Is the Concept of Zero Waste Possible to Implement in Construction?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Reused Materials—Their Features and Rating of Usefulness
A | B | C | D | E | |
---|---|---|---|---|---|
1 | Type /Name | Recovery Time | Cost (Scale 1–3) | Transport Ease | Cost (Scale 1–3) | Storage Ease + Cost (Scale 1–3) | Possibilities Use | Build Ease (Scale 1–3) |
2 | Demolition Brick | Time (1) depending on the degree of purification Cost (3) manual labour | Ease (2) Cost (1) delivery truck | (1) in stacks, outdoors, it takes up relatively little space | Use (3) walls, ceilings, gabions, small architecture Build Ease (3) traditional methods |
3 | Diamond Brick | Time (1) quick process of cutting out a large area Cost (3) specialised work + diamond saw | Ease (1) Cost (3) pallets, forklift, delivery truck | (1) on pallets, outdoors | Use (1) Walls Build Ease (1) requires specialised calculations and skills |
4 | Rubble | Time (2) depending on the type Cost (1) low | Ease (2) Cost (1) tip truck | (2) containers or mounds, outdoors | Use (2) aggregate for concrete, gabions, base layers Build Ease (2) fragmentation, gabion requires additional expenditure |
5 | Wood | Time (2) cleaning (paint, nails) Cost (2) manual labour | Ease (2) Cost (1) depending on the length | (2) depending on the dimensions, indoors | Use (3) façades, fences, structure Build Ease (3) traditional methods |
6 | Doors | Time (1) short Cost (1) low | Ease (2) Cost (1) delivery truck | (2) large dimensions, indoors | Use (2) interiors, façades, furniture Build Ease (2) require modifications |
7 | Windows | Time (1) short Cost (1) low | Ease (2) Cost (1) trolleys for transport | (3) fragile glass, dimensions, indoors | Use (2) two-layer façades due to insulation requirements, greenhouses, small architecture Build Ease (2) little flexibility |
8 | Roof Tiles | Time (2) fragile Cost (2) manual labour | Ease (2) Cost (1) delivery truck | (1) in stacks, outdoors, take up relatively little space | Use (3) walls, roofs, gabions Build Ease (2) depending on the type and degree of purification |
9 | Stone | Time (2) heavy Cost (2) carrying, lifting | Ease (1) large, heavy Cost (2) lift, tipper | (1) in stacks, outdoors, take up relatively little space | Use (3) walls, fences, façades, interiors, gabions Build Ease (3) traditional methods |
10 | Installations | Time (1) depending on the type Cost (1) manual labour | Ease (3) Cost (1) | (2) indoors, small elements | Use (2) heaters, storage tanks, pumps, photovoltaic panels, fireplaces, switches Build Ease (1) like new, require cleaning |
11 | Steel | Time (2) heavy Cost (2) carrying, lifting | Ease (1) Cost (2) long, heavy | (3) long piles, protection against weather conditions | Use (3) structure Build Ease (2) modification to the required span |
12 | Insulation | Time (2) brittle, light Cost (2) manual labour, hard recovery | Ease (3) Cost (1) small, light | (1) in stacks, outdoors, take up relatively little space | Use (3) rarely, due to the risk of lowering the insulating properties Build Ease (1) like new |
13 | Paper | Time (2) fragile Cost (1) manual labour | Ease (3) Cost (1) | (2) indoors, in stacks | Use (1) insulation, finishings Build Ease (2) requires additional interventions: fragmentation, gluing |
