User Preference Maps: Quantifying the Built Environment
Abstract
:1. Introduction
1.1. Research Background
1.2. Research Purpose
1.3. Research Stages
2. Materials and Methods
2.1. Theoretical Review
2.1.1. Data-Based Design Approaches
2.1.2. Visual Programming Tool: Grasshopper
2.1.3. Grasshopper Add-On Program
2.2. Data Collection and Evaluation Methods
2.2.1. Site Location
2.2.2. Data Collection and Evaluation at the Site
- The collected data are divided into three categories.
- The categorized data are evaluated and visualized.
- The map generation algorithm is applied.
- The final map is generated and visualized.
Three Categories: 1. Density of Activity
Three Categories: 2. Degree of Comfort
Three Categories: Density of Nature
2.3. Results of Data Evaluation and Visualization at the Site
2.4. Final Map Generation
Dijkstra Algorithm
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Access Token | User Preference Category |
---|---|
Qxmn7lUjHGaXP1YfXc6eZKRVT4VyELFdxOGj1v6 VEHEIh7QRK6dzXeDZFisvJW | https://api.yelp.com/v3/businesses/search?latitude=40.752910&longitude=-73.989224&limit=50&radius=120 (accessed on 5 October 2024) (Postman Yelp V3 Environment) |
Appendix B
Dijkstra’s Path Algorithm in Grasshopper | |
---|---|
Def dijkstra(graph,src,dest,visited=[],distances={},predecessors={}): if src not in graph: raise TypeError(‘The root of the optimal path tree cannot be found’) if dest not in graph: raise TypeError(‘The target of the optimal path cannot be found’) if src == dest: # We build the optimal path and display it path=[] pred=dest while pred != None: path.append(pred) pred=predecessors.get(pred,None) print(‘optimal path: ‘+str(path)+” total score: “+str(distances[dest])) else: if not visited: distances[src]=0 for neighbor in graph[src]: if neighbor not in visited: new_distance = distances[src] + graph[src][neighbor] if new_distance < distances.get(neighbor,float(‘inf’)): distances[neighbor] = new_distance predecessors[neighbor] = src visited.append(src unvisited={} for k in graph: if k not in visited: unvisited[k] = distances.get(k,float(‘inf’)) x = min(unvisited, key = unvisited.get) dijkstra(graph,x,dest,visited,distances,predecessors) p1 = y1, p2 = y2, p3 = y3, p4 = y4, p5 = y5 p6 = y6, p7 = y7, p8 = y8, p9 = y9, p10 = y10 p11 = y11, p12 = y12, p13 = y13, p14 = y14, p15 = y15 | p16 = y16, p17 = y17, p18 = y18, p19 = y19, p20 = y20 p21 = y21, p22 = y22, p23 = y23, p24 = y24, p25 = y25 p26 = y26, p27 = y27, p28 = y28, p29 = y29, p30 = y30 p31 = y31, p32 = y32, p33 = y33, p34 = y34, p35 = y35 p36 = y36, p37 = y37, p38 = y38, p39 = y39, p40 = y40 p41 = y41, p42 = y42, p43 = y43, p44 = y44, p45 = y45 p46 = y46, p47 = y47, p48 = y48, p49 = y49 if __name__ == “__main__”: #import sys;sys.argv = [‘‘, ‘Test.testName’] #unittest.main() graph = {‘s’: {‘x1’: p1, ‘x2’: p2}, ‘x1’: {‘x3’: p3, ‘x4’: p4, ‘s’: p1}, ‘x2’: {‘x4’: p5, ‘x5’: p6, ‘s’: p2}, ‘x3’: {‘x6’: p7, ‘x7’: p8, ‘x1’: p3}, ‘x4’: {‘x1’: p4, ‘x2’: p5, ‘x7’: p9, ‘x8’: p10}, ‘x5’: {‘x2’: p6, ‘x8’: p11, ‘x9’: p12}, ‘x6’: {‘x3’: p7, ‘x10’: p13, ‘x11’: p14}, ‘x7’: {‘x3’: p8, ‘x4’: p9, ‘x11’: p15, ‘x12’: p16}, ‘x8’: {‘x4’: p10, ‘x5’: p11, ‘x12’: p17, ‘x13’: p18}, ‘x9’: {‘x5’: p12, ‘x13’: p19, ‘x14’: p20}, ‘x10’: {‘x6’: p13, ‘x15’: p21, ‘x16’: p22}, ‘x11’: {‘x6’: p14, ‘x9’: p15, ‘x16’: p23, ‘x17’: p24}, ‘x12’: {‘x7’: p16, ‘x8’: p17, ‘x17’: p25, ‘x18’: p26}, ‘x13’: {‘x8’: p18, ‘x9’: p19, ‘x18’: p27, ‘x19’: p28}, ‘x14’: {‘x9’: p20, ‘x19’: p29}, ‘x15’: {‘x10’: p21, ‘x20’: p30}, ‘x16’: {‘x10’: p21, ‘x11’: p23, ‘x20’: p31, ‘x21’: p32}, ‘x17’: {‘x11’: p24, ‘x12’: p25, ‘x21’: p33, ‘x22’: p34}, ‘x18’: {‘x12’: p26, ‘x13’: p27, ‘x22’: p35, ‘x23’: p36}, ‘x19’: {‘x13’: p28, ‘x14’: p28, ‘x23’: p37}, ‘x20’: {‘x15’: p30, ‘x16’: p31, ‘x24’: p38}, ‘x21’: {‘x16’: p32, ‘x17’: p33, ‘x24’: p39, ‘x25’: p40}, ‘x22’: {‘x17’: p34, ‘x18’: p35, ‘x25’: p41, ‘x26’: p42}, ‘x23’: {‘x18’: p36, ‘x19’: p37, ‘x26’: p43}, ‘x24’: {‘x20’: p38, ‘x21’: p39, ‘x27’: p44}, ‘x25’: {‘x21’: p40, ‘x22’: p41, ‘x27’: p45, ‘x28’: p46}, ‘x26’: {‘x22’: p42, ‘x23’: p43, ‘x28’: p47}, ‘x27’: {‘x24’: p44, ‘x25’: p45, ‘t’: p48}, ‘x28’: {‘x25’: p46, ‘x26’: p47, ‘t’: p49}, ‘t’: {‘x27’: p48, ‘x28’: p49}} dijkstra(graph,‘s’,‘t’) |
