Natural Ventilation Potential of Residential Buildings in China Considering the Combined Effect of Indoor and Outdoor Air Pollution
Abstract
:1. Introduction
2. Methodology
2.1. Model Development
- (1)
- Building natural ventilation model
- (2)
- Constraints in model
- (a)
- Thermal comfort
- (b)
- Indoor air quality
- (3)
- PDPH calculation
“The hourly sum of the positive value of air pressure difference, when indoor PM2.5 concentration is below standard level, and the indoor air temperature fits the thermal comfort zone”.
2.2. Model Application
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, Z.; Chen, Y.; Malkawi, A.; Liu, Z.; Freeman, R.B. Energy Saving Potential of Natural Ventilation in China: The Impact of Ambient Air Pollution. Appl. Energy 2016, 179, 660–668. [Google Scholar] [CrossRef]
- Zhang, Y.; He, C.Q.; Tang, B.J.; Wei, Y.M. China’s Energy Consumption in the Building Sector: A Life Cycle Approach. Energy Build. 2015, 94, 240–251. [Google Scholar] [CrossRef]
- Cao, B.; Zhu, Y.; Li, M.; Ouyang, Q. Individual and District Heating: A Comparison of Residential Heating Modes with an Analysis of Adaptive Thermal Comfort. Energy Build. 2014, 78, 17–24. [Google Scholar] [CrossRef]
- Tsinghua University. Tsinghua University Annual Report on China Building Energy Efficiency; Tsinghua University: Beijing, China, 2014. [Google Scholar]
- Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J. Achieving Better Energy-Efficient Air Conditioning—A Review of Technologies and Strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Niachou, K.; Hassid, S.; Santamouris, M.; Livada, I. Experimental Performance Investigation of Natural, Mechanical and Hybrid Ventilation in Urban Environment. Build. Environ. 2008, 43, 1373–1382. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, L.; Gao, F. Night Ventilation Control Strategies in Office Buildings. Sol. Energy 2009, 83, 1902–1913. [Google Scholar] [CrossRef]
- Roisin, B.; Bodart, M.; Deneyer, A.; D’Herdt, P. Lighting Energy Savings in Offices Using Different Control Systems and Their Real Consumption. Energy Build. 2008, 40, 514–523. [Google Scholar] [CrossRef]
- Tariq, R.; Torres-Aguilar, C.E.; Xamán, J.; Zavala-Guillén, I.; Bassam, A.; Ricalde, L.J.; Carvente, O. Digital Twin Models for Optimization and Global Projection of Building-Integrated Solar Chimney. Build. Environ. 2022, 213, 108807. [Google Scholar] [CrossRef]
- Tariq, R.; Torres-Aguilar, C.E.; Sheikh, N.A.; Ahmad, T.; Xamán, J.; Bassam, A. Data Engineering for Digital Twining and Optimization of Naturally Ventilated Solar Façade with Phase Changing Material under Global Projection Scenarios. Renew. Energy 2022, 187, 1184–1203. [Google Scholar] [CrossRef]
- Novoselac, A.; Srebric, J. A Critical Review on the Performance and Design of Combined Cooled Ceiling and Displacement Ventilation Systems. Energy Build. 2002, 34, 497–509. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Lu, L. A Comprehensive Review on Passive Design Approaches in Green Building Rating Tools. Renew. Sustain. Energy Rev. 2015, 50, 1425–1436. [Google Scholar] [CrossRef]
- Ramponi, R.; Gaetani, I.; Angelotti, A. Influence of the Urban Environment on the Effectiveness of Natural Night-Ventilation of an Office Building. Energy Build. 2014, 78, 24–34. [Google Scholar] [CrossRef]
- Ben-David, T.; Waring, M.S. Impact of Natural versus Mechanical Ventilation on Simulated Indoor Air Quality and Energy Consumption in Offices in Fourteen U.S. Cities. Build. Environ. 2016, 104, 320–336. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, C.; Liu, Y. CFD Analysis of Building Cross-Ventilation with Different Angled Gable Roofs and Opening Locations. Buildings 2023, 13, 2716. [Google Scholar] [CrossRef]
- Zheng, Y.; Miao, J.; Yu, H.; Liu, F.; Cai, Q. Thermal Analysis of Air-Cooled Channels of Different Sizes in Naturally Ventilated Photovoltaic Wall Panels. Buildings 2023, 13, 3002. [Google Scholar] [CrossRef]
- Sujatha, P.; Mahalakshmi, D.V.; Ramiz, A.; Rao, P.V.N.; Naidu, C.V.; Wang, Z. Ventilation Coefficient and Boundary Layer Height Impact on Urban Air Quality. Cogent Environ. Sci. 2016, 2, 1125284. [Google Scholar] [CrossRef]
- King, D. Natural Ventilation. Technical 2009, 19, 47–48. [Google Scholar]
- Walker, A. Natural Ventilation. Whole Building Design Guide. 2010. Available online: https://www.wbdg.org/resources/natural-ventilation?r=env_wall (accessed on 25 November 2023).