14 | Finishings | Time (2) fragile Cost (3) needs cleaning | Ease (2) Cost (1) | (1) in stacks, outdoors, take up relatively little space | Use (3) tiles, parquet floors, terraces, ceramics, fittings, system walls Build Ease (2) traditional methods |
15 | Glass | Time (3) fragile Cost (3) manual labour | Ease (1) Cost (2) fragile, risk of injury | (2) outdoors, in containers, panes with special protection | Use (2) walls, façades, gabions, interiors, ballast Build Ease (3) additional interventions: shredding, stacking, cutting |
Materials, Products or Equipment | Total | France | Belgium | The Netherlands | UK |
---|---|---|---|---|---|
Landscaping and paving | |||||
Cobblestone and pavers | 31,634.56 | 15,053.37 | 7836.03 | 6759.60 | 1985.56 |
Natural stone floors | 98,672.88 | 25,194.75 | 675.00 | 597.86 | 72,205.27 |
Structures and shells | |||||
Timber framing | 38,377.57 | 6056.49 | 987.50 | 5042.26 | 26,291.32 |
Stone steps | 49,067.14 | 47,430.87 | 1253.57 | 229.71 | 152.98 |
Steel structures | 12,762.39 | 1012.37 | 223.21 | 9498.41 | 2028.40 |
Bricks | 91,992.49 | 2933.95 | 63,506.89 | 9988.11 | 15,563.55 |
Insulation | 107.53 | 7.63 | 14.82 | 85.08 | - |
Slate, roof tiles, and wall covers | 128,830.94 | 22,027.81 | 9455.69 | 56,354.37 | 40,993.08 |
Cladding | 31,840.88 | 1527.58 | 1692.56 | 2690.83 | 25,929.90 |
Woodworking | |||||
Windows | 7910.48 | 820.68 | 316.96 | 5905.95 | 866.89 |
Doors | 15,986.94 | 3462.42 | 2164.29 | 5053.97 | 5306.26 |
Stairs | 943.65 | 342.88 | 137.50 | 391.67 | 71.60 |
Interior finishings | |||||
Natural stone floors | 8394.86 | 5268.43 | 2507.14 | 619.29 | - |
Parquet and wooden floors | 26,903.72 | 1900.26 | 2122.38 | 1722.26 | 21,158.82 |
Tiles | 27,828.73 | 13,462.07 | 10,614.29 | 3752.38 | - |
Partitions and suspended ceilings | 4179.33 | 4146.47 | 26.50 | 6.35 | - |
Equipment | |||||
Sanitary | 752.30 | 31.76 | 10.00 | 44.76 | 665.78 |
Technical installations | 2388.40 | 266.97 | - | 2121.43 | - |
Radiators | 6443.32 | 2054.63 | 208.21 | 395.48 | 3785.00 |
Lights | 2454.25 | 92.36 | 130.95 | 734.92 | 1496.02 |
Decorations | |||||
Architectural antiques | 3933.31 | 713.73 | 1150.00 | 758.73 | 1310.85 |
Metalwork | 14,416.96 | 3769.42 | 1931.77 | 5218.25 | 3497.52 |
Chimneys | 10,061.37 | 3389.52 | 1906.25 | 2688.89 | 2076.71 |
TOTAL | 615,884.01 | 160,966.41 | 108,871.52 | 120,660.56 | 225,385.51 |
3.2. Case Studies
3.3. Support Sources Depending on the Phase of the Building Life Cycle
Stage | Desired Directions of Development | Desired Sources of Support |
---|---|---|
Design |
|
|
Legislation |
|
|
Construction |
|
|
3.4. Proposal for an Economic Model for Trading in Reused Materials at the National Level
Phase | Incentives/Tools |
---|---|
Conception | Encouragement in the area of public relations
|
Project | Economic Incentives creating programs based on pro-ecological subsidies from the EU, countries, and municipalities supporting:
|
Legislation | Legal Aspects
|
Construction | Planning Tools
|
4. Discussion—Zero Waste as an Element of the Paradigm of Survival in Architecture
4.1. Continuity
4.2. Identity
4.3. Artistic Value
4.4. Value of Antiquity
4.5. Symbolic Value
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 30 September 2023).
