Development_Report.pdf (accessed on 5 July 2023).
- Hausberger, S.; Matzer, C. Update of Emission Factors for EURO 4, EURO 5 and EURO 6 Diesel Passenger Cars for the HBEFA Version 3.3, Graz. 2017. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/bericht_der_tu_graz_zum_hbefa_3.3.pdf (accessed on 5 July 2023).
- Matzer, C. Bestimmung von Kraftstoffverbrauch und Abgasemissionen von Pkw in realen Betriebszuständen mittels Messung und Simulation. Ph.D. Thesis, Technischen Universität Graz, Graz, Austria, 2020. [Google Scholar]
- Hellweg, S.; Zah, R. What is new at the data front? Int. J. Life Cycle Assess 2016, 21, 1215–1217. [Google Scholar] [CrossRef]
- Ecoinvent. Ecoinvent v3.8—Ecoinvent. Available online: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-8/ (accessed on 1 March 2023).
- Henze, A.; Schröder, W. Fahrzeug- und Windradaerodynamik. Available online: https://www.aia.rwth-aachen.de/vluebfiles/vlueb/lecture_materials/19/link/Vorlesung.pdf (accessed on 5 July 2023).
- Klöpffer, W.; Grahl, B. Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf; Wiley-VCH: Weinheim, Germany, 2007; ISBN 978-3-527-32043-1. [Google Scholar]
- Frischknecht, R. Lehrbuch der Ökobilanzierung; Springer Spektrum: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-54762-5. [Google Scholar]
- Kroher, T. WLTP statt NEFZ: So funktioniert das aktuelle Messverfahren. ADAC, 5 November 2019. Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/abgasnormen/wltp-messverfahren/ (accessed on 27 November 2023).
- United Nations. World Forum for Harmonization of Vehicle Regulations (WP.29): How it Works, How to Join It, 4th ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2022; ISBN 978-92-1-117286-7.
- European Commission; Joint Research Centre; Huss, A.; Weingerl, P.; Maas, H.; Herudek, C.; Wind, J.; Hollweck, B.; de Prada, L.; Deix, S.; et al. JEC Well-to-Tank Report V5—JEC Well-to-Wheels Analysis—Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context—Passenger Car; Publications Office: Luxembourg, 2020. [Google Scholar]
- Wien Energie GmbH. Stromerzeugung in Österreich. 2022. Available online: https://positionen.wienenergie.at/grafiken/stromerzeugung-in-osterreich/ (accessed on 28 November 2023).
- Käfer, A.; Steininger, K.; Axhausen, K.; Burian, E.; Clees, L.; Fritz, O.; Fürst, B.; Gebetsroither, B.; Grubits, C.; Huber, P.; et al. Verkehrsprognose Österreich 2025+. Gesamtverkehr: Endbericht, Wien, 2009; Available online: https://www.bmk.gv.at/themen/verkehrsplanung/verkehrsprognose/verkehrsprognose2025.html (accessed on 28 November 2023).
- Loessl, T.; Weismayr, D. Emissionskennzahlen 2022, Wien. 2022. Available online: https://www.umweltbundesamt.at/fileadmin/site/themen/mobilitaet/daten/ekz_doku_verkehrsmittel.pdf (accessed on 5 July 2023).
- Jungbluth, N. Bewertungsmethoden in der Ökobilanzierung. Available online: http://esu-services.ch/fileadmin/download/tender/ESU-Beschreibung-Bewertungsmethoden.pdf (accessed on 28 April 2021).
