Optimization via Taguchi of Artificial Lightweight Aggregates Obtained from Kaolinite Clay and Ceramic Waste: Development and Industrial Applications
Abstract
:1. Key Points
- (1)
- Production of commercial LWAs with ternary mixtures of KC, CHT, and EFA.
- (2)
- Development of pyro-expansive additive with 80% CHT and EFA residue.
- (3)
- The expansive prediction based on Riley and SiO2/ƩOF is inadequate for LWAs with ternary KC, CHT, and EFA mixtures.
- (4)
- Of the 32 mixtures, 18 showed properties equivalent to a commercial LWA, enabling 63 industrial applications.
- (5)
- The Taguchi method identified critical parameters for optimizing LWAs.
2. Introduction
3. Experimental Program
4. Results and Discussions
4.1. Expansion and Mass Loss Rate
4.2. Specific Gravity and Water Absorption
4.3. Unit Mass and Expansion Index
4.4. Crush Resistance and Specific Mass
4.5. Modulus of Deformation and Specific Mass
4.6. Visual Analysis
4.7. Microstructure
4.8. LWA Application Catalog
5. Statistical Modeling
5.1. Specific Mass
5.2. Water Absorption
5.3. Mechanical Resistance
5.4. Response Surface
5.5. Significance of Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EN 13055-1:2002; Lightweight Aggregates—Part 1: Lightweight Aggregates for Concrete, Mortar and Grout. European Committee for Standardization (CEN): Brussels, Belgium, 2002.
- ACI 213 R-03; Guide for Structural Lightweight Aggregate Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2003.
- Moreno-Maroto, J.M.; Cobo-Ceacero, C.J.; Uceda-Rodríguez, M.; Cotes-Palomino, T.; Martínez García, C.; Alonso-Azcárate, J. Unraveling the Expansion Mechanism in Lightweight Aggregates: Demonstrating That Bloating Barely Requires Gas. Constr. Build. Mater. 2020, 247, 118583. [Google Scholar] [CrossRef]
- Geng, J.; Niu, S.; Han, K.; Wang, Y.; Zhu, J.; Yang, Z.; Liu, J.; Zhang, H.; Sun, X.; Liang, B.; et al. Properties of Artificial Lightweight Aggregates Prepared from Coal and Biomass Co-Fired Fly Ashes and Sewage Sludge Fly Ash. Ceram. Int. 2024, 50, 28609–28618. [Google Scholar] [CrossRef]
- Pla, C.; Benavente, D.; Valdes-Abellan, J.; Kovacova, Z. Effectiveness of Two Lightweight Aggregates for the Removal of Heavy Metals from Contaminated Urban Stormwater. J. Contam. Hydrol. 2021, 239, 103778. [Google Scholar] [CrossRef]
- Mohammed Al-Saudi, S.K.; Géber, R. Production of Lightweight Geopolymer Concrete with Foam Glass Aggregate Derived from Cathode-Ray Glass Waste. Case Stud. Constr. Mater. 2024, 21, e03888. [Google Scholar] [CrossRef]
- de Sousa Campelo, T.; Zimmer, A.; Bragança, S.R. Evaluation and Improvement of a Nonexpansive Clay for the Production of Lightweight Aggregates Using Glass Waste and Silicon Carbide. Constr. Build. Mater. 2024, 439, 137428. [Google Scholar] [CrossRef]
- Silva Neto, J.A.; dos Anjos, M.A.S.; Dutra, R.P.S.; Mendonça de Souza, M.; Pederneiras, C.M. Development of Sustainable Artificial Lightweight Aggregates with Binary Mixtures of Waste Rich in Aluminosilicate and Carbonate in Kaolinitic Clay. Sustainability 2025, 17, 2017. [Google Scholar] [CrossRef]
- Silva Neto, J.A.; Dias, L.d.S.; De Medeiros, F.K.; Barbosa, M.d.S.; Marcal, N.A.; Dutra, R.P.S.; Negreiros, A.M.S.; Bezerra, U.T. A Scientiometric Review of Artificial Lightweight Aggregates Applying VOSviewer Software. Contrib. Cienc. Soc. 2024, 17, e5619. [Google Scholar] [CrossRef]
- Riley, C.M. Relation of Chemical Properties to the Bloating of Clays; Wiley: Hoboken, NJ, USA, 1951. [Google Scholar]
- Cougny, G. Specifications for clayey raw materials used to produce expanded lightweight aggregates. Bull. Eng. Geol. Environ. 1990, 41, 47–55. [Google Scholar]
