An Improved Anchorage System for L-Shaped FRP Composites to Enhance the Seismic Response of Beam-Column Joints in a Low-Strength Substandard Reinforced Concrete (RC) Frame
Abstract
:1. Introduction
2. Experimental Program
2.1. RC Frame Description
2.2. Material Properties
2.3. Preliminary Design of FRP Composite Retrofit Scheme
2.4. Installation of FRP Sheets and Laminates
2.5. Experimental Setup
3. Results
3.1. Control Frame
3.2. Strengthened Frame
3.3. Force Displacement Hysteretic Response
3.4. Comparison of Force vs. Displacement Capacity Curves
4. Discussion
4.1. Ductility
4.2. Stiffness Degradation
4.3. Energy Dissipation
4.4. Performance Levels
5. Conclusions
- The suggested anchorage method, involving the creation of openings coupled with comprehensive wrapping, has eliminated debonding issues of the FRP composites. This has resulted in the rupture of the L-shaped CFRP sheets at the beam–column interface. Furthermore, the wrapping at the far end has averted the peel-off of the L-shaped CFRP sheets.
- The L-shaped CFRP sheets effectively improved the performance of the seismically deficient RC frame in terms of lateral load capacity, ductility, and energy dissipation capacity. The L-shaped CFRP sheets enhanced the lateral load capacity and ductility of the strengthened test frame by 45% and 43%, respectively. The higher energy dissipation capacity of the strengthened test frame could be attributed to higher ductility, imparted by the confining effect of CFRP wrapping in the hinge region of the columns.
- The L-shaped CFRP sheets successfully transformed the failure mechanism of the strengthened test frame from the brittle-shear failure of the joints, and the flexure hinging of columns into a significantly more ductile one, by relocating the formation of the hinges in the beams.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, B.; Taucer, F.; Rossetto, T. Field Investigation on the Performance of Building Structures during the 12 May 2008 Wenchuan Earthquake in China. Eng. Struct. 2009, 31, 1707–1723. [Google Scholar] [CrossRef]
- Pakzad, A.; Khanmohammadi, M. Experimental Cyclic Behavior of Code-Conforming Exterior Wide Beam-Column Connections. Eng. Struct. 2020, 214, 110613. [Google Scholar] [CrossRef]
- Duan, H.; Hueste, M.B.D. Seismic Performance of a Reinforced Concrete Frame Building in China. Eng. Struct. 2012, 41, 77–89. [Google Scholar] [CrossRef]
- Chung, L.L.; Chen, Y.T.; Sun, C.H.; Lien, K.H.; Wu, L.Y. Applicability Investigation of Code-Defined Procedures on Seismic Performance Assessment of Typical School Buildings in Taiwan. Eng. Struct. 2012, 36, 147–159. [Google Scholar] [CrossRef]
- Tsonos, A.G. Effectiveness of CFRP-Jackets and RC-Jackets in Post-Earthquake and Pre-Earthquake Retrofitting of Beam-Column Subassemblages. Eng. Struct. 2008, 30, 777–793. [Google Scholar] [CrossRef]
- Tsonos, A.D.G. Performance Enhancement of R/C Building Columns and Beam-Column Joints through Shotcrete Jacketing. Eng. Struct. 2010, 32, 726–740. [Google Scholar] [CrossRef]
- Torabi, A.; Maheri, M.R. Seismic Repair and Retrofit of RC Beam-Column Joints Using Stiffened Steel Plates. Iran. J. Sci. Technol. Trans. Civ. Eng. 2017, 41, 13–26. [Google Scholar] [CrossRef]
- Ruiz-Pinilla, J.G.; Cladera, A.; Pallarés, F.J.; Calderón, P.A.; Adam, J.M. RC Columns Strengthened by Steel Caging: Cyclic Loading Tests on Beam-Column Joints with Non-Ductile Details. Constr. Build. Mater. 2021, 301, 124105. [Google Scholar] [CrossRef]
- Esmaeeli, E.; Danesh, F.; Tee, K.F.; Eshghi, S. A Combination of GFRP Sheets and Steel Cage for Seismic Strengthening of Shear-Deficient Corner RC Beam-Column Joints. Compos. Struct. 2017, 159, 206–219. [Google Scholar] [CrossRef]
- Campione, G.; Cavaleri, L.; Papia, M. Flexural Response of External R.C. Beam-Column Joints Externally Strengthened with Steel Cages. Eng. Struct. 2015, 104, 51–64. [Google Scholar] [CrossRef]
