Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Energy, Economic, and Environmental Model for Simulation
2.2.1. Levelized Cost of Heat
2.2.2. Carbon Abatement Cost
2.3. Techno-Economic Assumptions
3. Results
3.1. Environmental Effects of H2 Addition on Boiler and GAHP Systems
3.2. Levelized Cost of Heat
3.3. Carbon Abatement Cost
3.4. Sensitivity Analysis
4. Conclusions
- The use of the GAHP results in a reduced non-renewable primary energy consumption compared with the boiler of up to 25.69%. The GAHP records an EPnr,t of 93.18 MWh/y when fueled with 30% vol. of H2.
- At a hydrogen volumetric fraction of 30%, the CO2 emissions reductions recorded for the condensing boiler and the GAHP are 12.05% and 11.19%, respectively.
- The GAHP records a lower LCOH than NG boilers (102.26 EUR/MWh vs. 106.06 EUR/MWh) due to its higher efficiency. The greater the hydrogen rate in the blend, the greater the LCOH.
- Due to its reduction in the overall cost of heat production, the GAHP shows negative values of CAC at fH2,vol values ranging between 0 and 20%. The economic advantage of the GAHP is reduced as the volumetric fraction of H2 used increases, which is due to the higher cost of fuel purchasing. The current hydrogen prices are correlated with high values of CAC, which are approximately 220 EUR/kgCO2,avd.
- The forthcoming cost reduction in hydrogen will reduce the Levelized Cost of Heat and the decarbonization cost for both technologies. At a hydrogen cost of 1 EUR/kg, the LCOH for the boiler and GAHP systems are 98.49 EUR/MWh and 97.22 EUR/MWh, respectively, with a 30% vol. of hydrogen in the mixture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | |
C | Costs (EUR/yr) |
CAPEX | Initial Capital Expenditure (EUR) |
CO2,eq | Annual CO2 equivalent emissions (tCO2/yr) |
Eth | Thermal energy required (MWh/yr) |
EH2NG | Thermal energy from fuel (MWh/yr) |
EfH2 | Thermal energy from hydrogen fraction (MWh/yr) |
EP | Primary energy consumption (MWh/yr) |
fH2,vol | Hydrogen volumetric fraction |
fe,NG | Emission factor (kgCO2/MWh) |
fnr,NG | Non-renewable primary energy factor |
i | interest rate (%) |
P | Thermal power (kW) |
PH2NG | Thermal power from fuel (MW) |
PH2 | Price of hydrogen (EUR/kg) |
PNG | Price of natural gas (EUR/MWh) |
t | Lifetime (yr) |
yi,H2 | Hydrogen Mass Fraction |
ΔT | Temperature difference between exhaust gas and external air (°C) |
ηboiler | Boiler efficiency |
ηGAHP | Gas Adsorption Heat Pump efficiency |
ηcond | Condensation efficiency |
ηc | Combustion efficiency |
Subscripts | |
D | Demand |
fuel | Fossil fuel |
latent | Latent heat losses |
loss, sens | Sensible heat losses |
nr | Non-renewable energy |
O&M | Operation and maintenance |
th | Thermal |
Abbreviations and Acronyms | |
CAC | Carbon Abatement Cost |
crf | Capital recovery factor |
EFC | Energy Fraction of Condensation |
GAHP | Gas Adsorption Heat Pump |
GHG | Greenhouse gas |
H2NG | Hydrogen-enriched natural gas blends |
HHV | Higher heating value |
HVR | Heating Value Ratio |
LCOH | Levelized Cost of Heat |
LCOH2 | Levelized Cost of Hydrogen |
LHV | Lower heating value |
NG | Natural gas |
SNG | Synthetic natural gas |
References
- Rabiee, A.; Keane, A.; Soroudi, A. Green Hydrogen: A New Flexibility Source for Security Constrained Scheduling of Power Systems with Renewable Energies. Int. J. Hydrogen Energy 2021, 46, 19270–19284. [Google Scholar] [CrossRef]
- Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. From Electricity Smart Grids to Smart Energy Systems—A Market Operation Based Approach and Understanding. Energy 2012, 42, 96–102. [Google Scholar] [CrossRef]