References
- Rehrl, K.; Bruntsch, S.; Mentz, H.J. Assisting multimodal travelers: Design and prototypical implementation of a personal travel companion. IEEE Trans. Intell. Transp. Syst. 2007, 8, 31–41. [Google Scholar] [CrossRef]
- Neal, L.; Licia, C.; Daniele, M.; Federico, D.V.; Giuseppe, C.; Raffaele, D.A.; Theo, A.; Jianwei, Z.; Davide, C.; Vlad, A. Personalizing Mobile Travel Information Service. Procedia Soc. Behav. Sci. 2012, 48, 1195–1204. [Google Scholar]
- Asha, W.A.; Marc, S.; Katja, I. How Far, by Which Route and Why? A Spatial Analysis of Pedestrian Preference. J. Urban Des. 2008, 13, 81–98. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Crane, R. The influence of urban form on travel: An interpretive review. J. Plan. Lit. 2000, 15, 3–23. [Google Scholar] [CrossRef]
- Pikora, T.J.; Bull, F.C.L.; Jamrozik, K.; Knuiman, M.; Giles-Corti, B.; Donovan, R.J. Developing a reliable audit instrument to measure the physical environment for physical activity. Am. J. Prev. Med. 2002, 23, 187–194. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Joo, J. The relationship between non-motorized mode choice and the local physical environment. Transp. Res. 2004, 9, 151–173. [Google Scholar] [CrossRef]
- Ewing, R.; Clement, O.; Handy, S.; Brownson, R.C.; Winston, E. Identifying and Measuring Urban Design Qualities Related to Walkability. J. Phys. Act. Health 2006, 3, 223–240. [Google Scholar] [CrossRef]
- Mehta, V. Walkable streets: Pedestrian behavior, perceptions and attitudes. J. Urban. 2008, 1, 217–245. [Google Scholar] [CrossRef]
- Koh, P.P.; Wong, Y.D. Comparing pedestrians’ needs and behaviours in different land use environments. J. Transp. Geogr. 2013, 26, 43–50. [Google Scholar] [CrossRef]
- Koh, P.P.; Wong, Y.D. Influence of infrastructural compatibility factors on walking and cycling route choices. J. Environ. Psychol. 2013, 36, 202–213. [Google Scholar] [CrossRef]
- Clifton, K.J.; Singleton, P.A.; Muhs, C.D.; Schneider, R.J. Representing pedestrian activity in travel demand models: Framework and application. J. Transp. Geogr. 2016, 52, 111–122. [Google Scholar] [CrossRef]
- Tong, Y.; Bode, N.W.F. The principles of pedestrian route choice. J. R. Soc. Interface 2022, 19, 20220061. [Google Scholar] [CrossRef] [PubMed]
- Borst, H.C.; Miedema, H.M.; de Vries, S.I.; Graham, J.M.; van Dongen, J.E. Relationships between street characteristics and perceived attractiveness for walking reported by elderly people. J. Environ. Psychol. 2008, 28, 353–361. [Google Scholar] [CrossRef]
- Bovy, P.H.; Stern, E. Route Choice: Wayfinding in Transport Networks: Wayfinding in Transport Networks; Kluwer Academic: Dordrecht, The Netherlands, 1990; pp. 1–14. [Google Scholar]
- Lue, G. Estimating a Toronto Pedestrian Route Choice Model using Smartphone GPS Data: It’s Not the Destination, but the Journey, that Matters. Master’ Thesis, University of Toronto, Toronto, ON, Canada, 2017. [Google Scholar]
- Broach, J.; Dill, J. Pedestrian Route Choice Model Estimated from Revealed Preference GPS Data. In Proceedings of the TRB 94th Annual Meeting Compendium of Papers, Washington, DC, USA, 11–15 January 2015. [Google Scholar]
- City of Toronto. Available online: https://www.toronto.ca/city-government/data-research-maps/research-reports/public-health-significant-reports/reports-on-built-environment-human-health/ (accessed on 1 October 2024).