- Khodaei, M.; Saghafi, M.H.; Golafshar, A. Seismic Retrofit of Exterior Beam-Column Joints Using Steel Angles Connected by PT Bars. Eng. Struct. 2021, 236, 112111. [Google Scholar] [CrossRef]
- Maddah, A.; Golafshar, A.; Saghafi, M.H. 3D RC Beam–Column Joints Retrofitted by Joint Enlargement Using Steel Angles and Post-Tensioned Bolts. Eng. Struct. 2020, 220, 110975. [Google Scholar] [CrossRef]
- Tavasoli, E.; Rezaifar, O.; Kheyroddin, A. Seismic Performance of RC Joints Retrofitted by External Diagonal Bolts. J. Build. Eng. 2022, 46, 103691. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Sirkelis, G.M. Strengthening and Rehabilitation of RC Beam–Column Joints Using Carbon-FRP Jacketing and Epoxy Resin Injection. Earthq. Eng. Struct. Dyn. 2008, 37, 769–790. [Google Scholar] [CrossRef]
- Khan, M.I.; Al-Osta, M.A.; Ahmad, S.; Rahman, M.K. Seismic Behavior of Beam-Column Joints Strengthened with Ultra-High Performance Fiber Reinforced Concrete. Compos. Struct. 2018, 200, 103–119. [Google Scholar] [CrossRef]
- Antonopoulos, C.P.; Triantafillou, T.C. Experimental Investigation of FRP-Strengthened RC Beam-Column Joints. J. Compos. Constr. 2003, 7, 39–50. [Google Scholar] [CrossRef]
- Täljsten, B. Strengthening Concrete Beams for Shear with CFRP Sheets. Constr. Build. Mater. 2003, 17, 15–26. [Google Scholar] [CrossRef]
- Del Vecchio, C.; Di Ludovico, M.; Prota, A.; Manfredi, G. Modelling Beam-Column Joints and FRP Strengthening in the Seismic Performance Assessment of RC Existing Frames. Compos. Struct. 2016, 142, 107–116. [Google Scholar] [CrossRef]
- Papakonstantinou, C.G.; Balaguru, P.N.; Auyeung, Y. Influence of FRP Confinement on Bond Behavior of Corroded Steel Reinforcement. Cem. Concr. Compos. 2011, 33, 611–621. [Google Scholar] [CrossRef]
- Papakonstantinou, C.G.; Petrou, M.F.; Harries, K.A. Fatigue Behavior of RC Beams Strengthened with GFRP Sheets. J. Compos. Constr. 2001, 5, 22178. [Google Scholar] [CrossRef]
- Ghobarah, A.; El-Amoury, T. Seismic Rehabilitation of Deficient Exterior Concrete Frame Joints. J. Compos. Constr. 2005, 9, 408–416. [Google Scholar] [CrossRef]
- Ilia, E.; Mostofinejad, D. Seismic Retrofit of Reinforced Concrete Strong Beam–Weak Column Joints Using EBROG Method Combined with CFRP Anchorage System. Eng. Struct. 2019, 194, 300–319. [Google Scholar] [CrossRef]
- Attari, N.; Amziane, S.; Chemrouk, M. Efficiency of Beam-Column Joint Strengthened by FRP Laminates. Adv. Compos. Mater. 2010, 19, 171–183. [Google Scholar] [CrossRef]
- Le-Trung, K.; Lee, K.; Lee, J.; Lee, D.H.; Woo, S. Experimental Study of RC Beam-Column Joints Strengthened Using CFRP Composites. Compos. Part B Eng. 2010, 41, 76–85. [Google Scholar] [CrossRef]
- Sezen, H. Repair and Strengthening of Reinforced Concrete Beam-Column Joints with Fiber-Reinforced Polymer Composites. J. Compos. Constr. 2012, 16, 499–506. [Google Scholar] [CrossRef]
- Ghobarah, A.; Said, A. Seismic Rehabilitation of Beam-Column Joints Using FRP Laminates. J. Earthq. Eng. 2001, 5, 113–129. [Google Scholar] [CrossRef]
- Manos, G.C.; Katakalοs, K.; Koidis, G.; Papakonstantinou, C.G. Shear Strengthening of R/C Beams with FRP Strips and Novel Anchoring. J. Civ. Eng. Res. 2012, 2, 73–83. [Google Scholar] [CrossRef]
- Manos, G.C.; Katakalos, K.; Papakonstantinou, C.G. Shear Behavior of Rectangular Beams Strengthened with Either Carbon or Steel Fiber Reinforced Polymers. Appl. Mech. Mater. 2011, 82, 571–576. [Google Scholar] [CrossRef]
- Roy, B.; Laskar, A.I. Cyclic Behavior of In-Situ Exterior Beam-Column Subassemblies with Cold Joint in Column. Eng. Struct. 2017, 132, 822–833. [Google Scholar] [CrossRef]
- Roy, B.; Laskar, A.I. Beam–Column Subassemblies with Construction Joint in Columns above and below the Beam. Mag. Concr. Res. 2018, 70, 71–83. [Google Scholar] [CrossRef]