- Sgaramella, A.; Pastore, L.M.; Lo Basso, G.; de Santoli, L. Optimal RES Integration for Matching the Italian Hydrogen Strategy Requirements. Renew Energy 2023, 219, 119409. [Google Scholar] [CrossRef]
- Brey, J.J. Use of Hydrogen as a Seasonal Energy Storage System to Manage Renewable Power Deployment in Spain by 2030. Int. J. Hydrogen Energy 2021, 46, 17447–17457. [Google Scholar] [CrossRef]
- Caglayan, D.G.; Heinrichs, H.U.; Robinius, M.; Stolten, D. Robust Design of a Future 100% Renewable European Energy Supply System with Hydrogen Infrastructure. Int. J. Hydrogen Energy 2021, 46, 29376–29390. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D. (Eds.) Climate Change 2014 Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107415379. [Google Scholar]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an Energy Vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- van Wijk, A.; Chatzimarkakis, J. Green Hydrogen for a European Green Deal: A 2x40 GW Initiative; Hydrogen Europe: Brussels, Belgium, 2021. [Google Scholar]
- European Commission. A Clean Planet for All: A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Hanley, E.S.; Deane, J.; Gallachóir, B.Ó. The Role of Hydrogen in Low Carbon Energy Futures–A Review of Existing Perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [Google Scholar] [CrossRef]
- Liu, F.; Mauzerall, D.L.; Zhao, F.; Hao, H. Deployment of Fuel Cell Vehicles in China: Greenhouse Gas Emission Reductions from Converting the Heavy-Duty Truck Fleet from Diesel and Natural Gas to Hydrogen. Int. J. Hydrogen Energy 2021, 46, 17982–17997. [Google Scholar] [CrossRef]
- Herwartz, S.; Pagenkopf, J.; Streuling, C. Sector Coupling Potential of Wind-Based Hydrogen Production and Fuel Cell Train Operation in Regional Rail Transport in Berlin and Brandenburg. Int. J. Hydrogen Energy 2021, 46, 29597–29615. [Google Scholar] [CrossRef]
- Choi, C.H.; Yu, S.; Han, I.-S.; Kho, B.-K.; Kang, D.-G.; Lee, H.Y.; Seo, M.-S.; Kong, J.-W.; Kim, G.; Ahn, J.-W.; et al. Development and Demonstration of PEM Fuel-Cell-Battery Hybrid System for Propulsion of Tourist Boat. Int. J. Hydrogen Energy 2016, 41, 3591–3599. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, F.; Rodríguez-Antón, L.M. Power-to-SNG Technologies by Hydrogenation of CO2 and Biomass Resources: A Comparative Chemical Engineering Process Analysis. Int. J. Hydrogen Energy 2019, 44, 12544–12553. [Google Scholar] [CrossRef]
- Stančin, H.; Mikulčić, H.; Wang, X.; Duić, N. A Review on Alternative Fuels in Future Energy System. Renew. Sustain. Energy Rev. 2020, 128, 109927. [Google Scholar] [CrossRef]
- Kurtz, J.; Sprik, S.; Bradley, T.H. Review of Transportation Hydrogen Infrastructure Performance and Reliability. Int. J. Hydrogen Energy 2019, 44, 12010–12023. [Google Scholar] [CrossRef]
- Wahl, J.; Kallo, J. Quantitative Valuation of Hydrogen Blending in European Gas Grids and Its Impact on the Combustion Process of Large-Bore Gas Engines. Int. J. Hydrogen Energy 2020, 45, 32534–32546. [Google Scholar] [CrossRef]
- Gondal, I.A. Hydrogen Integration in Power-to-Gas Networks. Int. J. Hydrogen Energy 2019, 44, 1803–1815. [Google Scholar] [CrossRef]
- Qadrdan, M.; Abeysekera, M.; Chaudry, M.; Wu, J.; Jenkins, N. Role of Power-to-Gas in an Integrated Gas and Electricity System in Great Britain. Int. J. Hydrogen Energy 2015, 40, 5763–5775. [Google Scholar] [CrossRef]
- Jones, D.R.; Al-Masry, W.A.; Dunnill, C.W. Hydrogen-Enriched Natural Gas as a Domestic Fuel: An Analysis Based on Flash-Back and Blow-off Limits for Domestic Natural Gas Appliances within the UK. Sustain. Energy Fuels 2018, 2, 710–723. [Google Scholar] [CrossRef]