- Liu, M.; Liu, X.; Wang, W.; Guo, J.; Zhang, L.; Zhang, H. Effect of SiO2 and Al2O3 on Characteristics of Lightweight Aggregate Made from Sewage Sludge and River Sediment. Ceram. Int. 2018, 44, 4313–4319. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Jin, H.; Cheng, L.; Xing, F. The Role of Different Ratios of Biochar in the Artificial Lightweight Cold-Bonded Aggregates (ALCBAs) Containing High Volume of Red Mud (RM). Constr. Build. Mater. 2024, 422, 135815. [Google Scholar] [CrossRef]
- Souza, N.S.L.d.; Anjos, M.A.S.d.; Sá, M.d.V.V.A.d.; Farias, E.C.d.; Souza, M.M.d.; Branco, F.G.; Pereira, A. Evaluation of Sugarcane Bagasse Ash for Lightweight Aggregates Production. Constr. Build. Mater. 2021, 271, 121604. [Google Scholar] [CrossRef]
- Lau, P.C.; Teo, D.C.L.; Mannan, M.A. Characteristics of Lightweight Aggregate Produced from Lime-Treated Sewage Sludge and Palm Oil Fuel Ash. Constr. Build. Mater. 2017, 152, 558–567. [Google Scholar] [CrossRef]
- Soltan, A.M.M.; Kahl, W.A.; El-Raoof, F.A.; El-Kaliouby, B.A.H.; Serry, M.A.K.; Abdel-Kader, N.A. Lightweight Aggregates from Mixtures of Granite Wastes with Clay. J. Clean. Prod. 2016, 117, 139–149. [Google Scholar] [CrossRef]
- Souza, M.M.; Anjos, M.A.S.; Sá, M.V.V.A.; Souza, N.S.L. Developing and Classifying Lightweight Aggregates from Sewage Sludge and Rice Husk Ash. Case Stud. Constr. Mater. 2020, 12, e00340. [Google Scholar] [CrossRef]
- Panna, W.; Prewendowski, S.; Juda, W.; Szumera, M. Possibilities of Producing Lightweight Aggregates from Silica-Clay Raw Material and Cellulosic Waste. J. Therm. Anal. Calorim. 2024, 149, 10709–10722. [Google Scholar] [CrossRef]
- Stempkowska, A.; Gawenda, T. Artificial Lightweight Aggregate Made from Alternative and Waste Raw Materials, Hardened Using the Hybrid Method. Sci. Rep. 2024, 14, 16880. [Google Scholar] [CrossRef]
- Alqenai, Y.; Balapour, M.; Zooyousefin, M.; Shresthal, N.; Hsuan, Y.G.; Farnam, Y. Investigating Effects of Sintering Mean Residence Time on Engineering Properties of Coal Ash-Based Lightweight Aggregate. Int. J. Appl. Ceram. Technol. 2024, 22, e14854. [Google Scholar] [CrossRef]
- Athreya, S.; Venkatesh, Y.D. Application of Taguchi Method for Optimization of Process Parameters in Improving the Surface Roughness of Lathe Facing Operation. Int. Ref. J. Eng. Sci. 2012, 1, 13–19. [Google Scholar]
- Chen, H.J.; Lin, H.C.; Tang, C.W. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Controlled Low-Strength Materials by Using Dimension Stone Sludge and Lightweight Aggregates. Sustainability 2021, 13, 5576. [Google Scholar] [CrossRef]
- Tian, Y.; Bourtsalas, A.C.T.; Kawashima, S.; Teng, X.; Themelis, N.J. Performance of Waste-to-Energy Fine Combined Ash/Filter Cake Ash-Metakaolin Based Artificial Aggregate. Constr. Build. Mater. 2022, 327, 127011. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Peng, J.; Dong, Y. Machine Learning-Based Probabilistic Prediction Model for Chloride Concentration in the Interfacial Zone of Precast and Cast-in-Place Concrete Structures. In Structures; Elsevier: Amsterdam, The Netherlands, 2025; Volume 72, p. 108224. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, C.; Peng, J.; Li, H.; Dong, Y.; Cai, C.S. Theory-Informed Deep Neural Network-Based Time-Dependent Flexural Reliability Assessment of Corroded PC Structures. Eng. Struct. 2025, 329, 119819. [Google Scholar] [CrossRef]
- Molineux, C.J.; Newport, D.J.; Ayati, B.; Wang, C.; Connop, S.P.; Green, J.E. Bauxite Residue (Red Mud) as a Pulverised Fuel Ash Substitute in the Manufacture of Lightweight Aggregate. J. Clean. Prod. 2016, 112, 401–408. [Google Scholar] [CrossRef]