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking: A review. Med. Sci. Sports Exerc. 2008, 40, S550–S566. [Google Scholar] [CrossRef]
- Lawrence, D.F.; Engelke, P.O. The Built Environment and Human Activity Patterns: Exploring the Impacts of Urban Form on Public Health. J. Plan. Lit. 2001, 16, 202–218. [Google Scholar]
- Handy, S.L.; Boarnet, G.M.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [Google Scholar] [CrossRef]
- Jacobs, J. The uses of city neighborhoods. In The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961; pp. 112–142. [Google Scholar]
- Gehl, J. Life between builings. In Life Between Buildings: Using Public Space; Island Press: New York, NY, USA, 1971; pp. 9–52. [Google Scholar]
- Lynch, K. A theory of city form. In Good City Form; The MIT Press: Cambridge, MA, USA, 1984; pp. 111–238. [Google Scholar]
- Shatu, F.; Yigitcanlar, T.; Bunker, J. Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour. J. Transp. Geogr. 2019, 74, 37–52. [Google Scholar] [CrossRef]
- Seneviratne, P.N.; Morrall, J.F. Analysis of factors affecting the choice of route of pedestrians. Transp. Plan. Technol. 1985, 10, 147–159. [Google Scholar] [CrossRef]
- Stigell, E.; Schantz, P. Methods for determining route distances in active commuting their validity and reproducibility. J. Transp. Geogr. 2011, 19, 563–574. [Google Scholar] [CrossRef]
- Scheiner, J. Interrelations between travel mode choice and trip distance. J. Transp. Geogr. 2010, 18, 75–84. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Basu, R. The role of turns in pedestrian route choice: A clarification. J. Transp. Geogr. 2022, 102, 103392. [Google Scholar] [CrossRef]
- Leccese, M.; McCormick, K. Charter of the New Urbanism; McGraw Hill Professional: New York, NY, USA, 1999; pp. 1–176. [Google Scholar]
- Talen, E.; Koschinsky, J. The Walkable Neighborhood: A Literature Review. Int. J. Sustain. Land Use Urban Plan. 2013, 1, 42–63. [Google Scholar] [CrossRef]
- Demerath, L.; Levinger, D. The Social Qualities of Being on Foot: A Theoretical Analysis of Pedestrian Activity, Community, and Culture. City Community 2003, 2, 217–237. [Google Scholar] [CrossRef]
- Vernez-Moudon, A.; Hess, P.; Snyder, M.C.; Stanilov, K. Effects of Site Design on Pedestrian Travel in Mixed-Use, Medium-Density Environments. Transp. Res. Rec. J. Transp. Res. Board 1997, 1578, 48–55. [Google Scholar] [CrossRef]
- Gu, N. The effect of Neighborhood Built Environment on Mental Health: A Systemic Review of Korean Studies. J. Archit. Inst. Korea 2023, 39, 27–38. [Google Scholar]
- Woo, S.H.; Kim, S.B.; Choo, S.Y. A Study on the Optimization of Architectural Skin Panel using Genetic Algorithm. J. Archit. Inst. Korea 2014, 30, 13–20. [Google Scholar]
- Hamilton, D.K.; Watkins, D.H. The case for evidence-based design. In Evidence-Based Design for Multiple Building Types; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 7–74. [Google Scholar]
- Keim, D.A. Information Visualization and Visual Data Mining. IEEE Trans. Vis. Comput. Graph. 2002, 8, 1–8. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Design Proposal of Optimized Office Building Facade Using Parametric Design Application. J. Korea Inst. Spat. Des. 2020, 15, 205–215. [Google Scholar]