- Schiro, F.; Stoppato, A.; Benato, A. Modelling and Analyzing the Impact of Hydrogen Enriched Natural Gas on Domestic Gas Boilers in a Decarbonization Perspective. Carbon Resour. Convers. 2020, 3, 122–129. [Google Scholar] [CrossRef]
- Sgaramella, A.; Lo Basso, G.; de Santoli, L. How the Cylinder Initial Conditions Affect the HCNG Refuelling Process—A Thermodynamic Analysis to Determine the Most Effective Filling Parameters. Int. J. Hydrogen Energy 2024, 51, 559–575. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, S.J. Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems. Energies 2020, 13, 6263. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and Evaluation of Hydrogen Production Options for Better Environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Pluvinage, G. Mechanical Properties of a Wide Range of Pipe Steels under Influence of Pure Hydrogen or Hydrogen Blended with Natural Gas. Int. J. Press. Vessel. Pip. 2021, 190, 104293. [Google Scholar] [CrossRef]
- Quarton, C.J.; Samsatli, S. Should We Inject Hydrogen into Gas Grids? Practicalities and Whole-System Value Chain Optimisation. Appl. Energy 2020, 275, 115172. [Google Scholar] [CrossRef]
- Chintala, V.; Subramanian, K.A. Hydrogen Energy Share Improvement along with NOx (Oxides of Nitrogen) Emission Reduction in a Hydrogen Dual-Fuel Compression Ignition Engine Using Water Injection. Energy Convers. Manag. 2014, 83, 249–259. [Google Scholar] [CrossRef]
- WHITE, C.; STEEPER, R.; LUTZ, A. The Hydrogen-Fueled Internal Combustion Engine: A Technical Review. Int. J. Hydrogen Energy 2006, 31, 1292–1305. [Google Scholar] [CrossRef]
- Choudhury, S.; McDonell, V.G.; Samuelsen, S. Combustion Performance of Low-NOx and Conventional Storage Water Heaters Operated on Hydrogen Enriched Natural Gas. Int. J. Hydrogen Energy 2020, 45, 2405–2417. [Google Scholar] [CrossRef]
- The European House–Ambrosetti, Snam. H2 Italy 2050; ENEA: Roma, Italy, 2020.
- Pniec, Piano Nazionale Integrato Per L’Energia E IL Clima; Ministero Dell’Ambiente e Della Sicurezza Energetica: Roma, Italy, 2023.
- van Renssen, S. The Hydrogen Solution? Nat. Clim. Chang. 2020, 10, 799–801. [Google Scholar] [CrossRef]
- Pastore, L.M.; Lo Basso, G.; de Santoli, L. How National Decarbonisation Scenarios Can Affect Building Refurbishment Strategies. Energy 2023, 283, 128634. [Google Scholar] [CrossRef]
- Lamioni, R.; Bronzoni, C.; Folli, M.; Tognotti, L.; Galletti, C. Feeding H2-Admixtures to Domestic Condensing Boilers: Numerical Simulations of Combustion and Pollutant Formation in Multi-Hole Burners. Appl. Energy 2022, 309, 118379. [Google Scholar] [CrossRef]
- Yang, H.; Lin, X.; Pan, H.; Geng, S.; Chen, Z.; Liu, Y. Energy Saving Analysis and Thermal Performance Evaluation of a Hydrogen-Enriched Natural Gas-Fired Condensing Boiler. Int. J. Hydrogen Energy 2023, 48, 19279–19296. [Google Scholar] [CrossRef]
- Sforzini, M.; Lo Basso, G.; Paiolo, R.; De Santoli, L.; Cumo, F. Adsorption Gas Heat Pump Fuelled with Hydrogen Enriched Natural Gas Blends: The Analytical Simulation Model Development and Validation. E3S Web Conf. 2020, 197, 08002. [Google Scholar] [CrossRef]
- Yan, F.; Xu, L.; Wang, Y. Application of Hydrogen Enriched Natural Gas in Spark Ignition IC Engines: From Fundamental Fuel Properties to Engine Performances and Emissions. Renew. Sustain. Energy Rev. 2018, 82, 1457–1488. [Google Scholar] [CrossRef]
- Mehra, R.K.; Duan, H.; Juknelevičius, R.; Ma, F.; Li, J. Progress in Hydrogen Enriched Compressed Natural Gas (HCNG) Internal Combustion Engines—A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 80, 1458–1498. [Google Scholar] [CrossRef]