- Chinnu, S.N.; Minnu, S.N.; Bahurudeen, A.; Senthilkumar, R. Recycling of Industrial and Agricultural Wastes as Alternative Coarse Aggregates: A Step towards Cleaner Production of Concrete. Constr. Build. Mater. 2021, 287, 123056. [Google Scholar] [CrossRef]
- Shang, X.; Li, Z.; Chang, J.; Chen, Y.; Yang, J.; Duan, Z. Production, Properties and Life Cycle Assessment of Artificial Lightweight Aggregates Produced with Corn Straw Ash (CSA) and Concrete Slurry Waste (CSW). Constr. Build. Mater. 2024, 411, 134274. [Google Scholar] [CrossRef]
- Souza, M.M.; Barbosa, N.P.; Anjos, M.A.S. Characteristics and Utilization Prospects of Red Ceramic Waste in Lightweight Aggregates: A Systematic Review. Ceramica 2022, 68, 402–408. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, L.; Jin, H.; Xing, F. Sustainable Utilization of Concrete Slurry Waste in Eco-Friendly Artificial Lightweight Cold-Bonded Aggregates: An Alternative Pathway for Efficiently Sequestrating CO2. Constr. Build. Mater. 2024, 421, 135759. [Google Scholar] [CrossRef]
- Bekkeri, G.B.; Shetty, K.K.; Nayak, G. Synthesis of Artificial Aggregates and Their Impact on Performance of Concrete: A Review. J. Mater. Cycles Waste Manag. 2023, 25, 1988–2011. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, Q.; Leng, F.; Wang, J.; Li, T. Utilization of Basalt Saw Mud as a Spherical Porous Functional Aggregate for the Preparation of Ordinary Structure Concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2024, 39, 364–375. [Google Scholar] [CrossRef]
- Ayati, B.; Ferrándiz-Mas, V.; Newport, D.; Cheeseman, C. Use of Clay in the Manufacture of Lightweight Aggregate. Constr. Build. Mater. 2018, 162, 124–131. [Google Scholar] [CrossRef]
- Souza, M.M.; Anjos, M.A.S.; Sá, M.V.V.A. Using Scheelite Residue and Rice Husk Ash to Manufacture Lightweight Aggregates. Constr. Build. Mater. 2021, 270, 121845. [Google Scholar] [CrossRef]
- González-Corrochano, B.; Alonso-Azcárate, J.; Rodas, M.; Barrenechea, J.F.; Luque, F.J. Microstructure and Mineralogy of Lightweight Aggregates Manufactured from Mining and Industrial Wastes. Constr. Build. Mater. 2011, 25, 3591–3602. [Google Scholar] [CrossRef]
- Han, M.C.; Han, D.; Shin, J.K. Use of Bottom Ash and Stone Dust to Make Lightweight Aggregate. Constr. Build. Mater. 2015, 99, 192–199. [Google Scholar] [CrossRef]
- Tajra, F.; Elrahman, M.A.; Stephan, D. The Production and Properties of Cold-Bonded Aggregate and Its Applications in Concrete: A Review. Constr. Build. Mater. 2019, 225, 29–43. [Google Scholar] [CrossRef]
- Li, X.; He, C.; Lv, Y.; Jian, S.; Liu, G.; Jiang, W.; Jiang, D. Utilization of Municipal Sewage Sludge and Waste Glass Powder in Production of Lightweight Aggregates. Constr. Build. Mater. 2020, 256, 119413. [Google Scholar] [CrossRef]
- Islam, S.; Ara, G.; Akhtar, U.S.; Mostafa, M.G.; Haque, I.; Shuva, Z.M.; Samad, A. Development of Lightweight Structural Concrete with Artificial Aggregate Manufactured from Local Clay and Solid Waste Materials. Heliyon 2024, 10, e34887. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Hussain, F.; Amjad, H.; Khushnood, R.A. A Scientometric Review of the Synthesis and Application of Expanded Clay Aggregate in Cementitious Composites. Constr. Build. Mater. 2024, 437, 136654. [Google Scholar] [CrossRef]
- CINEXPAN. Expanded Clay. Technical Data Sheet Type 1506. Available online: https://www.cinexpan.com.br/Pdf/Ficha-Tecnica-Tipo-1506.Pdf (accessed on 15 July 2024).