- Park, M.; Roudsari, M. A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. In Proceedings of the 13th Conference of International Building Performance Simulation Association, Chambery, France, 25–28 August 2013. [Google Scholar]
- Agrawal, A.W.; Schimek, P. Extent and correlates of walking in the USA. Transp. Res. Part D Transp. Environ. 2007, 12, 548–563. [Google Scholar] [CrossRef]
- Ozbil, A.; Peponis, J.; Stone, B. Understanding the link between street connectivity, land use and pedestrian flows. Urban Des. Int. 2011, 16, 125. [Google Scholar] [CrossRef]
- Zacharias, J. Path choice and visual stimuli: Signs of human activity and architecture. J. Environ. Psychol. 2001, 21, 341–352. [Google Scholar] [CrossRef]
- Sundstrom, E.; Bell, P.A.; Busby, P.L.; Asmus, C. Environmental Psychology 1989–1994. Annu. Rev. Psychol. 1996, 47, 485–512. [Google Scholar] [CrossRef]
- Kim, S.Y. A Study on the Amenity Indicator of Office Public Space. J. Archit. Inst. Korea 2002, 18, 147–154. [Google Scholar]
- Sarkar, C.; Webster, C.; Pryor, M.; Tang, D.; Melbourne, S.; Zhang, X.; Liu, J. Exploring associations between urban green, street design and walking: Results from the Greater London boroughs. Landsc. Urban Plan. 2015, 143, 112–125. [Google Scholar] [CrossRef]
- Ferrer, S.; Ruiz, T.; Mars, L. A qualitative study on the role of the built environment for short walking trips. Transportation Res. Part F Traffic Psychol. Behav. 2015, 33, 141–160. [Google Scholar] [CrossRef]
- Chang, S.W.; Kim, J.K.; Jun, H.J. A Basic Study on Architectural Data Visualization Process: By Using Interactive Data Visualization Tool and Public Data. J. Archit. Inst. Korea 2017, 37, 17–20. [Google Scholar]
- Dick, W.; Carey, L.; Carey, J.O. Chapter 1: Introduction to Instructional Design. In The Systematic Design of Instruction, 7th ed.; Pearson: New York, NY, USA, 2009; pp. 1–13. [Google Scholar]
- Khan, M.; Khan, S.S. Data and Information Visualization Methods, and Interactive Mechanisms: A Survey. Int. J. Comput. Appl. 2011, 34, 1–14. [Google Scholar]
- Guo, Z.; Loo, B.P. Pedestrian environment and route choice: Evidence from New York City and Hong Kong. J. Transp. Geogr. 2013, 28, 124–136. [Google Scholar] [CrossRef]
- Basu, N.; Oviedo-Trespalacios, O.; King, M.; Kamruzzaman, M.; Haque, M. What do pedestrians consider when choosing a route? The role of safety, security, and attractiveness perceptions and the built environment during day and night walking. Cities 2023, 143, 104551. [Google Scholar] [CrossRef]
- Dessing, D.; Vries, S.I.; Hegeman, G.; Verhagen, E.; Mechelen, W.V.; Pierik, F.H. Children’s route choice during active transportation to school: Difference between shortest and actual route. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z. Does the pedestrian environment affect the utility of walking? A case of path choice in downtown Boston. Transp. Res. Part D Transp. Environ. 2009, 14, 343–352. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Merlin, L.; Prato, C.G.; Conway, T.L.; Cohen, D.; Elder, J.P.; Evenson, K.R.; McKenzie, T.L.; Pickrel, J.L.; Veblen-Mortenson, S. Influence of the Built Environment on Pedestrian Route Choices of Adolescent Girls. Environ. Behav. 2015, 47, 359–394. [Google Scholar] [CrossRef]