- Zhao, Y.; McDonell, V.; Samuelsen, S. Experimental Assessment of the Combustion Performance of an Oven Burner Operated on Pipeline Natural Gas Mixed with Hydrogen. Int. J. Hydrogen Energy 2019, 44, 26049–26062. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, C.; Xing, H.; Liu, P. Experimental Research on Performance Response of Domestic Gas Cookers to Variable Natural Gas Constituents. J. Nat. Gas. Sci. Eng. 2013, 10, 41–50. [Google Scholar] [CrossRef]
- Cellek, M.S.; Pınarbaşı, A. Investigations on Performance and Emission Characteristics of an Industrial Low Swirl Burner While Burning Natural Gas, Methane, Hydrogen-Enriched Natural Gas and Hydrogen as Fuels. Int. J. Hydrogen Energy 2018, 43, 1194–1207. [Google Scholar] [CrossRef]
- Kouchachvili, L.; Entchev, E. Power to Gas and H2/NG Blend in SMART Energy Networks Concept. Renew. Energy 2018, 125, 456–464. [Google Scholar] [CrossRef]
- Cinti, G.; Bidini, G.; Hemmes, K. Comparison of the Solid Oxide Fuel Cell System for Micro CHP Using Natural Gas with a System Using a Mixture of Natural Gas and Hydrogen. Appl. Energy 2019, 238, 69–77. [Google Scholar] [CrossRef]
- Rajpara, P.; Shah, R.; Banerjee, J. Effect of Hydrogen Addition on Combustion and Emission Characteristics of Methane Fuelled Upward Swirl Can Combustor. Int. J. Hydrogen Energy 2018, 43, 17505–17519. [Google Scholar] [CrossRef]
- Pastore, L.M.; Lo Basso, G.; Ricciardi, G.; de Santoli, L. Smart Energy Systems for Renewable Energy Communities: A Comparative Analysis of Power-to-X Strategies for Improving Energy Self-Consumption. Energy 2023, 280, 128205. [Google Scholar] [CrossRef]
- Mancini, F.; Salvo, S.; Piacentini, V. Issues of Energy Retrofitting of a Modern Public Housing Estates: The ‘Giorgio Morandi’ Complex at Tor Sapienza, Rome, 1975-1979. Energy Procedia 2016, 101, 1111–1118. [Google Scholar] [CrossRef]
- European Commission. HotMaps, the Open Source Mapping and Planning Tool for Heating and Cooling; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Lo Basso, G.; Nastasi, B.; Astiaso Garcia, D.; Cumo, F. How to Handle the Hydrogen Enriched Natural Gas Blends in Combustion Efficiency Measurement Procedure of Conventional and Condensing Boilers. Energy 2017, 123, 615–636. [Google Scholar] [CrossRef]
- UNI 10389-1:2019; Misurazioni in Campo—Generatori di Calore—Parte 1: Apparecchi Alimentati a Combustibile Liquido e/o Gassoso. 2019. Available online: https://StoreUniCom/Uni-10389-1-2019 (accessed on 8 June 2024).
- UNI 10339:1995; Impianti Aeraulici al fini di Benessere. Generalità, Classificazione e Requisiti. Regole per la Richiesta D’offerta, L’offerta, L’ordine e la Fornitura. 1995. Available online: https://StoreUniCom/Uni-10339-1995 (accessed on 8 June 2024).
- ISPRA Istituto Superiore per La Protezione e La Ricerca Ambientale. Fattori Di Emissione Atmosferica Di Gas a Effetto Serra Nel Settore Elettrico Nazionale e Nei Principali Paesi Europei; ISPRA Istituto Superiore per La Protezione e La Ricerca Ambientale: Roma, Italy, 2019. [Google Scholar]
- Ravi Kumar, K.; Krishna Chaitanya, N.V.V.; Sendhil Kumar, N. Solar Thermal Energy Technologies and Its Applications for Process Heating and Power Generation—A Review. J. Clean. Prod. 2021, 282, 125296. [Google Scholar] [CrossRef]
- Meesenburg, W.; Ommen, T.; Thorsen, J.E.; Elmegaard, B. Economic Feasibility of Ultra-Low Temperature District Heating Systems in Newly Built Areas Supplied by Renewable Energy. Energy 2020, 191, 116496. [Google Scholar] [CrossRef]
- Wang, Z. Heat Pumps with District Heating for the UK’s Domestic Heating: Individual versus District Level. Energy Procedia 2018, 149, 354–362. [Google Scholar] [CrossRef]
- Danish Energy Agency. Technology Data—Energy Plants for Electricity and District Heating Generation. 2016. Available online: http://www.ens.dk/teknologikatalog (accessed on 8 June 2024).