- CINEXPAN. Expanded Clay. Technical Data Sheet Type 2215. Available online: https://www.cinexpan.com.br/Pdf/Ficha-Tecnica-Tipo-2215.Pdf (accessed on 15 July 2024).
- ARLITA. Arlita Leca Technical Guide. Available online: www.arlita.es/sites/arlita.es/files/pdf/Guia_tecnica_ARLITA_web.pdf (accessed on 17 July 2024).
- Lynn, C.J.; Dhir, R.K.; Ghataora, G.S.; West, R.P. Sewage Sludge Ash Characteristics and Potential for Use in Concrete. Constr. Build. Mater. 2015, 98, 767–779. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso-Azcárate, J.; Martínez-García, C. Sintering of Sepiolite-Rich by-Products for the Manufacture of Lightweight Aggregates: Technological Properties, Thermal Behavior and Mineralogical Changes. Mater. Constr. 2021, 71, e241. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso-Azcárate, J.; Rodríguez, L.; Acosta, A. Manufacturing of Lightweight Aggregates with Carbon Fiber and Mineral Wastes. Cem. Concr. Compos. 2017, 83, 335–348. [Google Scholar] [CrossRef]
- Vignesh, R.; Abdul-Rahim, A. New Insights into the Production of Sustainable Synthetic Aggregates and Their Microstructural Evaluation. Mater. Constr. 2023, 73, e324. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, X.; Zhang, H.; Zhang, Q.; Xu, Y. Preparation and Performance of Non-Sintered Lightweight Aggregates Derived from Textile Sludge and Coal Fly Ash. Environ. Eng. Res. 2024, 29, 230441. [Google Scholar] [CrossRef]
- NBR 7211-09; Aggregates for Concrete—Specification. Brazilian Association of Technical Standards (ABNT): Rio de Janeiro, Brazil, 2019.
- Lo, T.Y.; Cui, H.; Memon, S.A.; Noguchi, T. Manufacturing of Sintered Lightweight Aggregate Using High-Carbon Fly Ash and Its Effect on the Mechanical Properties and Microstructure of Concrete. J. Clean. Prod. 2016, 112, 753–762. [Google Scholar] [CrossRef]
- Wei, Y.L.; Cheng, S.H.; Ou, K.T.; Kuo, P.J.; Chung, T.H.; Xie, X.Q. Effect of Calcium Compounds on Lightweight Aggregates Prepared by Firing a Mixture of Coal Fly Ash and Waste Glass. Ceram. Int. 2017, 43, 15573–15579. [Google Scholar] [CrossRef]
- Wei, Y.L.; Cheng, S.H.; Chen, W.J.; Lu, Y.H.; Chen, K.; Wu, P.C. Influence of Various Sodium Salt Species on Formation Mechanism of Lightweight Aggregates Made from Coal Fly Ash-Based Material. Constr. Build. Mater. 2020, 239, 117890. [Google Scholar] [CrossRef]
- Kwek, S.Y.; Awang, H.; Cheah, C.B.; Mohamad, H. Development of Sintered Aggregate Derived from POFA and Silt for Lightweight Concrete. J. Build. Eng. 2022, 49, 104039. [Google Scholar] [CrossRef]
- Li, Q.; Wang, B.; Yang, L.; Liu, C. Preparation and Characteristics of Cold-Bonded Lightweight Aggregates by Recycling Mine Tailings and Industrial Waste Residues Based-Binder. J. Build. Eng. 2024, 95, 110190. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, W.; Zou, S.; Liu, H.; Zhao, W.; Chen, W. A Critical Review on Cold-Bonded Artificial Aggregate Developed from Solid Wastes: From Granulation Analysis to Performance Evaluation. J. Build. Eng. 2025, 99, 111588. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Ismailov, A.; Levanen, E.; Tanskanen, P.; Yliniemi, J.; Kilpimaa, K.; Illikainen, M. Upcycling Glass Wool and Spodumene Tailings in Building Ceramics from Kaolinitic and Illitic Clay. J. Build. Eng. 2024, 81, 108122. [Google Scholar] [CrossRef]