Car Type | Total Avg. Mass [kg] |
---|---|
Diesel | 1694.25 |
Petrol | 1309.42 |
(P) HEV-Diesel/Electric | 2345.32 |
(P) HEV-Petrol/Electric | 1985.4 |
Electric | 1864.0 |
Natural Gas | 1362.6 |
LPG | 1205.0 |
Impact Indicator | Unit | Diesel | Petrol | Diesel/ Electric | Petrol/ Electric | BEV | NG | LPG | AVG AUT-CAR |
---|---|---|---|---|---|---|---|---|---|
GWP-total | kg CO2 eq | 1.697 × 10−1 | 1.838 × 10−1 | 1.443 × 10−1 | 1.373 × 10−1 | 3.225 × 10−2 | 1.451 × 10−1 | 1.763 × 10−1 | 1.716 × 10−1 |
ODP | kg CFC11 eq | 0.000 | 0.000 | 3.224 × 10−10 | 2.645 × 10−10 | 5.155 × 10−9 | 0.000 | 0.000 | 1.205 × 10−10 |
AP | mol H+ eq | 4.817 × 10−4 | 3.360 × 10−5 | 4.125 × 10−4 | 2.522 × 10−5 | 1.109 × 10−4 | 4.621 × 10−5 | 3.081 × 10−5 | 2.690 × 10−4 |
EP-freshwater | kg P eq | 0.000 | 0.000 | 6.729 × 10−7 | 5.520 × 10−7 | 1.076 × 10−5 | 0.000 | 0.000 | 2.515 × 10−7 |
EP-marine | kg N eq | 2.512 × 10−4 | 1.438 × 10−5 | 2.130 × 10−4 | 9.136 × 10−6 | 2.390 × 10−5 | 4.875 × 10−6 | 1.333 × 10−5 | 1.381 × 10−4 |
EP-terrestrial | mol N eq | 2.762 × 10−3 | 1.784 × 10−4 | 2.343 × 10−3 | 1.163 × 10−4 | 2.860 × 10−4 | 2.061 × 10−4 | 1.692 × 10−4 | 1.527 × 10−3 |
POCP | kg NMVOC eq | 6.667 × 10−4 | 1.511 × 10−4 | 5.655 × 10−4 | 1.013 × 10−4 | 7.401 × 10−5 | 8.358 × 10−5 | 1.595 × 10−4 | 4.170 × 10−4 |
ADP-minerals & metals | kg Sb eq | 0.000 | 0.000 | 3.678 × 10−8 | 3.018 × 10−8 | 5.882 × 10−7 | 0.000 | 0.000 | 1.375 × 10−8 |
ADP-fossil | MJ | 0.000 | 0.000 | 2.780 × 10−2 | 2.281 × 10−2 | 4.445 × 10−1 | 0.000 | 0.000 | 1.039 × 10−2 |
WDP | m3 depriv. | 0.000 | 0.000 | 3.274 × 10−4 | 2.686 × 10−4 | 5.235 × 10−3 | 0.000 | 0.000 | 1.224 × 10−4 |
PM | disease inc. | 4.174 × 10−9 | 3.038 × 10−10 | 1.299 × 10−9 | 2.504 × 10−10 | 7.290 × 10−10 | 2.864 × 10−10 | 1.065 × 10−10 | 2.314 × 10−9 |
ETP-fw | CTUe | 5.289 × 10−3 | 4.526 × 10−3 | 4.268 × 10−2 | 3.467 × 10−2 | 6.122 × 10−1 | 2.096 × 10−3 | 4.974 × 10−3 | 1.910 × 10−2 |
HTP-c | CTUh | 7.732 × 10−11 | 1.245 × 10−11 | 6.486 × 10−11 | 9.807× 10−12 | 1.990 × 10−11 | 1.742 × 10−12 | 1.359 × 10−11 | 4.637 × 10−11 |
HTP-nc | CTUh | 1.297 × 10−9 | 6.593 × 10−10 | 1.099× 10−9 | 3.475 × 10−10 | 5.111 × 10−10 | 1.206 × 10−9 | 7.980 × 10−10 | 9.798 × 10−10 |
SQP | Pt | 0.000 | 0.000 | 3.211 × 10−2 | 2.634 × 10−2 | 5.134 × 10−1 | 0.000 | 0.000 | 1.200 × 10−2 |
Impact Indicator | Unit | Diesel | Petrol | Diesel/ Electric | Petrol/ Electric | BEV | NG | LPG | AVG AUT-CAR |
