Semantic Segmentation of Heavy Construction Equipment Based on Point Cloud Data
Abstract
:1. Introduction
1.1. Research Background and Objectives
1.2. Research Scope and Methods
2. Related Works
2.1. Object Recognition in the Construction Industry Using 2D Image Data
2.2. Object Recognition in the Construction Industry Using 3D Point Cloud Data
2.3. Semantic Segmentation Based on Large-Scale 3D Point Cloud Data
3. Methodology
3.1. Framework
3.2. Performance Metrics
4. Data Generation and Semantic Segmentation Model Construction
4.1. Generation of a 3D Digital Map of Earthwork Sites
4.1.1. UAV Photogrammetry of Earthwork Site and Data Preprocessing
4.1.2. Changing the Format of 3D Digital Map Data
4.1.3. 3D-ConHE Dataset Integration and Custom Dataset Construction
4.2. 3D Semantic Labeling
4.2.1. Labeling of Large-Scale 3D Point Cloud Data
4.2.2. Creating a Heavy Construction Equipment Dataset Based on 3D Point Cloud Data
4.3. Construction of Semantic Segmentation Models
4.3.1. Overview
4.3.2. Training and Validation
5. Results and Discussion
5.1. Test
5.2. Test Results and Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbosa, F.; Mischke, J.; Parsons, M. Improving Construction Productivity. 2017. Available online: https://www.mckinsey.com/capabilities/operations/our-insights/improving-construction-productivity (accessed on 25 October 2023).
- Durdyev, S.; Ismail, S. Offsite Manufacturing in the Construction Industry for Productivity Improvement. Eng. Manag. J. 2019, 31, 35–46. [Google Scholar] [CrossRef]
- Jang, W.-S.; Skibniewski, M.J. Cost-Benefit Analysis of Embedded Sensor System for Construction Materials Tracking. J. Constr. Eng. Manag. 2009, 135, 378–386. [Google Scholar] [CrossRef]
- Cai, S.; Ma, Z.; Skibniewski, M.J.; Bao, S. Construction Automation and Robotics for High-Rise Buildings over the Past Decades: A Comprehensive Review. Adv. Eng. Inform. 2019, 42, 100989. [Google Scholar] [CrossRef]
- Hatami, M.; Flood, I.; Franz, B.; Zhang, X. State-of-the-Art Review on the Applicability of AI Methods to Automated Construction. In Proceedings of the Computing in Civil Engineering 2019: Data, Sensing, and Analytics, Atlanta, GA, USA, 17–19 June 2019; pp. 105–113. [Google Scholar]
- Bamfo-Agyei, E.; Thwala, D.W.; Aigbavboa, C. Performance Improvement of Construction Workers to Achieve Better Productivity for Labour-Intensive Works. Buildings 2022, 12, 1593. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Seo, H. Study on Representative Parameters of Reverse Engineering for Maintenance of Ballasted Tracks. Appl. Sci. 2022, 12, 5973. [Google Scholar] [CrossRef]
- Park, S.; Kim, S. Analysis of Overlap Ratio for Registration Accuracy Improvement of 3D Point Cloud Data at Construction Sites. J. KIBIM 2021, 11, 1–9. [Google Scholar]
- Park, S.; Kim, S. Performance Evaluation of Denoising Algorithms for the 3D Construction Digital Map. J. KIBIM 2020, 10, 32–39. [Google Scholar]
- Kim, Y.; Park, S.; Choi, Y.; Kim, S. Performance Verification of Integrated Module for Automatic Analysis of Digital Maps in Earthwork Sites. J. Constr. Autom. Robot. 2023, 2, 1–6. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Park, S.-Y.; Kim, S. Development of Framework for Digital Map Time Series Analysis of Earthwork Sites. J. KIBIM 2023, 13, 22–32. [Google Scholar] [CrossRef]
- Choi, Y.; Park, S.; Kim, S. GCP-Based Automated Fine Alignment Method for Improving the Accuracy of Coordinate Information on UAV Point Cloud Data. Sensors 2022, 22, 8735. [Google Scholar] [CrossRef]