- Gunning, P.J.; Hills, C.D.; Carey, P.J. Production of Lightweight Aggregate from Industrial Waste and Carbon Dioxide. Waste Manag. 2009, 29, 2722–2728. [Google Scholar] [CrossRef]
- Kockal, N.U.; Ozturan, T. Characteristics of Lightweight Fly Ash Aggregates Produced with Different Binders and Heat Treatments. Cem. Concr. Compos. 2011, 33, 61–67. [Google Scholar] [CrossRef]
- Gunarti, A.S.S.; Zaika, Y.; Munawir, A.; Suryo, E.A. Wet-Dry Cycle of Expansive Soil Stabilized with Fly Ash and Waste Foundry Sand on Bearing Capacity and Swelling Potential. IOP Conf. Ser. Earth Environ. Sci. 2023, 1263, 012048. [Google Scholar] [CrossRef]
- Dondi, M.; Cappelletti, P.; D’Amore, M.; de Gennaro, R.; Graziano, S.F.; Langella, A.; Raimondo, M.; Zanelli, C. Lightweight Aggregates from Waste Materials: Reappraisal of Expansion Behavior and Prediction Schemes for Bloating. Constr. Build. Mater. 2016, 127, 394–409. [Google Scholar] [CrossRef]
- Capela, M.N.; Tobaldi, D.M.; Seabra, M.P.; Tarelho, L.A.C.; Labrincha, J.A. Characterization of Ashes Produced from Different Biomass Fuels Used in Combustion Systems in a Pulp and Paper Industry towards Its Recycling. Biomass Bioenergy 2022, 166, 106598. [Google Scholar] [CrossRef]
- Nosov, D.; Trník, A. Thermodilatometric Study of High-Temperature Reactions in Illitic Clay and CaCO3 Mixture in Anorthite Stoichiometry. AIP Conf. Proc. 2023, 2801, 030024. [Google Scholar]
- Vasić, M.V.; Radovanović, L.; Pezo, L.; Radojević, Z. Raw Kaolinitic–Illitic Clays as High-Mechanical-Performance Hydraulically Pressed Refractories. J. Therm. Anal. Calorim. 2023, 148, 1783–1803. [Google Scholar] [CrossRef]
- Choe, Y.; An, J.; Won, J. Sedimentation Kinetics of Kaolinitic and Illitic Clay: Impact of Cation Valence, Ionic Concentration, and Water Content. Appl. Clay Sci. 2024, 253, 107351. [Google Scholar] [CrossRef]
- Mohammed, M.S.; ElKady, H.; Abdel-Gawwad, H.A. Utilization of Construction and Demolition Waste and Synthetic Aggregates. J. Build. Eng. 2021, 43, 103207. [Google Scholar] [CrossRef]
- Phong, H.V.N.; Trung, V.T.; Minh, T.D.; My, N.V.; Lo, V.T. Effects of Lightweight Particle Content on the Mechanical Strength of Cylindrical Aggregates. J. Sci. Technol. Civ. Eng. (STCE)—HUCE 2022, 16, 117–127. [Google Scholar] [CrossRef]
- Sousa, J.T.F.D.; Anjos, M.A.S.D.; da Silva Neto, J.A.; Farias, E.C.D.; Branco, F.G.; Maia Pederneiras, C. Self-Compacting Concrete with Artificial Lightweight Aggregates from Sugarcane Ash and Calcined Scheelite Mining Waste. Appl. Sci. 2025, 15, 452. [Google Scholar] [CrossRef]