- Yang, L.; Zhang, G.; Li, Y.; Chen, Y. Investigating Potential of Natural Driving Forces for Ventilation in Four Major Cities in China. Build. Environ. 2005, 40, 738–746. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, J.; Shen, W.; Peng, C.; Zhang, G.; Zhang, L. Estimating Natural-Ventilation Potential Considering Thermal Mass. In Proceedings of the 2010 International Conference on Digital Manufacturing & Automation, ICDMA 2010, Changcha, China, 18–20 December 2010; Volume 1, pp. 666–669. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, J.; Gao, J.; He, L. Estimating Natural-Ventilation Potential Considering Both Thermal Comfort and IAQ Issues. Build. Environ. 2007, 42, 2289–2298. [Google Scholar] [CrossRef]
- Roulet, C.; Germano, M.; Allard, F. Potential for Natural Ventilation in Urban Context: An Assessment Method. Proc. Indoor Air 2002, 2, 830–835. [Google Scholar]
- Germano, M.; Roulet, C.A. Multicriteria Assessment of Natural Ventilation Potential. Sol. Energy 2006, 80, 393–401. [Google Scholar] [CrossRef]
- Axley, J.W.; Emmerich, S.J. A Method to Assess the Suitability of a Climate for Natural Ventilation of Commercial Buildings. In Indoor Air 2002: Proceedings of the 9th International Conference on Indoor Air Quality and Climate, Monterey, CA, USA, 30 June–5 July 2002; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002; Volume 2, pp. 854–859. [Google Scholar]
- Causone, F. Climatic Potential for Natural Ventilation. Archit. Sci. Rev. 2016, 59, 212–228. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Malkawi, A. Estimating Natural Ventilation Potential for High-Rise Buildings Considering Boundary Layer Meteorology. Appl. Energy 2017, 193, 276–286. [Google Scholar] [CrossRef]
- Martins, N.R.; Carrilho da Graça, G. Simulation of the Effect of Fine Particle Pollution on the Potential for Natural Ventilation of Non-Domestic Buildings in European Cities. Build. Environ. 2017, 115, 236–250. [Google Scholar] [CrossRef]
- Martins, N.R.; Carrilho da Graça, G. Impact of Outdoor PM2.5 on Natural Ventilation Usability in California’s Nondomestic Buildings. Appl. Energy 2017, 189, 711–724. [Google Scholar] [CrossRef]
- Ghiaus, C.; Allard, F. Assessment of Natural Ventilation Potential of a Region Using Degree-Hours Estimated on Global Weather Data. In Proceedings of the Conference on EPIC2002, Lyon, France, 23–26 October 2002. [Google Scholar]
- Haase, M.; Amato, A. An Investigation of the Potential for Natural Ventilation and Building Orientation to Achieve Thermal Comfort in Warm and Humid Climates. Sol. Energy 2009, 83, 389–399. [Google Scholar] [CrossRef]
- Chiesa, G.; Grosso, M. Geo-Climatic Applicability of Natural Ventilative Cooling in the Mediterranean Area. Energy Build. 2015, 107, 376–391. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, G.; Wang, X.; Liu, J.; Xia, S. Potential Model for Single-Sided Naturally Ventilated Buildings in China. Sol. Energy 2010, 84, 1595–1600. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, G.; Yang, W.; Wang, X. Natural Ventilation Potential Model Considering Solution Multiplicity, Window Opening Percentage, Air Velocity and Humidity in China. Build. Environ. 2010, 45, 338–344. [Google Scholar] [CrossRef]