- Choi, Y.; Park, S.; Kim, S. Development of Point Cloud Data-Denoising Technology for Earthwork Sites Using Encoder-Decoder Network. KSCE J. Civ. Eng. 2022, 26, 4380–4389. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.L.; Wang, X.; Chan, A.P.C. A Critical Review of Virtual and Augmented Reality (VR/AR) Applications in Construction Safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Mostafa, K.; Hegazy, T. Review of Image-Based Analysis and Applications in Construction. Autom. Constr. 2021, 122, 103516. [Google Scholar] [CrossRef]
- Lasky, T.A.; Ravani, B. Sensor-Based Path Planning and Motion Control for a Robotic System for Roadway Crack Sealing. IEEE Trans. Control Syst. Technol. 2000, 8, 609–622. [Google Scholar] [CrossRef]
- Li, H.; Lu, M.; Hsu, S.C.; Gray, M.; Huang, T. Proactive Behavior-Based Safety Management for Construction Safety Improvement. Saf. Sci. 2015, 75, 107–117. [Google Scholar] [CrossRef]
- Jeong, I.; Kim, J.; Chi, S.; Roh, M.; Biggs, H. Solitary Work Detection of Heavy Equipment Using Computer Vision. KSCE J. Civ. Environ. Eng. Res. 2021, 41, 441–447. [Google Scholar]
- Hsieh, Y.-A.; Tsai, Y.J. Machine Learning for Crack Detection: Review and Model Performance Comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Ekanayake, B.; Wong, J.K.W.; Fini, A.A.F.; Smith, P. Computer Vision-Based Interior Construction Progress Monitoring: A Literature Review and Future Research Directions. Autom. Constr. 2021, 127, 103705. [Google Scholar] [CrossRef]
- Dang, L.M.; Wang, H.; Li, Y.; Park, Y.; Oh, C.; Nguyen, T.N.; Moon, H. Automatic Tunnel Lining Crack Evaluation and Measurement Using Deep Learning. Tunn. Undergr. Space Technol. 2022, 124, 104472. [Google Scholar] [CrossRef]
- Oh, K.; Yoo, M.; Jin, N.; Ko, J.; Seo, J.; Joo, H.; Ko, M. A Review of Deep Learning Applications for Railway Safety. Appl. Sci. 2022, 12, 572. [Google Scholar] [CrossRef]
- Kim, H.; Kim, C. Deep-Learning-Based Classification of Point Clouds for Bridge Inspection. Remote Sens. 2020, 12, 3757. [Google Scholar] [CrossRef]
- Fei-Fei, L.; Deng, J.; Li, K. ImageNet: Constructing a Large-Scale Image Database. J. Vis. 2010, 9, 1037. [Google Scholar] [CrossRef]
- Xiao, B.; Kang, S.-C. Development of an Image Data Set of Construction Machines for Deep Learning Object Detection. J. Comput. Civ. Eng. 2021, 35, 05020005. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4338–4364. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV 2016), Stanford, CA, USA, 25–28 October 2016; pp. 601–610. [Google Scholar]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. Randla-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11105–11114. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Hong, Y.W.; Byun, H. Detecting Construction Equipment Using a Region-Based Fully Convolutional Network and Transfer Learning. J. Comput. Civ. Eng. 2018, 32, 04017082. [Google Scholar] [CrossRef]
- Chen, J.; Fang, Y.; Cho, Y.K.; Kim, C. Principal Axes Descriptor for Automated Construction-Equipment Classification from Point Clouds. J. Comput. Civ. Eng. 2017, 31, 04016058. [Google Scholar] [CrossRef]
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Tan, W.; Qin, N.; Ma, L.; Li, Y.; Du, J.; Cai, G.; Yang, K.; Li, J. Toronto-3D: A Large-Scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways2211. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 797–806. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar] [CrossRef]
- Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark. arXiv 2014, arXiv:1704.03847. [Google Scholar] [CrossRef]
- Roynard, X.; Deschaud, J.E.; Goulette, F. Paris-Lille-3D: A Large and High-Quality Ground-Truth Urban Point Cloud Dataset for Automatic Segmentation and Classification. Int. J. Rob. Res. 2018, 37, 545–557. [Google Scholar] [CrossRef]