- Wolman, A. The Metabolism of Cities. Sci. Am. 1965, 213, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Gilli, B. The Past in the Present: The Reuse of Ancient Material in the 12th Dynasty. Aegyptus 2009, 89, 89–110. [Google Scholar]
- Osorio, G.; Silva, L. Out of Ruins: Contextualizing an Ancient Egyptian Spectacle of Architectural Reuse. Camb. Archaeol. J. 2023, 33, 521–536. [Google Scholar] [CrossRef]
- Utrero Agudo, M.d.l.Á. Stratigraphy Matters: Questioning the (Re)Sacralisation of Religious Spaces from Late Antiquity to the Early Middle Ages in the Iberian Peninsula. Religions 2023, 14, 1199. [Google Scholar] [CrossRef]
- Blows, J.F.; Carey, P.J.; Poole, A.B. Preliminary investigations into Caen Stone in the UK; its use, weathering and comparison with repair stone. Build. Environ. 2003, 38, 1143–1149. [Google Scholar] [CrossRef]
- Antonelli, F.; Santi, P.; Renzulli, A.; Santoro Bianchi, S. The Architectural Reuse of Roman Marble and Stone Spolia in the Early Medieval Monte Sorbo Church (Sarsina, Central Italy). Archaeometry 2016, 58, 353–370. [Google Scholar] [CrossRef]
- Sánchez-Pardo, J.; Blanco-Rotea, R.; Sanjurjo, J.; Rodriguez, V. Reusing stones in medieval churches: A multidisciplinary approach to San Martiño de Armental (NW Spain). Archaeol. Anthropol. Sci. 2019, 11, 2073–2096. [Google Scholar] [CrossRef]
- Bailiff, I.K.; Blain, S.; Graves, C.P.; Gurling, T.; Semple, S. Uses and recycling of brick in medieval and Tudor English buildings: Insights from the application of luminescence dating and new avenues for further research. Archaeol. J. 2010, 167, 165–196. [Google Scholar] [CrossRef]
- Baccini, P.; Brunner, P.H. Metabolism of Anthroposphere: Analysis, Evaluation, Design, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2012; ISBN 978-026-201-665-0. [Google Scholar]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, D. Urban Metabolism: Viewing Cities like Bodies can Help Reduce Environmental Impact. 2018. Available online: https://thefifthestate.com.au/urbanism/planning/urban-metabolism-viewing-cities-like-bodies-can-help-reduce-environmental-impact/ (accessed on 30 September 2023).
- Thormark, C. The effect of material choice on the total energy need and recycling potential of a building. Build. Environ. 2006, 41, 1019–1026. [Google Scholar] [CrossRef]
- Brand, S. How Buildings Learn: What Happens after They’re Built; Penguin Books: New York, NY, USA, 1994; ISBN 978-014-013-996-9. [Google Scholar]
- Kiebert, C. Sustainable Construction: Green Building Design and Delivery, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008; ISBN 978-0-470-11421-6. [Google Scholar]
- Crowther, P. Developing an inclusive model for design for deconstruction. In Deconstruction and Materials Reuse: Technology, Economic, and Policy; CIB Publication: Wellington, New Zealand, 2001; p. 266. [Google Scholar]
- Braungart, M.; Mc Donough, W. Cradle to Cradle; North Point Press: New York, NY, USA, 2002; ISBN 978-086-54-75-878. [Google Scholar]
- Koźmińska, U. Nowe materiały w architekturze mieszkaniowej. Reutylizacja, recykling, upcykling, cradle-to-cradle—Przyszłość czy utopia? (New materials in residential architecture. Reuse, recycling, upcycling, cradle-to-cradle—The future or utopia?). Hous. Environ. 2013, 11, 256–263. [Google Scholar]
- Geist, K. Cradle to Cradle Design—How a Biochemist and an Architect Are Changing the World. 2014. Available online: https://wakeup-world.com/2014/11/26/cradle-to-cradle-design-how-a-biochemist-and-an-architect-are-changing-the-world/ (accessed on 30 September 2023).