- Roy, B.; Laskar, A.I. Cyclic Performance of Beam-Column Subassemblies with Construction Joint in Column Retrofitted with GFRP. Structures 2018, 14, 290–300. [Google Scholar] [CrossRef]
- Yu, J.; Shang, X.; Lu, Z. Efficiency of Externally Bonded L-Shaped FRP Laminates in Strengthening Reinforced-Concrete Interior Beam-Column Joints. J. Compos. Constr. 2016, 20, 04015064. [Google Scholar] [CrossRef]
- Almusallam, T.H.; Al-Salloum, Y.A. Seismic Response of Interior RC Beam-Column Joints Upgraded with FRP Sheets. II: Analysis and Parametric Study. J. Compos. Constr. 2007, 11, 590–600. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A.; Almusallam, T.H.; Alsayed, S.H.; Siddiqui, N.A. Seismic Behavior of As-Built, ACI-Complying, and CFRP-Repaired Exterior RC Beam-Column Joints. J. Compos. Constr. 2011, 15, 522–534. [Google Scholar] [CrossRef]
- Alsayed, S.H.; Almusallam, T.H.; Al-Salloum, Y.A.; Siddiqui, N.A. Seismic Rehabilitation of Corner RC Beam-Column Joints Using CFRP Composites. J. Compos. Constr. 2010, 14, 681–692. [Google Scholar] [CrossRef]
- Mahini, S.S.; Ronagh, H.R. Strength and Ductility of FRP Web-Bonded RC Beams for the Assessment of Retrofitted Beam-Column Joints. Compos. Struct. 2010, 92, 1325–1332. [Google Scholar] [CrossRef]
- Mahini, S.S.; Ronagh, H.R. Web-Bonded Frps for Relocation of Plastic Hinges Away from the Column Face in Exterior RC Joints. Compos. Struct. 2011, 93, 2460–2472. [Google Scholar] [CrossRef]
- Dalalbashi, A.; Eslami, A.; Ronagh, H.R. Numerical Investigation on the Hysteretic Behavior of RC Joints Retrofitted with Different CFRP Configurations. J. Compos. Constr. 2013, 17, 371–382. [Google Scholar] [CrossRef]
- Eslami, A.; Ronagh, H.R. Experimental Investigation of an Appropriate Anchorage System for Flange-Bonded Carbon Fiber–Reinforced Polymers in Retrofitted RC Beam–Column Joints. J. Compos. Constr. 2014, 18, 04013056. [Google Scholar] [CrossRef]
- Maheri, M.R.; Torabi, A. Retrofitting External RC Beam-Column Joints of an Ordinary MRF through Plastic Hinge Relocation Using FRP Laminates. Structures 2019, 22, 65–75. [Google Scholar] [CrossRef]
- Lee, W.T.; Chiou, Y.J.; Shih, M.H. Reinforced Concrete Beam-Column Joint Strengthened with Carbon Fiber Reinforced Polymer. Compos. Struct. 2010, 92, 48–60. [Google Scholar] [CrossRef]
- Davodikia, B.; Saghafi, M.H.; Golafshar, A. Experimental Investigation of Grooving Method in Seismic Retrofit of Beam-Column External Joints without Seismic Details Using CFRP Sheets. Structures 2021, 34, 4423–4434. [Google Scholar] [CrossRef]
- Ceroni, F.; Pecce, M. Evaluation of Bond Strength in Concrete Elements Externally Reinforced with CFRP Sheets and Anchoring Devices. J. Compos. Constr. 2010, 14, 521–530. [Google Scholar] [CrossRef]
- Ascione, L.; Berardi, V.P. Anchorage Device for FRP Laminates in the Strengthening of Concrete Structures Close to Beam-Column Joints. Compos. Part B Eng. 2011, 42, 1840–1850. [Google Scholar] [CrossRef]
- Gergely, B.J.; Pantelides, C.P.; Reaveley, L.D. S Hear S Trengthening Rct-J Oints U Sing Cfrp C Omposites. J. Compos. Constr. 2000, 4, 56–64. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Akhlaghi, A. Experimental Investigation of the Efficacy of EBROG Method in Seismic Rehabilitation of Deficient Reinforced Concrete Beam-Column Joints Using CFRP Sheets. J. Compos. Constr. 2017, 21, 04016116. [Google Scholar] [CrossRef]
- Ilia, E.; Mostofinejad, D.; Moghaddas, A. Cyclic Behavior of Strong Beam–Weak Column Joints Strengthened with Different Configurations of CFRP Sheets. Arch. Civ. Mech. Eng. 2020, 20, 31. [Google Scholar] [CrossRef]
- ACI 318-14; Building Code Requirements for Structural Concrete. ACI: Farmington Hills, MI, USA, 2014; ISBN 9780870319303.