- Rusu, R.B.; Cousins, S. 3D Is Here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv, 2018; arXiv:1801.09847. [Google Scholar]
- Butler, H.; Chambers, B.; Hartzell, P.; Glennie, C. PDAL: An Open Source Library for the Processing and Analysis of Point Clouds. Comput. Geosci. 2021, 148, 104680. [Google Scholar] [CrossRef]
- Park, S.; Kim, S. 3D Point Cloud Dataset of Heavy Construction Equipment. Appl. Sci. 2024, 14, 3599. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial Intelligence and Smart Vision for Building and Construction 4.0: Machine and Deep Learning Methods and Applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Lee, Y.I.; Kim, B.; Cho, S. Image-Based Spalling Detection of Concrete Structures Using Deep Learning. J. Korea Concr. Inst. 2018, 30, 91–99. [Google Scholar] [CrossRef]
- Lee, T.; Kim, S.; Hwang, C.-H.; Jung, H. Worker Collision Safety Management System Using Object Detection. J. Korea Inst. Inf. Commun. Eng. 2022, 26, 1259–1265. [Google Scholar]
- Hao, N. 3D Object Detection from Point Cloud Based on Deep Learning. Wirel. Commun. Mob. Comput. 2022, 2022, 6228797. [Google Scholar] [CrossRef]
- Arabi, S.; Haghighat, A.; Sharma, A. A Deep Learning Based Solution for Construction Equipment Detection: From Development to Deployment. arXiv 2019, arXiv:1904.09021. [Google Scholar]
- Colleges, G.T.U.A.; Academy, O.; Academy, O.; Academy, O.; Science, A.C.; Technology, I.; Science, A.C. Microsoft COCO 2014. In Proceedings of the ECCV, Zurich, Switzerland, 5–12 September 2014; pp. 740–755. [Google Scholar]
- Xiong, X.; Adan, A.; Akinci, B.; Huber, D. Automatic Creation of Semantically Rich 3D Building Models from Laser Scanner Data. Autom. Constr. 2013, 31, 325–337. [Google Scholar] [CrossRef]
- Kim, C.; Kim, C.; Son, H. Automated Construction Progress Measurement Using a 4D Building Information Model and 3D Data. Autom. Constr. 2013, 31, 75–82. [Google Scholar] [CrossRef]
- Lee, J.S.; Park, J.; Ryu, Y.M. Semantic Segmentation of Bridge Components Based on Hierarchical Point Cloud Model. Autom. Constr. 2021, 130, 103847. [Google Scholar] [CrossRef]
- Ryu, Y.-M.; Kim, B.-K.; Park, J. Effect of Learning Data on the Semantic Segmentation of Railroad Tunnel Using Deep Learning. J. Korean Geotech. 2021, 37, 107–118. [Google Scholar]
- Kim, J.; Chung, D.; Kim, Y.; Kim, H. Deep Learning-Based 3D Reconstruction of Scaffolds Using a Robot Dog. Autom. Constr. 2022, 134, 104092. [Google Scholar] [CrossRef]
- Nath, N.D.; Behzadan, A.H. Deep Convolutional Networks for Construction Object Detection Under Different Visual Conditions. Front. Built Environ. 2020, 6, 97. [Google Scholar] [CrossRef]
- Chen, J.; Fang, Y.; Cho, Y.K. Performance Evaluation of 3D Descriptors for Object Recognition in Construction Applications. Autom. Constr. 2018, 86, 44–52. [Google Scholar] [CrossRef]
- Lee, D.-K.; Ji, S.-H.; Park, B.-Y. PointNet and RandLA-Net Algorithms for Object Detection Using 3D Point Clouds. J. Soc. Nav. Archit. Korea 2022, 59, 330–337. [Google Scholar] [CrossRef]
- Fan, S.; Dong, Q.; Zhu, F.; Lv, Y.; Ye, P.; Wang, F.Y. SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14499–14508. [Google Scholar] [CrossRef]
- Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9296–9306. [Google Scholar] [CrossRef]
- Thabet, A.; Alwassel, H.; Ghanem, B. Self-Supervised Learning of Local Features in 3D Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 4048–4052. [Google Scholar] [CrossRef]
- Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499. [Google Scholar] [CrossRef]
- Girardeau-Montaut, D. CloudCompare. 2019. Available online: https://www.danielgm.net/cc/ (accessed on 10 November 2023).