- Mendonça de Souza, M.; Barbosa, N.P.; dos Anjos, M.A.S.; Aguiar, J.G.C.; da Silva Neto, J.A.; Pederneiras, C.M. Recycling Red Ceramic Waste as a Raw Material for Lightweight Aggregates. Appl. Sci. 2025, 15, 5729. [Google Scholar] [CrossRef]
Tests | Objective | |
---|---|---|
Materials (KC, CHT, EFA) | Particle size distribution | Grain size distribution |
X-ray fluorescence (XRF) | Chemical composition (oxides) | |
Loss on ignition (LOI) | Mass loss from volatiles | |
X-ray diffraction (XRD) | Crystalline phase identification (mineralogy) | |
Thermogravimetry analysis (TGA) | Thermal stability and decomposition | |
Scanning electron microscope (SEM) | Surface morphology and particle structure | |
LWAs | Bloating index | Expansion capacity during sintering |
Mass loss | Material loss during firing | |
Density | Bulk density of aggregates | |
Water absorption | Porosity | |
Unit mass | Loose bulk density | |
Crush resistance | Mechanical strength under load | |
Modulus of deformation | Elastic behavior under stress | |
Visual analyses | Macroscopic features (shape, cracks, color) | |
Scanning electron microscope (SEM) | Surface morphology and particle structure | |
X-ray diffraction (XRD) | Crystalline phase identification (mineralogy) | |
Classification | Industrial applications (standards) |
Taguchi Method—Matrix L32 (21 × 46) | |||||||
---|---|---|---|---|---|---|---|
№ | Aggregate Size (mm) | Residue Content (%) | Pre-Heating (°C) | Pre-Heating Time (min) | Sintering (°C) | Sintering Time (min) | Water Content (%) |
1 | 6.25 | 20 | 750 | 10 | 1075 | 10 | 32 |
2 | 6.25 | 20 | 800 | 15 | 1110 | 15 | 33 |
3 | 6.25 | 20 | 850 | 20 | 1145 | 20 | 34 |
4 | 6.25 | 20 | 900 | 25 | 1180 | 25 | 35 |
5 | 6.25 | 40 | 750 | 10 | 1110 | 15 | 34 |
6 | 6.25 | 40 | 800 | 15 | 1075 | 10 | 35 |
7 | 6.25 | 40 | 850 | 20 | 1180 | 25 | 32 |
8 | 6.25 | 40 | 900 | 25 | 1145 | 20 | 33 |
9 | 6.25 | 60 | 750 | 15 | 1145 | 25 | 32 |
10 | 6.25 | 60 | 800 | 10 | 1180 | 20 | 33 |
11 | 6.25 | 60 | 850 | 25 | 1075 | 15 | 34 |
12 | 6.25 | 60 | 900 | 20 | 1110 | 10 | 35 |
13 | 6.25 | 80 | 750 | 15 | 1180 | 20 | 34 |
14 | 6.25 | 80 | 800 | 10 | 1145 | 25 | 35 |
15 | 6.25 | 80 | 850 | 25 | 1110 | 10 | 32 |
16 | 6.25 | 80 | 900 | 20 | 1075 | 15 | 33 |
17 | 12.5 | 20 | 750 | 25 | 1075 | 25 | 33 |
18 | 12.5 | 20 | 800 | 20 | 1110 | 20 | 32 |
19 | 12.5 | 20 | 850 | 15 | 1145 | 15 | 35 |
20 | 12.5 | 20 | 900 | 10 | 1180 | 10 | 34 |
21 | 12.5 | 40 | 750 | 25 | 1110 | 20 | 35 |
22 | 12.5 | 40 | 800 | 20 | 1145 | 25 | 34 |
23 | 12.5 | 40 | 850 | 15 | 1180 | 10 | 33 |
24 | 12.5 | 40 | 900 | 10 | 1145 | 15 | 32 |
25 | 12.5 | 60 | 750 | 20 | 1145 | 10 | 33 |
26 | 12.5 | 60 | 800 | 25 | 1180 | 15 | 32 |
27 | 12.5 | 60 | 850 | 10 | 1075 | 20 | 35 |
28 | 12.5 | 60 | 900 | 15 | 1110 | 25 | 34 |
29 | 12.5 | 80 | 750 | 20 | 1180 | 15 | 35 |
30 | 12.5 | 80 | 800 | 25 | 1145 | 10 | 34 |
31 | 12.5 | 80 | 850 | 10 | 1110 | 25 | 33 |
32 | 12.5 | 80 | 900 | 15 | 1075 | 20 | 32 |