- Rizwan, M. Performance—Based Seismic Assessment of RC SMRF Compliant & Noncompliant Structures. Ph.D. Thesis, University of Engineering & Technology, Peshawar, Pakistan, 2019. [Google Scholar]
- ACI PRC-211.1-91; Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. ACI: Farmington Hills, MI, USA, 1991; pp. 1–38.
- ACI 440.2R-17; Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. ACI: Farmington Hills, MI, USA, 2017.
- Ministry of Housing and Works; Government of Islamic Republic of Pakistan. Building Code of Pakistan—Seismic Provisions; Ministry of Housing and Works: Islamabad, Pakistan; Government of Islamic Republic of Pakistan: Islamabad, Pakistan, 2007.
- ACI 374.1-05; Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary. ACI: Farmington Hills, MI, USA, 2005.
- Della Corte, G.; Barecchia, E.; Mazzolani, F.M. Seismic Upgrading of RC Buildings by FRP: Full-Scale Tests of a Real Structure. J. Mater. Civ. Eng. 2006, 18, 659–669. [Google Scholar] [CrossRef]
- Akhlaghi, A.; Mostofinejad, D. Experimental and Analytical Assessment of Different Anchorage Systems Used for CFRP Flexurally Retrofitted Exterior RC Beam-Column Connections. Structures 2020, 28, 881–893. [Google Scholar] [CrossRef]
- Priestley, P.; Paulay, T.; Priestley, M.J.N. Seismic Design of Reinforced Concrete and Masonry Buildings; Wiley: New York, NY, USA, 1992; pp. 12–13. [Google Scholar]
- Hu, B.; Kundu, T. Seismic Performance of Interior and Exterior Beam–Column Joints in Recycled Aggregate Concrete Frames. J. Struct. Eng. 2019, 145, 04018262. [Google Scholar] [CrossRef]
- Ma, C.; Wang, D.; Wang, Z. Seismic Retrofitting of Full-Scale RC Interior Beam-Column-Slab Subassemblies with CFRP Wraps. Compos. Struct. 2017, 159, 397–409. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Hajrasouliha, M. Shear Retrofitting of Corner 3D-Reinforced Concrete Beam-Column Joints Using Externally Bonded CFRP Reinforcement on Grooves. J. Compos. Constr. 2018, 22, 04018037. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A.; Siddiqui, N.A.; Elsanadedy, H.M.; Abadel, A.A.; Aqel, M.A. Textile-Reinforced Mortar versus FRP as Strengthening Material for Seismically Deficient RC Beam-Column Joints. J. Compos. Constr. 2011, 15, 920–933. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Tajmir Riahi, H. Seismic Performance of Reinforced Concrete Beam-Column Joints Strengthened with NSM Steel Bars and NSM CFRP Strips. Structures 2022, 39, 57–69. [Google Scholar] [CrossRef]
- Alavi-Dehkordi, S.; Mostofinejad, D.; Alaee, P. Effects of High-Strength Reinforcing Bars and Concrete on Seismic Behavior of RC Beam-Column Joints. Eng. Struct. 2019, 183, 702–719. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Hajrasouliha, M. 3D Beam–Column Corner Joints Retrofitted with X-Shaped FRP Sheets Attached via the EBROG Technique. Eng. Struct. 2019, 183, 987–998. [Google Scholar] [CrossRef]
- FEMA-356; Prestandard and Commentary for the Seismic Rehabilitation of Building. ASCE American Society of Civil Engineers: Washington, DC, USA, 2000.