---|---|---|---|---|---|---|---|---|---|
GWP-total | kg CO2 eq | 2.890 × 10−1 | 2.927 × 10−1 | 2.961 × 10−1 | 2.714 × 10−1 | 1.141 × 10−1 | 2.429 × 10−1 | 3.306 × 10−1 | 2.863 × 10−1 |
ODP | kg CFC11 eq | 7.052 × 10−9 | 6.475 × 10−9 | 3.224 × 10−10 | 6.888 × 10−9 | 7.571 × 10−9 | 1.078 × 10−8 | 7.309 × 10−9 | 6.760 × 10−9 |
AP | mol H+ eq | 1.105 × 10−3 | 6.173 × 10−4 | 8.450 × 10−4 | 8.616 × 10−4 | 7.028 × 10−4 | 4.499 × 10−4 | 9.708 × 10−4 | 8.792 × 10−4 |
EP-freshwater | kg P eq | 3.065 × 10−5 | 2.538 × 10−5 | 6.729 × 10−7 | 5.249 × 10−5 | 5.791 × 10−5 | 2.534 × 10−5 | 4.228 × 10−5 | 2.937 × 10−5 |
EP-marine | kg N eq | 3.590 × 10−4 | 1.099 × 10−4 | 4.386 × 10−4 | 1.526 × 10−4 | 1.267 × 10−4 | 8.446 × 10−5 | 1.809 × 10−4 | 2.425 × 10−4 |
EP-terrestrial | mol N eq | 3.821 × 10−3 | 1.111 × 10−3 | 4.823 × 10−3 | 1.431 × 10−3 | 1.217 × 10−3 | 1.051 × 10−3 | 1.866 × 10−3 | 2.548 × 10−3 |
POCP | kg NMVOC eq | 1.402 × 10−3 | 8.178 × 10−4 | 1.164 × 10−3 | 8.983 × 10−4 | 8.586 × 10−4 | 5.945 × 10−4 | 1.131 × 10−3 | 1.125 × 10−3 |
ADP-minerals & metals | kg Sb eq | 2.527 × 10−6 | 2.085 × 10−6 | 3.678 × 10−8 | 6.149 × 10−6 | 6.470 × 10−6 | 2.151 × 10−6 | 3.611 × 10−6 | 2.507 × 10−6 |
ADP-fossil | MJ | 3.737 | 3.459 | 2.780 × 10−2 | 3.264 | 1.474 | 3.452 | 4.398 | 3.526 |
WDP | m3 depriv. | 1.976 × 10−2 | 1.654 × 10−2 | 3.274 × 10−4 | 2.565 × 10−2 | 2.629 × 10−2 | 1.613 × 10−2 | 2.707 × 10−2 | 1.854 × 10−2 |
PM | disease inc. | 1.276 × 10−8 | 8.464 × 10−9 | 2.636 × 10−9 | 1.128 × 10−8 | 8.727 × 10−9 | 6.569 × 10−9 | 1.158 × 10−8 | 1.072 × 10−8 |
ETP-fw | CTUe | 2.125 | 1.880 | 4.735 × 10−2 | 2.143 | 1.382 | 7.662 × 10−1 | 2.703 | 1.988 |
HTP-c | CTUh | 2.456 × 10−10 | 1.499 × 10−10 | 1.327 × 10−10 | 2.367 × 10−10 | 2.234 × 10−10 | 1.432 × 10−10 | 2.529 × 10−10 | 2.031 × 10−10 |
HTP-nc | CTUh | 4.369 × 10−9 | 3.307 × 10−9 | 2.237 × 10−9 | 5.281 × 10−9 | 4.298 × 10−9 | 3.602 × 10−9 | 4.844 × 10−9 | 3.924 × 10−9 |
SQP | Pt | 3.789 × 10−1 | 3.370 × 10−1 | 3.211 × 10−2 | 4.912 × 10−1 | 8.340 × 10−1 | 2.109 × 10−1 | 4.984 × 10−1 | 3.712 × 10−1 |
Impact Indicator | Unit | 1 L DIESEL | 1 L PETROL | 1 m³ GAS | 1 kWh AUT-Electricity |
---|---|---|---|---|---|
GWP-total | kg CO2 eq | 3.538 | 3.352 | 2.685 | 1.847 × 10−1 |
ODP | kg CFC11 eq | 7.441 × 10−8 | 6.429 × 10−8 | 1.259 × 10−7 | 2.953 × 10−8 |
AP | mol H+ eq | 1.035 × 10−2 | 4.406 × 10−3 | 2.089 × 10−3 | 6.355 × 10−4 |