Mixture | Industrial Applications | |||||
---|---|---|---|---|---|---|
Does It Meet the Criteria? | (∆) High-Strength Concrete | (□) Structural Lightweight Concrete | (◊) Non-Structural Lightweight Concrete, Lightweight Mortars | (○) Geotechnical Applications | (●) Gardening and Landscaping, Thermal and Acoustic Insulation | |
1 | Yes | ∆ | □ | ◊ | ○ | ● |
2 | Yes | ∆ | □ | ◊ | ○ | ● |
3 | Yes | ∆ | □ | ◊ | ✗ | ✗ |
4 | Yes | ∆ | □ | ◊ | ✗ | ✗ |
5 | Yes | ✗ | ✗ | ◊ | ○ | ● |
6 | Yes | ✗ | ✗ | ◊ | ○ | ● |
7 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
8 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
9 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
10 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
11 | Yes | ✗ | ✗ | ◊ | ○ | ● |
12 | Yes | ✗ | ✗ | ◊ | ○ | ● |
13 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
14 | Yes | ∆ | □ | ◊ | ✗ | ✗ |
15 | Yes | ✗ | ✗ | ◊ | ○ | ● |
16 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
17 | Yes | ∆ | □ | ◊ | ○ | ● |
18 | Yes | ∆ | □ | ◊ | ✗ | ✗ |
19 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
20 | Yes | ∆ | □ | ◊ | ✗ | ✗ |
21 | Yes | ✗ | ✗ | ◊ | ○ | ● |
22 | Yes | ✗ | ✗ | ◊ | ○ | ● |
23 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
24 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
25 | Yes | ∆ | □ | ◊ | ○ | ● |
26 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
27 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
28 | Yes | ✗ | ✗ | ◊ | ○ | ● |
29 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
30 | Yes | ✗ | □ | ◊ | ○ | ● |
31 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
32 | No | ✗ | ✗ | ✗ | ✗ | ✗ |
Experimental Control Factor | GL | SQ Seq | Contribution | SQ (Adj.) | QM (Adj.) | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Aggregate size (mm) | 1 | 0.0000 | 0.00% | 0.00000 | 0.00000 | 0.00 | 0.995 |
Residue content (%) | 3 | 2.3939 | 15.42% | 2.39388 | 0.79796 | 8.95 | 0.002 |
Pre-sintering (°C) | 3 | 1.2265 | 7.90% | 1.22653 | 0.40884 | 4.58 | 0.023 |
Pre-sintering time (min) | 3 | 0.3898 | 2.51% | 0.38981 | 0.12994 | 1.46 | 0.276 |
Sintering (°C) | 3 | 9.9211 | 63.92% | 9.92108 | 3.30703 | 37.08 | 0.000 |
Sintering time (min) | 3 | 0.2691 | 1.73% | 0.26913 | 0.08971 | 1.01 | 0.424 |
Water content (%) | 3 | 0.2503 | 1.61% | 0.25031 | 0.08344 | 0.94 | 0.454 |
Error | 12 | 1.0704 | 6.90% | 1.07036 | 0.08920 | - | - |
Total | 31 | 15.5211 | 100.00% | - | - | - | - |
Experimental Control Factor | GL | SQ Seq | Contribution | SQ (Adj.) | QM (Adj.) | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Aggregate size (mm) | 1 | 1.17 | 0.02% | 1.17 | 1.17 | 0.05 | 0.835 |
Residue content (%) | 3 | 614.71 | 10.71% | 614.71 | 204.90 | 7.94 | 0.004 |
Pre-sintering (°C) | 3 | 148.91 | 2.60% | 148.91 | 49.64 | 1.92 | 0.180 |
Pre-sintering time (min) | 3 | 18.80 | 0.33% | 18.80 | 6.27 | 0.24 | 0.865 |
Sintering (°C) | 3 | 4521.61 | 78.80% | 4521.61 | 1507.20 | 58.39 | 0.000 |