- Lue, G.; Miller, E.J. Estimating a Toronto pedestrian route choice model using smartphone GPS data. Travel Behav. Soc. 2019, 14, 34–42. [Google Scholar] [CrossRef]
- Erath, A.; Eggermond, M.; Ordonez, S.; Axhausen, K. Modelling for Walkability: Understanding pedestrians’ preferences in Singapore. In Proceedings of the 14th International Conference on Travel Behaviour Research IATBR, Windsor, UK, 19–23 July 2015. [Google Scholar]
- Sevtsuk, A. Estimating pedestrian flows on street networks: Revisiting the betweenness index. J. Am. Plan. Assoc. 2021, 87, 512–526. [Google Scholar] [CrossRef]
- Srinath, K.R. Python—The Fastest Growing Programming Language. Int. Res. J. Eng. Technol. 2017, 4, 354–357. [Google Scholar]
- Card, S.K.; MacKinlay, J.D.; Shneiderman, B. Readings in Information Visualization: Using Vision to Think, 1st ed.; Morgan Kaufmann: San Francisco, CA, USA, 1999; pp. 1–33. [Google Scholar]
- Teyseyre, A.R.; Campo, M.R. An Overview of 3D Software Visualization. IEEE Trans. Vis. Comput. Graph. 2009, 15, 87–105. [Google Scholar] [CrossRef]
Process 1 | Process 2 | Process 3 | Process 4 |
---|---|---|---|
Data Mining | Categorization and Site Modeling | Simulation, Evaluation, and Visualization | Application of Algorithm and Map Visualization |
Postman web version 2024, MS Excel, Crome | Rhino, Grasshopper | Rhino, Grasshopper | Rhino, PyCharm, Grasshopper |
Name of Data | Raw Data Reference |
---|---|
Restaurant Density | https://www.yelp.com/ (accessed on 5 October 2024) |
Building Density (Built-FAR) | https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page (accessed on 5 October 2024) |
Visibility (Openness) | https://grasshopperdocs.com/components/grasshopperintersect/isoVist.html (accessed on 5 October 2024) |
Landmark View | https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page (accessed on 5 October 2024) |
Tree Density | https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35 (accessed on 5 October 2024) |
Noise Complaints | https://data.cityofnewyork.us/Social-Services/311-Noise-Complaints/p5f6-bkga (accessed on 5 October 2024) |
Sky Exposure | https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page (accessed on 5 October 2024) |
Name of Data | User Preference Category | Built Environment |
---|---|---|
Restaurant Density | Activity | Building-Use |
Building Density | Activity | Built-FAR 1, (Density of Population) |
Noise Complaints Density | Activity, Comfort | Street Condition: Noise |
Visibility (Openness) | Comfort | Street Condition: Open Space |
Landmark View | Comfort | Street Condition: View |
Tree Density | Nature | Street Condition: Nature (Tree) |
Sky Exposure Ratio | Nature | Street Condition: Nature (Sky) |
Points in the Target Area | |
---|---|
Midtown Manhattan | 30 Points in the Street |
Data collection radius = 120 m |
Name of Data | Tool | Data File Format |
---|---|---|
Restaurant Density | Excel, Grasshopper | JSON or Text |