- Pope, A.C.; Burnett, R.T.; Krewski, D.; Jerrett, M.; Shi, Y.; Calle, E.E.; Thun, M.J. Cardiovascular Mortality and Exposure to Airborne Fine Particulate Matter and Cigarette Smoke Shape of the Exposure-Response Relationship. Circulation 2009, 120, 941–948. [Google Scholar] [CrossRef]
- Künzli, N.; Kaiser, R.; Medina, S.; Studnicka, M.; Chanel, O.; Filliger, P.; Herry, M.; Horak, F.; Puybonnieux-Texier, V.; Quénel, P.; et al. Public-Health Impact of Outdoor and Traffic-Related Air Pollution: A European Assessment. Lancet 2000, 356, 795–801. [Google Scholar] [CrossRef]
- YAMAMOTO, Y.; TANABE, S. The Criteria of Outdoor Conditions for Operating Natural Ventilation Openings. J. Environ. Eng. (Transactions AIJ) 2016, 81, 375–384. [Google Scholar] [CrossRef]
- Chen, J.; Brager, G.S.; Augenbroe, G.; Song, X. Impact of Outdoor Air Quality on the Natural Ventilation Usage of Commercial Buildings in the US. Appl. Energy 2019, 235, 673–684. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Cao, F. Fine Particulate Matter (PM 2.5) in China at a City Level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef]
- Quang, T.N.; He, C.; Morawska, L.; Knibbs, L.D. Influence of Ventilation and Filtration on Indoor Particle Concentrations in Urban Office Buildings. Atmos. Environ. 2013, 79, 41–52. [Google Scholar] [CrossRef]
- Li, Y.; Delsante, A. Natural Ventilation Induced by Combined Wind and Thermal Forces. Build. Environ. 2001, 36, 59–71. [Google Scholar] [CrossRef]
- Richard, J.D.D.; Gail, S.B. Thermal Comfort in Naturally Ventilated Buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar]
- Song, X.; Yang, L.; Zheng, W.; Ren, Y.; Lin, Y. Analysis on Human Adaptive Levels in Different Kinds of Indoor Thermal Environment. Procedia Eng. 2015, 121, 151–157. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, Z.; Xiao, F. Natural Ventilation Potential Analysis of Rural Residential Buildings in China. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 4292–4297. [Google Scholar]
- Su, X.; Zhang, X.; Gao, J. Evaluation Method of Natural Ventilation System Based on Thermal Comfort in China. Energy Build. 2009, 41, 67–70. [Google Scholar] [CrossRef]
- Gao, J.; Cao, C.; Wang, L.; Song, T.; Zhou, X.; Yang, J.; Zhang, X. Determination of Size-Dependent Source Emission Rate of Cooking-Generated Aerosol Particles at the Oil-Heating Stage in an Experimental Kitchen. Aerosol Air Qual. Res. 2013, 13, 488–496. [Google Scholar] [CrossRef]
- Fang, D.; Wang, Q.; Li, H.; Yu, Y.; Lu, Y.; Qian, X. Mortality Effects Assessment of Ambient PM2.5 Pollution in the 74 Leading Cities of China. Sci. Total Environ. 2016, 569–570, 1545–1552. [Google Scholar] [CrossRef]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health Burden Attributable to Ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef]
- ASHRAE. Ventilation and Acceptable Indoor Air Quality. 2016. Available online: https://static1.squarespace.com/static/6320b844c3820725e4d5688f/t/6372af076022e56f815dc7f5/1668460297956/ASHRAE+62.1-2022+%281%29.pdf (accessed on 25 November 2023).