- Pauli, G. The Blue Economy; Paradigm Pubs: Taos, NM, USA, 2010. [Google Scholar]
- Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl 2020, 153, 153. [Google Scholar] [CrossRef]
- Lévy, J.-C.; Aurez, V. L’économie Circulaire: Un Désir Ardent des Territoires; Presses des Ponts: Paris, France, 2014; ISBN 978-2-85978-485-0. [Google Scholar]
- Webster, K. The Circular Economy; Ellen MacArthur Foundation Publishing: Isle of Wight, UK, 2017; ISBN 978-0992778460. [Google Scholar]
- Schreck, M.; Wagner, J. Incentivizing secondary raw material markets for sustainable waste management. Waste Manag. 2017, 67, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.U.; Wu, Z.; Poon, C.S. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong. Waste Manag. 2017, 69, 325–335. [Google Scholar] [CrossRef]
- Pantini, S.; Rigamonti, L. Is selective demolition always a sustainable choice? Waste Manag. 2020, 103, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Ramjaun, T.A. Exploring the #zerowaste lifestyle trend on Instagram. Crit. Stud. Corp. Responsib. Gov. Sustain. 2021, 14, 205–220. [Google Scholar]
- Ashby, M.F. Materials and the Environment. Eco-Informed Material Choice, 3rd ed.; Elsevier Inc.: Oxford, UK, 2020; ISBN 9780128215210. [Google Scholar]
- Bougrain, F.; Doutreleau, M. Statistical Analysis of the Building Elements Reclamation Trade in the Benelux, France, The UK and Ireland, Interreg NWE 739: Facilitating the Circulation of Reclaimed Building Elements (FCRBE). 2022. Available online: https://vb.nweurope.eu/media/16598/statistical-analysis-v15.pdf (accessed on 30 September 2023).
- Klijn-Chevalerias, M.; Javed, S. The Dutch approach for assessing and reducing environmental impacts of building materials. Build. Environ. 2017, 111, 147–159. [Google Scholar] [CrossRef]
- Jurczak, R.; Szmatuła, F.; Rudnicki, T.; Korentz, J. Effect of Ground Waste Glass Addition on the Strength and Durability of Low Strength Concrete Mixes. Materials 2021, 14, 190. [Google Scholar] [CrossRef]
- Kočí, V.; Kočí, J.; Fořt, J.; Fiala, L.; Šál, J.; Hager, I.; Černý, R. Utilization of Crushed Pavement Blocks in Concrete: Assessment of Functional Properties and Environmental Impacts. Materials 2021, 14, 7361. [Google Scholar] [CrossRef]
- Yap, Z.S.; Khalid, N.H.A.; Haron, Z.; Mohamed, A.; Tahir, M.M.; Hasyim, S.; Saggaff, A. Waste Mineral Wool and Its Opportunities—A Review. Materials 2021, 14, 5777. [Google Scholar] [CrossRef]
- Łaźniewska-Piekarczyk, B.; Czop, M.; Smyczek, D. The Comparison of the Environmental Impact of Waste Mineral Wool and Mineral in Wool-Based Geopolymer. Materials 2022, 15, 2050. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Llanes, M.; Romero, M.; Gázquez, M.J.; Bolívar, J.P. Recycled Aggregates from Construction and Demolition Waste in the Manufacture of Urban Pavements. Materials 2021, 14, 6605. [Google Scholar] [CrossRef] [PubMed]
- Os, A. Dom Rudy w Rudach. Cegła Jako Plastyczna Forma Wyrazu (The Rudy House in Rudy. Brick as a plastic form of expression, in Polish), Bryła Homepage. Available online: https://www.bryla.pl/bryla/7,85301,21703126,dom-rudy-w-rudach-cegla-jako-plastyczna-forma-wyrazu.html (accessed on 30 September 2023).
- Fundació Mies van der Rohe Homepage. Available online: https://www.miesarch.com/work/4305 (accessed on 30 September 2023).
- Rawn, E. Material Masters: The Traditional Tiles of Wang Shu & Lu Wenyu. Archdaily. 2015. Available online: https://www.archdaily.com/638948/material-masters-amateur-architecture-studio-s-work-with-tile (accessed on 30 September 2023).