Building Density | Grasshopper, @it, ghowl | SHP 1 |
Noise Complaints | Grasshopper, ghowl | CSV |
Visibility (Openness) | Grasshopper, @it, ghowl | SHP 1 |
Landmark View | Rhino, Grasshopper, @it, ghowl | SHP 1, 3DM 2 |
Tree Density | Grasshopper, ghowl | CSV |
Sky Exposure | Grasshopper, @it, ghowl, Ladybug | SHP 1 |
JSON File | Evaluation in Grasshopper |
---|---|
SHP File | Evaluation in Grasshopper |
---|---|
IsoVist Simulation | Visualization in Grasshopper |
---|---|
Start Point, Target Point, Sight Line |
---|
Noise Type | Visualization in Grasshopper |
---|---|
Shape File Import (@it Component) | Ladybug SyMask Analysis |
---|---|
Number of Restaurants | Restaurants in the Circle | s, x1~x28, e: Restaurant Density (3.5~5 Stars from Yelp): Intersections in a Zigzag Order Starting from the Lower Left in the Location on the Map (Table 4) | |||||
Street Seg. | Num. Restaurant | Street Seg. | Num. Restaurant | Street Seg. | Num. Restaurant | Street Seg. | Num. Restaurant |
s | 8 | x1 | 5 | x2 | 3 | x3 | 14 |
x4 | 10 | x5 | 4 | x6 | 5 | x7 | 7 |
x8 | 8 | X9 | 5 | x10 | 13 | x11 | 14 |
x12 | 8 | x13 | 4 | x14 | 4 | x15 | 8 |
x16 | 13 | x17 | 8 | x18 | 17 | x19 | 9 |
x20 | 12 | x21 | 4 | x22 | 7 | x23 | 7 |
x24 | 1 | x25 | 13 | x26 | 12 | x27 | 10 |
x28 | 6 | e | 6 |
Number of BuiltFAR | Points in the Circle | s, x1~x28, e: Building Density (Underbuilt/Overbuilt): Intersections in a Zigzag Order Starting from the Lower Left in the Location on the Map (Table 4) | |||||
Street Seg. | BuiltFAR | Street Seg. | BuiltFAR | Street Seg. | BuiltFAR | Street Seg. | BuiltFAR |
s | 5.3 | x1 | 8.9 | x2 | 7.6 | x3 | 8.6 |
x4 | 8.2 | x5 | 6.6 | x6 | 6.6 | x7 | 9.3 |
x8 | 7.2 | X9 | 8.2 | x10 | 8.2 | x11 | 7.2 |
x12 | 7.0 | x13 | 8.5 | x14 | 8.8 | x15 | 8.5 |
x16 | 9.6 | x17 | 8.2 | x18 | 7.6 | x19 | 7.3 |
x20 | 7.6 | x21 | 6.6 | x22 | 9.6 | x23 | 9.4 |
x24 | 7.2 | x25 | 7.1 | x26 | 8.6 | x27 | 11.2 |
x28 | 7.2 | e | 7.7 |
Number of Noise | Points in the Circle | s, x1~x28, e: Noise Density (311 Complaints Data from NYC Open Data): Intersections in a Zigzag Order Starting from the Lower Left in the Location on the Map (Table 4) | |||||
Street Seg. | Density. Noise | Street Seg. | Density. Noise | Street Seg. | Density. Noise | Street Seg. | Density. Noise |
s | 19 | x1 | 29 | x2 | 26 | x3 | 10 |
x4 | 17 | x5 | 5 | x6 | 13 | x7 | 36 |
x8 | 4 | X9 | 31 | x10 | 8 | x11 | 6 |
x12 | 5 | x13 | 28 | x14 | 29 | x15 | 10 |
x16 | 13 | x17 | 2 | x18 | 12 | x19 | 17 |
x20 | 7 | x21 | 2 | x22 | 14 | x23 | 28 |
x24 | 5 | x25 | 2 | x26 | 10 | x27 | 11 |
x28 | 10 | e | 8 |
Number of Trees | Points in the Circle | s, x1~x28, e: Tree Density (30 Points in Midtown Manhattan): Intersections in a Zigzag Order Starting from the Lower Left in the Location on the Map (Table 4) | |||||
Street Seg. | Density. Tree | Street Seg. | Density. Tree | Street Seg. | Density. Tree | Street Seg. | Density. Tree |
s | 69 | x1 | 27 | x2 | 21 | x3 | 71 |
x4 | 19 | x5 | 5 | x6 | 31 | x7 | 28 |
x8 | 1 | X9 | 16 | x10 | 61 | x11 | 4 |
x12 | 0 | x13 | 18 | x14 | 18 | x15 | 14 |
x16 | 19 | x17 | 0 | x18 | 19 | x19 | 71 |