Geometric Dimensions | ||
---|---|---|
Prototype | Test Frame (1:3 Scale) | |
Beam Dimensions | 305 mm × 457 mm (12 in × 18 in) | 102 mm × 152.4 mm (4 in × 6 in) |
Column Dimensions | 305 mm × 305 mm (12 in × 12 in) | 102 mm × 102 mm (4 in × 4 in) |
Slab Dimensions | 152.4 mm (6 in) | 50.8 mm (2 in) |
Rebar Diameter (mm) | Yield Strength (MPa) | Ultimate Strength (MPa) | Yield Strain (%) | Ultimate Strain (%) | Elastic Modulus (GPa) |
---|---|---|---|---|---|
3 | 456 | 592 | 1.67 | 17.36 | 218 |
6 | 445 | 569 | 1.82 | 20.80 | 207 |
Material | Tensile Modulus (GPa) | Tensile Strength (MPa) | Ultimate Tensile Strain (%) | Thickness (mm) |
---|---|---|---|---|
CFRP Sheet (SikaWrap-230 C) | 230 | 4000 | 1.70 | 0.129 |
CFRP Laminate (Sika CarboDur S-812) | 165 | 3100 | 1.80 | 1.20 |
Primer Resin (Sikadur-330) | 4.5 | 30 | 0.90 | - |
Adhesive (Sikadur-30 LP) | 10 | 17 | - | - |
Test Frame | Peak Load (kN) | Average (kN) | Peak Load Increase (%) | Drift at Peak Load (%) | Ultimate Load (kN) | Failure Mode | |||
---|---|---|---|---|---|---|---|---|---|
(+) | (-) | (+) | (-) | (+) | (-) | ||||
Control | 26.49 | 27.44 | 26.97 | - | 1.74 | 1.76 | 22.68 | 22.28 | -Flexure hinging in columns -Shear failure of joint. (see Figure 9) |
Strengthened | 39.32 | 39.38 | 39.35 | 45.9 | 3.50 | 3.50 | 39.32 | 39.38 | -Second floor joints cracking -Shear cracking in the transverse beams, -Rupture of the L-shaped CFRP sheets (see Figure 10) |
Test Frame | Δy (mm) | Drift at Δy (%) | Δu (mm) | Drift at Δu (%) | Increment (%) | |
---|---|---|---|---|---|---|
Control | 11.24 | 0.73 | 33.48 | 2.16 | 2.97 | - |
Strengthened | 12.40 | 0.80 | 52.70 | 3.40 | 4.25 | 43.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adil, W.; Rahman, F.U.; Ali, Q.; Papakonstantinou, C.G. An Improved Anchorage System for L-Shaped FRP Composites to Enhance the Seismic Response of Beam-Column Joints in a Low-Strength Substandard Reinforced Concrete (RC) Frame. Buildings 2024, 14, 721. https://doi.org/10.3390/buildings14030721
Adil W, Rahman FU, Ali Q, Papakonstantinou CG. An Improved Anchorage System for L-Shaped FRP Composites to Enhance the Seismic Response of Beam-Column Joints in a Low-Strength Substandard Reinforced Concrete (RC) Frame. Buildings. 2024; 14(3):721. https://doi.org/10.3390/buildings14030721
Chicago/Turabian StyleAdil, Waqas, Fayyaz Ur Rahman, Qaisar Ali, and Christos G. Papakonstantinou. 2024. "An Improved Anchorage System for L-Shaped FRP Composites to Enhance the Seismic Response of Beam-Column Joints in a Low-Strength Substandard Reinforced Concrete (RC) Frame" Buildings 14, no. 3: 721. https://doi.org/10.3390/buildings14030721
APA StyleAdil, W., Rahman, F. U., Ali, Q., & Papakonstantinou, C. G. (2024). An Improved Anchorage System for L-Shaped FRP Composites to Enhance the Seismic Response of Beam-Column Joints in a Low-Strength Substandard Reinforced Concrete (RC) Frame. Buildings, 14(3), 721. https://doi.org/10.3390/buildings14030721