- Frampton, K. Kenneth Frampton On The Work of Wang Shu and Lu Wenyu. Archdaily. 2017. Available online: https://www.archdaily.com/867419/kenneth-frampton-on-the-work-of-wang-shu-and-lu-wenyu (accessed on 30 September 2023).
- Pearson, C.A. Huang Gongwang Museum by Amateur Architecture Studio, Fuyang, China, Architectural Record. 2017. Available online: https://www.architecturalrecord.com/articles/12473-huang-gongwang-museum-by-amateur-architecture-studio (accessed on 30 September 2023).
- Domsta, B. Przeszłość Zamknięta w Podziemiu (The Past Enclosed in the Underground). Architektura Murator. 2017. Available online: https://architektura.muratorplus.pl/realizacje/przeszlosc-zamknieta-w-podziemiu-o-projekcie-muzeum-ii-wojny-swiatowej-bazyli-domsta_7332.html (accessed on 30 September 2023).
- Frearson, A. Encore Heureux uses recycled materials to build Circular Pavilion in Paris. Dezeen. 2015. Available online: https://www.dezeen.com/2015/12/18/circular-pavilion-encore-heureux-paris-france-recycled-materials-doors/ (accessed on 30 September 2023).
- Castro, F. Kamikatz Public House/Hiroshi Nakamura & NAP, Archdaily. 2018. Available online: https://www.archdaily.com/892767/kamikatz-public-house-hiroshi-nakamura-and-nap (accessed on 30 September 2023).
- Andreasi Bassi, S.; Tonini, D.; Ekvall, T.; Astrup, T.F. A life cycle assessment framework for large-scale changes in material circularity. Waste Manag. 2021, 135, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Xu, J.; Pan, W.; Yang, Z. A systematic review of the integration of building information modeling into life cycle assessment. Build. Environ. 2022, 221, 109260. [Google Scholar] [CrossRef]
- Decorte, Y.; Steema, M.; Van Den Bossch, N. Effect of a one-dimensional approach in LCA on the environmental life cycle impact of buildings: Multi-family case study in Flanders. Build. Environ. 2021, 206, 108381. [Google Scholar] [CrossRef]
- Ekanayake, L.L.; Ofori, G. Building waste assessment score: Design-based tool. Build. Environ. 2004, 39, 851–861. [Google Scholar] [CrossRef]
- Bai, C.; Quayson, M.; Sarkis, J. COVID-19 pandemic digitization lessons for sustainable development of micro-and small-enterprises. Sustain. Prod. Consum. 2021, 27, 1989–2001. [Google Scholar] [CrossRef]
- Omer, M.M.; Mohd-Ezazee, N.M.A.; Lee, Y.S.; Rajabi, M.S.; Rahman, R.A. Constructive and Destructive Leadership Behaviors, Skills, Styles and Traits in BIM-Based Construction Projects. Buildings 2022, 12, 2068. [Google Scholar] [CrossRef]
- Czarnecki, S.; Rudner, M. Recycling of Materials from Renovation and Demolition of Building Structures in the Spirit of Sustainable Material Engineering. Buildings 2023, 13, 1842. [Google Scholar] [CrossRef]
- Bolden, J.; Abu-Lebdeh, T.; Fini, E. Utilization of Recycled and Waste Materials in Various Construction Applications. Am. J. Environ. Sci. 2013, 9, 14–24. [Google Scholar] [CrossRef]
- Kouvara, A.; Priavolou, C.; Ott, D.; Scherer, P.; van Zyl-Bulitta, V.H. Circular, Local, Open: A Recipe for Sustainable Building Construction. Buildings 2023, 13, 2493. [Google Scholar] [CrossRef]
- Laglera, J.; Collado, J.C.; Jammd, O. Effects of leadership on engineers: A structural equation model. Eng. Manag. J. 2015, 25, 7–16. [Google Scholar] [CrossRef]