Sintering time (min) | 3 | 55.67 | 0.97% | 55.67 | 18.56 | 0.72 | 0.560 |
Water content (%) | 3 | 67.47 | 1.18% | 67.47 | 22.49 | 0.87 | 0.483 |
Error | 12 | 309.75 | 5.40% | 309.75 | 25.81 | - | - |
Total | 31 | 5738.09 | 100.00% | - | - | - | - |
Experimental Control Factor | GL | SQ Seq | Contribution | SQ (Adj.) | QM (Adj.) | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Aggregate size (mm) | 1 | 421.08 | 16.63% | 421.08 | 421.08 | 13.61 | 0.003 |
Residue content (%) | 3 | 444.20 | 17.54% | 444.20 | 148.07 | 4.78 | 0.020 |
Pre-sintering (°C) | 3 | 116.23 | 4.59% | 116.23 | 38.74 | 1.25 | 0.335 |
Pre-sintering time (min) | 3 | 81.98 | 3.24% | 81.98 | 27.33 | 0.88 | 0.477 |
Sintering (°C) | 3 | 956.33 | 37.76% | 956.33 | 318.78 | 10.30 | 0.001 |
Sintering time (min) | 3 | 105.47 | 4.16% | 105.47 | 35.16 | 1.14 | 0.374 |
Water content (%) | 3 | 35.77 | 1.41% | 35.77 | 11.92 | 0.39 | 0.766 |
Error | 12 | 371.38 | 14.66% | 371.38 | 30.95 | - | - |
Total | 31 | 2532.43 | 100.00% | - | - | - | - |
Application | Property | Mixture | Predictive Value | Observed Value | Error |
---|---|---|---|---|---|
Structural Lightweight Concrete | Specific Mass (g/cm3) | A1B1C1D1E1F1G1 | 1.92 g/cm3 | 1.81 g/cm3 | −0.11 g/cm3 |
Water Absorption (%) | 19.85% | 18.67% | −1.18% | ||
Strength (MPa) | 9.25 MPa | 10.61 MPa | 1.36 MPa | ||
Thermal and acoustic insulation | Specific Mass (g/cm3) | A1B2C1D1E1F2G3 | 1.37 g/cm3 | 1.45 g/cm3 | 0.08 g/cm3 |
Water Absorption (%) | 25.94% | 28.72% | 2.78% | ||
Strength (MPa) | 5.30 MPa | 7.25 MPa | 1.95 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Neto, J.A.; dos Anjos, M.A.S.; Dutra, R.P.S.; Mendonça de Souza, M.; Pederneiras, C.M. Optimization via Taguchi of Artificial Lightweight Aggregates Obtained from Kaolinite Clay and Ceramic Waste: Development and Industrial Applications. Buildings 2025, 15, 2003. https://doi.org/10.3390/buildings15122003
da Silva Neto JA, dos Anjos MAS, Dutra RPS, Mendonça de Souza M, Pederneiras CM. Optimization via Taguchi of Artificial Lightweight Aggregates Obtained from Kaolinite Clay and Ceramic Waste: Development and Industrial Applications. Buildings. 2025; 15(12):2003. https://doi.org/10.3390/buildings15122003
Chicago/Turabian Styleda Silva Neto, José Anselmo, Marcos Alyssandro Soares dos Anjos, Ricardo Peixoto Suassuna Dutra, Maelson Mendonça de Souza, and Cinthia Maia Pederneiras. 2025. "Optimization via Taguchi of Artificial Lightweight Aggregates Obtained from Kaolinite Clay and Ceramic Waste: Development and Industrial Applications" Buildings 15, no. 12: 2003. https://doi.org/10.3390/buildings15122003
APA Styleda Silva Neto, J. A., dos Anjos, M. A. S., Dutra, R. P. S., Mendonça de Souza, M., & Pederneiras, C. M. (2025). Optimization via Taguchi of Artificial Lightweight Aggregates Obtained from Kaolinite Clay and Ceramic Waste: Development and Industrial Applications. Buildings, 15(12), 2003. https://doi.org/10.3390/buildings15122003