EP-freshwater | kg P eq | 4.371 × 10−5 | 4.554 × 10−5 | 3.457 × 10−5 | 6.163 × 10−5 |
EP-marine | kg N eq | 4.192 × 10−3 | 8.075 × 10−4 | 4.689 × 10−4 | 1.369 × 10−4 |
EP-terrestrial | mol N eq | 4.458 × 10−2 | 7.843 × 10−3 | 7.658 × 10−3 | 1.638 × 10−3 |
POCP | kg NMVOC eq | 1.630 × 10−2 | 7.866 × 10−3 | 4.904 × 10−3 | 4.239 × 10−4 |
ADP-minerals & metals | kg Sb eq | 5.248 × 10−7 | 5.592 × 10−7 | 5.479 × 10−7 | 3.369 × 10−6 |
ADP-fossil | MJ | 4.584× 101 | 3.964 × 101 | 3.983 × 101 | 2.546 |
WDP | m3 depriv. | 6.121 × 10−2 | 5.406 × 10−2 | 4.340 × 10−2 | 2.999 × 10−2 |
PM | disease inc. | 8.836 × 10−8 | 3.974 × 10−8 | 1.242 × 10−8 | 4.176 × 10−9 |
ETP-fw | CTUe | 2.086 × 101 | 1.802 × 101 | 2.110 | 3.507 |
HTP-c | CTUh | 1.358 × 10−9 | 4.217 × 10−10 | 3.054 × 10−10 | 1.140 × 10−10 |
HTP-nc | CTUh | 2.643 × 10−8 | 1.498 × 10−8 | 1.723 × 10−8 | 2.928 × 10−9 |
SQP | Pt | 2.533 | 2.314 | 4.659 × 10−1 | 2.941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hausberger, L.; Lutterbach, J.; Gschösser, F. Modeling the Environmental Impact of Passenger Cars Driven on Hilly Roads in Austria: A More Accurate Valuation of Greenhouse Gas Emissions and Further Environmental Indicators for Integral Life Cycle Assessments of Road Infrastructures. Buildings 2024, 14, 263. https://doi.org/10.3390/buildings14010263
Hausberger L, Lutterbach J, Gschösser F. Modeling the Environmental Impact of Passenger Cars Driven on Hilly Roads in Austria: A More Accurate Valuation of Greenhouse Gas Emissions and Further Environmental Indicators for Integral Life Cycle Assessments of Road Infrastructures. Buildings. 2024; 14(1):263. https://doi.org/10.3390/buildings14010263
Chicago/Turabian StyleHausberger, Lukas, Jounes Lutterbach, and Florian Gschösser. 2024. "Modeling the Environmental Impact of Passenger Cars Driven on Hilly Roads in Austria: A More Accurate Valuation of Greenhouse Gas Emissions and Further Environmental Indicators for Integral Life Cycle Assessments of Road Infrastructures" Buildings 14, no. 1: 263. https://doi.org/10.3390/buildings14010263
APA StyleHausberger, L., Lutterbach, J., & Gschösser, F. (2024). Modeling the Environmental Impact of Passenger Cars Driven on Hilly Roads in Austria: A More Accurate Valuation of Greenhouse Gas Emissions and Further Environmental Indicators for Integral Life Cycle Assessments of Road Infrastructures. Buildings, 14(1), 263. https://doi.org/10.3390/buildings14010263