- Luo, L.; Yang, Y.; Wu, G.; Zheng, J.; Liu, D. Effects of Organizational Leadership on Project Citizenship Behavior and Management Performance in Complex Construction Projects. Buildings 2023, 13, 259. [Google Scholar] [CrossRef]
- He, Q.H.; Yang, D.L.; Li, Y.K.; Luo, L. Research on multidimensional connotations of megaproject construction organization citizenship behavior. Front. Eng. Manag. 2015, 2, 148–153. [Google Scholar] [CrossRef]
- Friedrich, J. Odbudowa Głównego Miasta w Gdańsku w latach 1945–1960 (Reconstruction of the Main Town in Gdańsk in the years 1945–1960, in Polish); Słowo/obraz terytoria: Gdańsk, Poland, 2015; pp. 82–111. ISBN 9788374532495. [Google Scholar]
- Jencks, C. The Language of Post-Modern Architecture, 6th ed.; Wiley: Hoboken, NJ, USA, 1991; p. 94. ISBN 978-1854900616. [Google Scholar]
- Kołakowski, L. Moje Słuszne Poglądy na Wszystko (My Correct Views on Everything, in Polish), 2nd ed.; Znak: Kraków, Poland, 2000; p. 159. ISBN 978-83-240-1767-6. [Google Scholar]
- Gliński, M. XVII-Wieczne-Skarby-Wydobyte-z-Wisly (17th-Century-Treasures-Recovered-43. from-Vistula, in Polish), Culture. 2015. Available online: https://culture.pl/pl/artykul/xvii-wieczne-skarby-wydobyte-z-wisly (accessed on 30 September 2023).
- Scruton, R. Beauty—A Very Short Introduction; Oxford University Press: Oxford, UK, 2011; ISBN 978-0199229758. [Google Scholar]
- Pallasmaa, J. The Eyes of the Skin. Architecture and the Senses, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-1119941286. [Google Scholar]
- Piątek, G. Najlepsze Miasto Świata, Warszawa w Odbudowie 1944–1949 (The Best City in the World, Warsaw in Reconstruction 1944–1949, in Polish); Grupa Wydawnicza Foksal: Warszawa, Poland, 2020; pp. 103–104. ISBN 9788328097209. [Google Scholar]
- Bittner, A.; Kądziela-Grubman, A.; Kwiatkowska, U. Muzeum II Wojny Światowej w Gdańsku, Miedzynarodowy konkurs architektoniczny (Museum of the Second World War in Gdańsk, International architectural competition); Muzeum II Wojny Światowej: Gdańsk, Poland, 2010; pp. 19–21. ISBN 9788363029951. [Google Scholar]
- Cymer, A. Centrum Kulturalno-Kongresowe Jordanki w Toruniu (Jordanki Cultural and Congress Center in Toruń, in Polish), Culture. 2020. Available online: https://culture.pl/pl/dzielo/centrum-kulturalno-kongresowe-jordanki-w-toruniu (accessed on 30 September 2023).
- Bergson, H. Introduction á la Métaphysique; Payot: Paris, France, 2013; pp. 32–33. ISBN 978-2228909198. [Google Scholar]
- Krenz, J. Architektura Znaczeń (Architecture of Meanings, in Polish); Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 1997; p. 42. ISBN 83-86537-55-8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapica, B.; Targowski, W.; Kulowski, A. Is the Concept of Zero Waste Possible to Implement in Construction? Buildings 2024, 14, 428. https://doi.org/10.3390/buildings14020428
Kapica B, Targowski W, Kulowski A. Is the Concept of Zero Waste Possible to Implement in Construction? Buildings. 2024; 14(2):428. https://doi.org/10.3390/buildings14020428
Chicago/Turabian StyleKapica, Bogumiła, Wojciech Targowski, and Andrzej Kulowski. 2024. "Is the Concept of Zero Waste Possible to Implement in Construction?" Buildings 14, no. 2: 428. https://doi.org/10.3390/buildings14020428
APA StyleKapica, B., Targowski, W., & Kulowski, A. (2024). Is the Concept of Zero Waste Possible to Implement in Construction? Buildings, 14(2), 428. https://doi.org/10.3390/buildings14020428