Accurate Prediction of Punching Shear Strength of Steel Fiber-Reinforced Concrete Slabs: A Machine Learning Approach with Data Augmentation and Explainability
Abstract
:1. Introduction
2. Workflow
3. Methodology
3.1. Gaussian Mixture Model
3.2. Ensemble Learning
3.3. SHAP
4. Parameter Selection and Database Construction
4.1. Data Collection and Analysis
4.2. Data Augmentation
5. Model Construction and Evaluation
5.1. Model Construction
5.2. Data Augmentation Validation
5.3. Model Performance Evaluation
5.4. Model Explainability
6. Conclusions
- (1)
- The adopted Gaussian mixture model effectively captures the distribution of features in the dataset, with the probability density function curves of the generated data closely aligning with those of the original data.
- (2)
- When subjected to the “synthetic training-real testing” condition, the machine learning models demonstrate significantly enhanced accuracy and robustness are compared to the “real training-real prediction” scenario. Notably, XGBoost exhibits the most balanced performance between the training and test sets.
- (3)
- The SHAP analysis revealed that feature importance rankings are: h, d, bc, f’c, ρf, and ρ. Most features demonstrate a positive correlation with punching shear strength. Additionally, visualizing SHAP values through various plots provides a comprehensive understanding of the overall feature importance in the model’s predictions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Wang, X.; Fan, Y.; Shi, J.; Luo, C.; Wang, X. A Study on the Ultimate Span of a Concrete-Filled Steel Tube Arch Bridge. Buildings 2024, 14, 896. [Google Scholar] [CrossRef]
- Wei, J.; Ying, H.; Yang, Y.; Zhang, W.; Yuan, H.; Zhou, J. Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates. Eng. Struct. 2023, 278, 115500. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Wang, X.; Tang, H. Effects of the position and chloride-induced corrosion of strand on bonding behavior between the steel strand and concrete. Structures 2023, 58, 105500. [Google Scholar] [CrossRef]
- Pérez Caldentey, A.; Diego, Y.G.; Santos, A.P.; López, L.; Chiquito, M.; Castedo, R. Robustness of Reinforced Concrete Slab Structures: Lessons Learned from Two Full-Scale Tests. Buildings 2024, 14, 558. [Google Scholar] [CrossRef]
- Awad, R.; Al Ateyat, A.; Junaid, M.T.; Al-Sadoon, Z.; Altoubat, S.; Maalej, M.; Barakat, S. Punching shear capacity of fiber-reinforced concrete suspended slabs: Database analysis and models assessments. J. Build. Eng. 2024, 83, 108433. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Xiang, Y.; Wu, Y.; Wei, M. The influence of basalt fiber on the mechanical performance of concrete-filled steel tube short columns under axial compression. Front. Mater. 2024, 10, 1332269. [Google Scholar] [CrossRef]
- Singh, A.; Wang, Y.; Zhou, Y.; Sun, J.; Xu, X.; Li, Y.; Liu, Z.; Chen, J.; Wang, X. Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials. Constr. Build. Mater. 2023, 408, 133689. [Google Scholar] [CrossRef]
- Genikomsou, A.S. Seismic Damage Assessment of Reinforced Concrete Slab-Column Connections—Review of Test Data, Code Provisions and Analytical Models. Buildings 2024, 14, 465. [Google Scholar] [CrossRef]
- Al-Zahrani, M.M.; Rahman, M.K.; Fasil, M.; Al-Abduljabbar, S.; Nanni, A.; Al-Osta, M.A.; Najamuddin, S.K.; Al-Gahtani, H.J. Punching shear capacity of GFRP bar-reinforced concrete slabs-on-ground. Eng. Struct. 2023, 289, 116285. [Google Scholar] [CrossRef]
- Fernández Ruiz, M.; Mirzaei, Y.; Muttoni, A. Post-punching behavior of flat slabs. ACI Struct. J. 2013, 110, 801–812. [Google Scholar]
- Swamy, R.N.; Ali, S.A.R. Punching shear behavior of reinforced slab-column connections made with steel fiber concrete. J. Proc. 1982, 79, 392–406. [Google Scholar]
- ALlexander, S.D.B.; Simmonds, S.H. Punching shear tests of concrete slab-column joints containing fiber reinforcement. Struct. J. 1992, 89, 425–432. [Google Scholar]