- Hitachi Automotive and Industry Laboratory Semantic-Segmentation-Editor. Available online: https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor (accessed on 10 November 2023).
- Hansen, L.H.; Jensen, S.B.; Philipsen, M.P.; Møgelmose, A.; Bodum, L.; Moeslund, T.B. OpenTrench3D: A Photogrammetric 3D Point Cloud Dataset for Semantic Segmentation of Underground Utilities. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2024, Seattle, WA, USA, 17–21 June 2024; pp. 7646–7655. [Google Scholar]
Methods | Test Data | mIoU (%) | OA (%) | mIoU (%) | ||
---|---|---|---|---|---|---|
Accuracy (%) | IoUc1 (%) | IoUc2 (%) | IoUc3 (%) | |||
RandLA-Net | Total | 79.8 | 84.4 | 80.3 | 82.6 | 76.6 |
1 | 71.4 | 73.9 | 71.6 | 68.3 | 74.3 | |
2 | 84.1 | 89.2 | 84.7 | 90.0 | 77.5 | |
3 | 82.9 | 84.6 | 81.4 | 83.4 | 83.4 | |
4 | 80.9 | 89.9 | 83.3 | 88.8 | 70.6 | |
KPConv rigid | Total | 65.4 | 82.8 | 60.1 | 85.8 | 50.4 |
1 | 65.0 | 80.4 | 74.5 | 77.7 | 42.9 | |
2 | 67.4 | 82.9 | 73.5 | 83.2 | 45.5 | |
3 | 70.9 | 93.4 | 58.8 | 96.0 | 57.9 | |
4 | 58.4 | 74.7 | 33.8 | 86.2 | 55.4 | |
KPConv deform | Total | 63.9 | 82.6 | 58.6 | 84.3 | 48.9 |
1 | 54.1 | 73.6 | 58.2 | 81.8 | 22.2 | |
2 | 68.9 | 82.7 | 72.0 | 83.6 | 52.0 | |
3 | 67.4 | 94.3 | 51.0 | 87.5 | 63.8 | |
4 | 65.0 | 79.9 | 53.3 | 84.4 | 57.4 | |
SCF-Net | Total | 78.1 | 82.8 | 58.5 | 86.4 | 89.5 |
1 | 80.7 | 80.2 | 67.4 | 83.4 | 91.3 | |
2 | 78.3 | 81.4 | 68.0 | 82.4 | 84.6 | |
3 | 83.7 | 94.6 | 66.1 | 95.8 | 89.3 | |
4 | 69.7 | 74.9 | 32.5 | 83.8 | 92.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kim, S. Semantic Segmentation of Heavy Construction Equipment Based on Point Cloud Data. Buildings 2024, 14, 2393. https://doi.org/10.3390/buildings14082393
Park S, Kim S. Semantic Segmentation of Heavy Construction Equipment Based on Point Cloud Data. Buildings. 2024; 14(8):2393. https://doi.org/10.3390/buildings14082393
Chicago/Turabian StylePark, Suyeul, and Seok Kim. 2024. "Semantic Segmentation of Heavy Construction Equipment Based on Point Cloud Data" Buildings 14, no. 8: 2393. https://doi.org/10.3390/buildings14082393
APA StylePark, S., & Kim, S. (2024). Semantic Segmentation of Heavy Construction Equipment Based on Point Cloud Data. Buildings, 14(8), 2393. https://doi.org/10.3390/buildings14082393