x20 | 1 | x21 | 6 | x22 | 24 | x23 | 30 |
x24 | 5 | x25 | 2 | x26 | 67 | x27 | 11 |
x28 | 23 | e | 56 |
Number of Visibility | Visibility in the Circle | s, x1~x28, e: Visibility (30 Points in Midtown Manhattan): Intersections in a Zigzag Order Starting from the Lower Left in the Location on the Map (Table 4) | |||||
Street Seg. | Visibility. Area | Street Seg. | Visibility. Area | Street Seg. | Visibility. Area | Street Seg. | Visibility. Area |
s | 190 | x1 | 119 | x2 | 122 | x3 | 115 |
x4 | 118 | x5 | 167 | x6 | 116 | x7 | 115 |
x8 | 131 | X9 | 125 | x10 | 121 | x11 | 115 |
x12 | 151 | x13 | 119 | x14 | 109 | x15 | 112 |
x16 | 121 | x17 | 120 | x18 | 118 | x19 | 113 |
x20 | 123 | x21 | 126 | x22 | 119 | x23 | 133 |
x24 | 126 | x25 | 118 | x26 | 114 | x27 | 217 |
x28 | 116 | e | 206 |
Number of Sky Ex. | Sky Ex. in the Circle | s, x1~x28, e: Sky Exposure (30 Points in Midtown Manhattan): Intersections in a Zigzag Order Starting from the Lower Left in the Location on the Map (Table 4) | |||||
Street Seg. | Sky Exposure | Street Seg. | Sky Exposure | Street Seg. | Sky Exposure | Street Seg. | Sky Exposure |
s | 52.83 | x1 | 31.94 | x2 | 26.63 | x3 | 31.68 |
x4 | 31.83 | x5 | 49.14 | x6 | 30.56 | x7 | 25.55 |
x8 | 35.86 | X9 | 33.89 | x10 | 27.93 | x11 | 32.78 |
x12 | 40.73 | x13 | 25.85 | x14 | 30.02 | x15 | 32.11 |
x16 | 25.90 | x17 | 36.95 | x18 | 38.10 | x19 | 40.30 |
x20 | 34.06 | x21 | 39.49 | x22 | 29.03 | x23 | 31.84 |
x24 | 35.74 | x25 | 36.25 | x26 | 28.59 | x27 | 42.64 |
x28 | 36.11 | e | 44.07 |
Number of Landmarks | View in the Circle | s, x1~x28, e: Landmark View (Blue: Visible/Red: Invisible): Intersections in a Zigzag Order Starting from the Lower Left in the Location on the Map (Table 4) | |||||
Street Seg. | Num. Landmark | Street Seg. | Num. Landmark | Street Seg. | Num. Landmark | Street Seg. | Num. Landmark |
s | 1 | x1 | 0 | x2 | 0 | x3 | 0 |
x4 | 1 | x5 | 1 | x6 | 3 | x7 | 0 |
x8 | 1 | X9 | 1 | x10 | 1 | x11 | 1 |
x12 | 1 | x13 | 0 | x14 | 1 | x15 | 1 |
x16 | 0 | x17 | 2 | x18 | 1 | x19 | 1 |
x20 | 3 | x21 | 0 | x22 | 0 | x23 | 2 |
x24 | 0 | x25 | 1 | x26 | 0 | x27 | 2 |
x28 | 2 | e | 3 |
Dijkstra’s Path Algorithm |
---|
Nodes for Finding Optimal Path (p1~p49) |
---|
Grade 1 (Excellent) | Grade 2 (Good) | Grade 3 (Fair) | Grade 4 (Poor) |
---|---|---|---|
100~75% | 75~50% | 50~25% | 0~25% |
Score > Q3 | Q3 ≥ Score > Q2 | Q2 ≥ Score > Q1 | Q1 ≥ Score |
Name of Data | Q1 | Q2 | Q3 | Min./Max. | Grade 1 (G1) | Grade 2 (G2) | Grade 3 (G3) | Grade 4 (G4) |
---|---|---|---|---|---|---|---|---|
Sky Exposure | 30.02384 | 33.34217 | 38.10313 | 25.55815/52.83286 | G1 > 38.10313 | 38.10313 ≥ G2 G2 > 33.34217 | 33.34217 ≥ G3 G3 > 30.02384 | 30.02384 ≥ G4 |
Landmark View | 0 | 1 | 1 | 0/3 | G1 > 1 | G2 = 1 | G3 < 1 | - |
Visibility | 116,102.4 | 119,981 | 126,939.4 | 109,256.2/217,190 | G1 > 126,939.4 | 126,939.4 ≥ G2 G2 > 119,981 | 119,981 ≥ G3 G3 > 116,102.4 | 116,102.4 ≥ G4 |
Noise | 6 | 10.5 | 19 | 2/36 | G1 > 19 | 19 ≥ G2 G2 > 10.5 | 10.5 ≥ G3 G3 > 6 | 6 ≥ G4 |
Restaurant (Yelp) | 5 | 8 | 12 | 1/17 | G1 > 12 | 12 ≥ G2 G2 > 8 | 8 ≥ G3 G3 > 5 | 5 ≥ G4 |