- McHarg, P.J.; Cook, W.D.; Mitchell, D.; Yoon, Y.S. Benefits of concentrated slab reinforcement and steel fibers on performance of slab-column connec-tions. Struct. J. 2000, 97, 225–234. [Google Scholar]
- ACI Committee 318. ACI 318-19: Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- JSCE. Standard Specifications for Concrete Structures-2007, Design; Japan Society of Civil Engineers: Tokyo, Japan, 2007. [Google Scholar]
- Fédération Internationale du Béton (FIB). Model Code 2010-First Completedraft; Fédération Internationale du Béton, Bulletin 55: Lausanne, Switzerland, 2010; Volume 1. [Google Scholar]
- Fédération Internationale du Béton (FIB). Model Code 2010-First Completedraft; Fédération Internationale du Béton, Bulletin 55: Lausanne, Switzerland, 2010; Volume 2. [Google Scholar]
- Narayanan, R.; Darwish, I.Y.S. Punching shear tests on steel-fibre-reinforced micro-concrete slabs. Mag. Concr. Res. 1987, 39, 42–50. [Google Scholar] [CrossRef]
- Harajli, M.; Maalouf, D.; Khatib, H. Effect of fibers on the punching shear strength of slab-column connections. Cem. Concr. Compos. 1995, 17, 161–170. [Google Scholar] [CrossRef]
- Choi, K.K.; Taha, M.M.R.; Park, H.G.; Maji, A.K. Punching shear strength of interior concrete slab–column connections reinforced with steel fibers. Cem. Concr. Compos. 2007, 29, 409–420. [Google Scholar] [CrossRef]
- Higashiyama, H.; Ota, A.; Mizukoshi, M. Design equation for punching shear capacity of SFRC slabs. Int. J. Concr. Struct. Mater. 2011, 5, 35–42. [Google Scholar] [CrossRef]
- Maya, L.; Ruiz, M.F.; Muttoni, A.; Foster, S. Punching shear strength of steel fibre reinforced concrete slabs. Eng. Struct. 2012, 40, 83–94. [Google Scholar] [CrossRef]
- Hoang, N.-D. Estimating punching shear capacity of steel fibre reinforced concrete slabs using sequential piecewise multiple linear regression and artificial neural network. Measurement 2019, 137, 58–70. [Google Scholar] [CrossRef]
- Wang, X.; Chen, A.; Liu, Y. Explainable ensemble learning model for predicting steel section-concrete bond strength. Constr. Build. Mater. 2022, 356, 129239. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Aydın, Y.; Bekdaş, G.; Geem, Z.W. Interpretable predictive modelling of basalt fiber reinforced concrete splitting tensile strength using ensemble machine learning methods and shap approach. Materials 2023, 16, 4578. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, H.; Gao, K.; Liao, Y.; Yang, J.; Wu, G. A machine learning and game theory-based approach for predicting creep behavior of recycled aggregate concrete. Case Stud. Constr. Mater. 2022, 17, e01653. [Google Scholar] [CrossRef]
- Nguyen, N.-H.; Tong, K.T.; Lee, S.; Karamanli, A.; Vo, T.P. Prediction compressive strength of cement-based mortar containing metakaolin using explainable Categorical Gradient Boosting model. Eng. Struct. 2022, 269, 114768. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Wu, Q.J.; Zhang, H. Bounded generalized Gaussian mixture model. Pattern Recognit. 2014, 47, 3132–3142. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Zhu, Y.; Chen, G. Ensemble-learning model based ultimate moment prediction of reinforced concrete members strengthened by UHPC. Eng. Struct. 2024, 305, 117705. [Google Scholar] [CrossRef]
- Yu, B.; Xie, L.; Yu, Z.; Cheng, H. Classification method for failure modes of RC columns based on class-imbalanced datasets. Structures 2023, 48, 694–705. [Google Scholar] [CrossRef]
- Garg, A.; Mukhopadhyay, T.; Belarbi, M.; Li, L. Random forest-based surrogates for transforming the behavioral predictions of laminated composite plates and shells from FSDT to Elasticity solutions. Compos. Struct. 2023, 309, 116756. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Ebead, U.; Alam, M.S. Machine learning-based shear capacity prediction and re-liability analysis of shear-critical RC beams strengthened with inorganic composites. Case Stud. Constr. Mater. 2022, 16, e01008. [Google Scholar]