- World Health Organization WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; WHO: Geneva, Switzerland, 2006; Volume 22, pp. 2070–2071. [Google Scholar] [CrossRef]
- Turner, W.J.N.; Logue, J.M.; Wray, C.P. A Combined Energy and IAQ Assessment of the Potential Value of Commissioning Residential Mechanical Ventilation Systems. Build. Environ. 2013, 60, 194–201. [Google Scholar] [CrossRef]
- Yuan, Y.; Luo, Z.; Liu, J.; Wang, Y.; Lin, Y. Health and Economic Benefits of Building Ventilation Interventions for Reducing Indoor PM2.5 Exposure from Both Indoor and Outdoor Origins in Urban Beijing, China. Sci. Total Environ. 2018, 626, 546–554. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, C.; Wei, S.; Wu, Y.; Wang, Y.; Wan, Y. Impact of the External Window Crack Structure on Indoor PM2.5 Mass Concentration. Build. Environ. 2016, 108, 240–251. [Google Scholar] [CrossRef]
- He, C.; Morawska, L.; Gilbert, D. Particle Deposition Rates in Residential Houses. Atmos. Environ. 2005, 39, 3891–3899. [Google Scholar] [CrossRef]
- Özkaynak, H.; Xue, J.; Spengler, J.; Wallace, L.; Pellizzari, E.; Jenkins, P. Personal Exposure to Airborne Particles and Metals: Results from the Particle Team Study in Riverside, California. J. Expo. Anal. Environ. Epidemiol. 1996, 6, 57–78. [Google Scholar]
- EnergyPlus Weather Data. Available online: https://energyplus.net/weather (accessed on 10 April 2023).
- U.S. Department of State Air Quality Monitoring Program StateAir. Available online: http://www.stateair.net/ (accessed on 20 April 2022).
- Sánchez-Fernández, A.; Coll-Aliaga, E.; Lerma-Arce, V.; Lorenzo-Sáez, E. Evaluation of Different Natural Ventilation Strategies by Monitoring the Indoor Air Quality Using CO2 Sensors. Int. J. Environ. Res. Public Health 2023, 20, 6757. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Russi, A.; Massimo, A.; Buonanno, G. The Effect of Natural Ventilation Strategy on Indoor Air Quality in Schools. Sci. Total Environ. 2017, 595, 894–902. [Google Scholar] [CrossRef]
Input Parameter | Value |
---|---|
30 m2 | |
0.61 | |
0.17 | |
1.005 kJ/kg·m3 | |
0.48 W/m2·K | |
60 m2 | |
1.2 kg/m3 | |
9 | |
0.9 | |
0.4 | |
0.68 | |
588 W | |
1.5 W/m2·K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.; Xie, C.; Chen, Y.; Xu, X. Natural Ventilation Potential of Residential Buildings in China Considering the Combined Effect of Indoor and Outdoor Air Pollution. Buildings 2024, 14, 363. https://doi.org/10.3390/buildings14020363
Lin B, Xie C, Chen Y, Xu X. Natural Ventilation Potential of Residential Buildings in China Considering the Combined Effect of Indoor and Outdoor Air Pollution. Buildings. 2024; 14(2):363. https://doi.org/10.3390/buildings14020363
Chicago/Turabian StyleLin, Bo, Changhong Xie, Yan Chen, and Xu Xu. 2024. "Natural Ventilation Potential of Residential Buildings in China Considering the Combined Effect of Indoor and Outdoor Air Pollution" Buildings 14, no. 2: 363. https://doi.org/10.3390/buildings14020363
APA StyleLin, B., Xie, C., Chen, Y., & Xu, X. (2024). Natural Ventilation Potential of Residential Buildings in China Considering the Combined Effect of Indoor and Outdoor Air Pollution. Buildings, 14(2), 363. https://doi.org/10.3390/buildings14020363