- Sgaramella, A.; Pastore, L.M.; Lo Basso, G.; Mojtahed, A.; de Santoli, L. HCNG Refuelling Station to Accelerate the Transition towards a Real Hydrogen Economy: A Techno-Economic Analysis. Int. J. Hydrogen Energy 2024, 69, 1403–1416. [Google Scholar] [CrossRef]
- Ciancio, A.; Lo Basso, G.; Pastore, L.M.; de Santoli, L. Carbon Abatement Cost Evolution in the Forthcoming Hydrogen Valleys by Following Different Hydrogen Pathways. Int. J. Hydrogen Energy 2024, 64, 80–97. [Google Scholar] [CrossRef]
- Prakash, V.; Ghosh, S.; Kanjilal, K. Costs of Avoided Carbon Emission from Thermal and Renewable Sources of Power in India and Policy Implications. Energy 2020, 200, 117522. [Google Scholar] [CrossRef]
- ARERA–Prezzi e Tariffe. Available online: https://www.arera.it/area-operatori/prezzi-e-tariffe (accessed on 1 June 2024).
- IEA. Global Hydrogen Review 2022; IEA: Paris, France, 2022. [Google Scholar]
- Heat Roadmap Europe 4 (HRE4). EnergyPLAN 2018. Available online: https://www.energyplan.eu/hre4/ (accessed on 16 July 2024).
- Heat Pump Strategy Report; World Liquid Gas: Neuilly-sur-Seine, France, 2022.
Dwelling Typology/Building | Number of Dwellings | Surface (m2) | Annual Heating Demand (MWh/yr) | Annual Electrical Consumption (MWh/yr) | INHABITANTS (n° of People) |
---|---|---|---|---|---|
A | 5 | 60 | 4.22 | 4.75 | 2 |
B | 5 | 67 | 4.71 | 9.55 | 3 |
C | 5 | 134 | 9.42 | 12.65 | 4 |
D | 5 | 137 | 9.63 | 12.5 | 3 |
Building | 20 | 1990 | 139.9 | 39.45 | 60 |
fH2 (% vol.) | K1 | K2 | HVR | ηcond |
---|---|---|---|---|
0 | 0.007852 | 2.27425 × 10−5 | 1.1062 | 0.549 |
10 | 0.007808 | 2.23817 × 10−5 | 1.1084 | 0.565 |
20 | 0.007756 | 2.19601 × 10−5 | 1.1109 | 0.581 |
30 | 0.007695 | 2.14608 × 10−5 | 1.1139 | 0.597 |
fH2 (% vol.) | ηc |
---|---|
0 | 1.04034 |
10 | 1.04340 |
20 | 1.04671 |
30 | 1.05043 |
fH2 (% vol.) | ρn (kg/Nm3) | LHVH2NG,mass (MJ/kg) | LHVH2NG,vol (MJ/Nm3) |
---|---|---|---|
0 | 0.717 | 49.98 | 35.857 |
10 | 0.655 | 50.99 | 33.3822 |
20 | 0.592 | 52.22 | 30.9074 |
30 | 0.529 | 53.73 | 28.4326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vespasiano, D.; Sgaramella, A.; Lo Basso, G.; de Santoli, L.; Pastore, L.M. Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector. Buildings 2024, 14, 2284. https://doi.org/10.3390/buildings14082284
Vespasiano D, Sgaramella A, Lo Basso G, de Santoli L, Pastore LM. Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector. Buildings. 2024; 14(8):2284. https://doi.org/10.3390/buildings14082284
Chicago/Turabian StyleVespasiano, Domiziana, Antonio Sgaramella, Gianluigi Lo Basso, Livio de Santoli, and Lorenzo Mario Pastore. 2024. "Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector" Buildings 14, no. 8: 2284. https://doi.org/10.3390/buildings14082284
APA StyleVespasiano, D., Sgaramella, A., Lo Basso, G., de Santoli, L., & Pastore, L. M. (2024). Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector. Buildings, 14(8), 2284. https://doi.org/10.3390/buildings14082284