- Alabdullah, A.A.; Iqbal, M.; Zahid, M.; Khan, K.; Amin, M.N.; Jalal, F.E. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Constr. Build. Mater. 2022, 345, 128296. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Abegaz, K.A. Prediction of compaction and strength properties of amended soil using machine learning. Buildings 2022, 12, 613. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Espinosa-Leal, L. Multitarget regression models for predicting compressive strength and chloride resistance of concrete. J. Build. Eng. 2023, 72, 106523. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Espinosa-Leal, L. Unveiling non-steady chloride migration insights through ex-plainable machine learning. J. Build. Eng. 2024, 82, 108370. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Parra-Montesinos, G.J. Evaluation of steel fiber reinforcement for punching shear resistance in slab-column con-nections-Part I: Monotonically increased load. ACI Struct. J. 2010, 107, 101–109. [Google Scholar]
- Theodorakopoulos, D.D.; Swamy, N. Contribution of steel fibers to the strength characteristics of lightweight concrete slab-column connections failing in punching shear. ACI Struct. J. 1993, 90, 342–355. [Google Scholar]
- De Hanai, J.B.; Holanda, K.M.A. Similarities between punching and shear strength of steel fiber reinforced concrete (SFRC) slabs and beams. Ibracon Struct. Mater. J. 2008, 1, 1–16. [Google Scholar]
- Suter, R.; Moreillon, L. Punching Shear Strength of High Performance Fiber Reinforced Concrete Slabs; 3rd FIB International Congress: Washington, DC, USA, 2010. [Google Scholar]
- Nguyen-Minh, L.; Rovňák, M.; Tran-Quoc, T. Punching shear capacity of interior SFRC slab-column connections. J. Struct. Eng. 2012, 138, 613–624. [Google Scholar] [CrossRef]
- Yaseen, A. Punching Shear Strength of Steel Fiber High Strength Reinforced Concrete Slabs. Master’s Thesis, College of Engineering University of Salahaddin, Erbil, Iraq, 2006; p. 107. [Google Scholar]
- Wang, X.W.; Tian, W.L.; Huang, Z.Y.; Zhou, M.J.; Zhao, X.Y. Analysis on punching shear behavior of the raft slab reinforced with steel fibers. Adv. Concr. Struct. 2009, 400, 335–340. [Google Scholar] [CrossRef]
h | d | bc | f’c | ρ | ρf | V | |
---|---|---|---|---|---|---|---|
Min | 55 | 39 | 60 | 14.2 | 0.37 | 0 | 58.3 |
Max | 180 | 150 | 225 | 108 | 2.53 | 2 | 530 |
Average | 110.8 | 87.05 | 131.96 | 41.65 | 0.99 | 0.71 | 228.19 |
Skew | −0.37 | −0.3 | 0.31 | 1.92 | 0.81 | 0.24 | 0.60 |
h | d | bc | f’c | ρ | ρf | V | |
---|---|---|---|---|---|---|---|
Min | 40 | 25 | 72 | 5.6 | 0.42 | 0 | 43.2 |
Max | 180 | 150 | 225 | 108 | 4.87 | 4 | 530 |
Average | 107.46 | 84.18 | 128.22 | 42.10 | 1.03 | 0.75 | 216.51 |
Skew | −0.23 | −0.15 | 0.37 | 1.86 | 1.01 | 0.45 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Taffese, W.Z.; Hu, T. Accurate Prediction of Punching Shear Strength of Steel Fiber-Reinforced Concrete Slabs: A Machine Learning Approach with Data Augmentation and Explainability. Buildings 2024, 14, 1223. https://doi.org/10.3390/buildings14051223
Cheng C, Taffese WZ, Hu T. Accurate Prediction of Punching Shear Strength of Steel Fiber-Reinforced Concrete Slabs: A Machine Learning Approach with Data Augmentation and Explainability. Buildings. 2024; 14(5):1223. https://doi.org/10.3390/buildings14051223
Chicago/Turabian StyleCheng, Cheng, Woubishet Zewdu Taffese, and Tianyu Hu. 2024. "Accurate Prediction of Punching Shear Strength of Steel Fiber-Reinforced Concrete Slabs: A Machine Learning Approach with Data Augmentation and Explainability" Buildings 14, no. 5: 1223. https://doi.org/10.3390/buildings14051223
APA StyleCheng, C., Taffese, W. Z., & Hu, T. (2024). Accurate Prediction of Punching Shear Strength of Steel Fiber-Reinforced Concrete Slabs: A Machine Learning Approach with Data Augmentation and Explainability. Buildings, 14(5), 1223. https://doi.org/10.3390/buildings14051223