Built-FAR | 7.230833 | 7.967095 | 8.684286 | 5.30351/11.23344 | G1 > 8.684286 | 8.684286 ≥ G2 G2 > 7.967095 | 7.967095 ≥ G3 G3 > 7.230833 | 7.230833 ≥ G4 |
Tree | 5 | 19 | 30 | 0/71 | G1 > 30 | 30 ≥ G2 G2 > 19 | 19 ≥ G3 G3 > 5 | 5 ≥ G4 |
Optimal Path: Activity, Nature, Comfort |
---|
Final Map—Preference: Activity |
---|
Final Map—Preference: Nature |
---|
Final Map—Preference: Comfort |
---|
Node | Value | Node | Value | Node | Value |
---|---|---|---|---|---|
p1 | 2.50 | p2 | 2.17 | p3 | 2.83 |
p4 | 2.67 | p5 | 2.33 | p6 | 2.67 |
p7 | 2.50 | p8 | 2.67 | p9 | 2.50 |
p10 | 2.50 | p11 | 2.83 | p12 | 2.83 |
p13 | 2.33 | p14 | 2.17 | p15 | 2.33 |
p16 | 2.67 | p17 | 2.67 | p18 | 2.67 |
p19 | 2.67 | p20 | 2.83 | p21 | 2.67 |
p22 | 2.33 | p23 | 2.17 | p24 | 2.67 |
p25 | 3.00 | p26 | 2.17 | p27 | 2.17 |
p28 | 2.33 | p29 | 2.50 | p30 | 2.67 |
p31 | 2.33 | p32 | 2.67 | p33 | 3.17 |
p34 | 3.17 | p35 | 2.33 | p36 | 2.17 |
p37 | 2.33 | p38 | 2.83 | p39 | 3.17 |
p40 | 2.50 | p41 | 2.50 | p42 | 2.83 |
p43 | 2.67 | p44 | 3.00 | p45 | 2.33 |
p46 | 2.33 | p47 | 2.67 | p48 | 2.67 |
p49 | 2.67 |
Node | Value | Node | Value | Node | Value |
---|---|---|---|---|---|
p1 | 1.83 | p2 | 1.83 | p3 | 2.67 |
p4 | 2.83 | p5 | 2.83 | p6 | 2.33 |
p7 | 2.67 | p8 | 3.00 | p9 | 3.17 |
p10 | 2.67 | p11 | 2.17 | p12 | 2.17 |
p13 | 2.50 | p14 | 3.17 | p15 | 3.50 |
p16 | 3.17 | p17 | 2.17 | p18 | 2.83 |
p19 | 2.83 | p20 | 3.00 | p21 | 2.83 |
p22 | 2.67 | p23 | 3.33 | p24 | 3.17 |
p25 | 2.33 | p26 | 2.33 | p27 | 3.00 |
p28 | 2.67 | p29 | 2.83 | p30 | 3.00 |
p31 | 2.83 | p32 | 2.33 | p33 | 2.17 |
p34 | 2.83 | p35 | 2.83 | p36 | 2.17 |
p37 | 2.00 | p38 | 2.67 | p39 | 3.17 |
p40 | 2.33 | p41 | 3.00 | p42 | 3.00 |
p43 | 2.50 | p44 | 2.17 | p45 | 2.33 |
p46 | 2.67 | p47 | 2.67 | p48 | 1.33 |
p49 | 1.67 |
Node | Value | Node | Value | Node | Value |
---|---|---|---|---|---|
p1 | 2.83 | p2 | 2.17 | p3 | 3.17 |
p4 | 2.00 | p5 | 1.33 | p6 | 2.00 |
p7 | 3.00 | p8 | 2.50 | p9 | 1.33 |
p10 | 2.33 | p11 | 3.00 | p12 | 3.00 |
p13 | 2.50 | p14 | 1.83 | p15 | 1.33 |
p16 | 2.17 | p17 | 3.00 | p18 | 3.17 |
p19 | 3.17 | p20 | 3.33 | p21 | 2.17 |
p22 | 2.17 | p23 | 1.50 | p24 | 2.17 |
p25 | 2.83 | p26 | 2.33 | p27 | 2.50 |
p28 | 3.00 | p29 | 3.17 | p30 | 1.83 |
p31 | 1.83 | p32 | 1.83 | p33 | 2.50 |
p34 | 3.00 | p35 | 2.50 | p36 | 2.33 |
p37 | 2.83 | p38 | 1.83 | p39 | 1.83 |
p40 | 2.00 | p41 | 2.50 | p42 | 2.50 |
p43 | 2.33 | p44 | 1.50 | p45 | 1.67 |
p46 | 2.33 | p47 | 2.33 | p48 | 1.33 |
p49 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.; Kim, H. User Preference Maps: Quantifying the Built Environment. Buildings 2024, 14, 3463. https://doi.org/10.3390/buildings14113463
Son S, Kim H. User Preference Maps: Quantifying the Built Environment. Buildings. 2024; 14(11):3463. https://doi.org/10.3390/buildings14113463
Chicago/Turabian StyleSon, Sanghyun, and Hyoensu Kim. 2024. "User Preference Maps: Quantifying the Built Environment" Buildings 14, no. 11: 3463. https://doi.org/10.3390/buildings14113463
APA StyleSon, S., & Kim, H. (2024). User Preference Maps: Quantifying the Built Environment. Buildings, 14(11), 3463. https://doi.org/10.3390/buildings14113463