Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness
Abstract
1. Introduction
2. Experimental Program
2.1. Specimen Description
2.2. Materials
2.3. Fabrication of Specimens
2.4. Test Setup and Loading Protocol
3. Experimental Results and Discussion
3.1. Cracking Pattern and Failure Mechanism
3.2. Hysteresis Behavior
3.3. Stiffness Degradation
3.4. Energy Dissipation
4. Numerical Studies
4.1. Analytical Models
4.2. Numerical Validation
4.3. Parametric Study of Jacket Thickness
5. Discussion
6. Conclusions
- Improved Damage Control: The 30-mm UHPC jacket effectively delayed crack initiation and controlled damage propagation, shifting failure mode from brittle shear in the RC specimen to ductile flexural behavior in the retrofitted column.
- Enhanced Seismic Performance: Compared to the unretrofitted RC specimen, the U30 column demonstrated a 24.6% increase in peak lateral load capacity and a 139.5% increase in energy dissipation at 3% drift, validating the seismic efficiency of UHPC jacketing.
- Numerical Model Validation: A fiber-based OpenSees model accurately replicated the experimental behavior, supporting the adopted constitutive models for concrete, UHPC, and steel under cyclic loading.
- Thickness Optimization Insight: Parametric simulations of 15 mm, 30 mm, and 45 mm jackets revealed that the 30-mm thickness optimally balances lateral strength, ductility, and energy dissipation. Thinner jackets failed to provide sufficient confinement, while thicker ones induced premature brittle failure due to strain incompatibility.
- Design Recommendation: Based on both experimental validation and simulation results, a 30-mm UHPC jacket is recommended as a cost-effective and constructible solution for seismic retrofitting of RC bridge columns in plastic hinge regions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
t | the thickness of the UHPC jacket |
h | the height of the UHPC jacket |
ρl | the longitudinal reinforcement ratio |
ρs | the volumetric tie ratio |
D | the diameter of the reinforcing bar |
fy | the yield stress in tension of the reinforcing bar |
fu | the ultimate stress in tension of the reinforcing bar |
Δy | the yield displacement |
P | the load |
Pi | the peak loads corresponding to the displacement |
Py | the yield load |
Pmax | the peak load |
Δ | the displacement |
Δi | the displacement corresponding to the peak loads |
Δmax | the displacement corresponding to Pmax |
lsr | the slenderness ratio in the buckling module of the reinforcing steel material model |
β | the amplification factor in the buckling module of the reinforcing steel material model |
r | the reduction factor in the buckling module of the reinforcing steel material model |
γ | the buckling constant in the buckling module of the reinforcing steel material model |
Cf | the Coffin–Manson constant in the fatigue module of the reinforcing steel material model |
α | the Coffin–Manson constant in the fatigue module of the reinforcing steel material model |
Cd | the Coffin–Manson constant in the fatigue module of the reinforcing steel material model |
fc | the compressive strength in the concrete02 model |
εc | the strain corresponding to the compressive strength in the concrete02 model |
f’u | the residual compressive strength in the concrete02 model |
ε’u | the strain corresponding to the residual compressive strength in the concrete02 model |
λ | the ratio of unloading slope to initial slope in the concrete02 model |
ft | the tensile strength in the concrete02 model |
Ets | the tensile softening stiffness in the concrete02 model |
References
- Mander, J.B.; Cheng, C.-T. Seismic fragility of older reinforced concrete bridge columns. J. Struct. Eng. 2021, 147, 04020357. [Google Scholar] [CrossRef]
- Stefanidou, S.; Kappos, A. Optimum selection of retrofit measures for r/c bridges using fragility curves. In Proceedings of the 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece, 12–14 June 2013; pp. 894–911. [Google Scholar] [CrossRef][Green Version]
- Kawashima, K.; Takahashi, Y.; Ge, H. Reconnaissance report on damage of bridges during the 2018 Hokkaido Eastern Iburi earthquake. J. Jpn. Assoc. Earthq. Eng. 2019, 19, 4_1–4_12. [Google Scholar] [CrossRef]
- ElGawady, M.; Endeshaw, M.; McLean, D.; Sack, R. Seismic retrofit of RC columns using FRP composites: A state-of-the-art review. Eng. Struct. 2021, 233, 111893. [Google Scholar] [CrossRef]
- Graybeal, B. Ultra-High-Performance Concrete: A State-of-the-Art Report for the Bridge Community (FHWA-HRT-20-010); Federal Highway Administration: Washington, DC, USA, 2020.
- Abdal, S.; Mansour, W.; Agwa, I.; Nasr, M.; Abadel, A.; Özkılıç, Y.O.; Akeed, M.H. Application of Ultra-High-Performance concrete in bridge Engineering: Current status, limitations, challenges, and future Prospects. Buildings 2023, 13, 185. [Google Scholar] [CrossRef]
- Khodayari, A.; Rehmat, S.; Valikhani, A.; Azizinamini, A. Experimental Study of Reinforced Concrete T-Beam Retrofitted with Ultra-High-Performance Concrete under Cyclic and Ultimate Flexural Loading. Materials 2023, 16, 7595. [Google Scholar] [CrossRef]
- Sadeghian, A.; Shaghaghi, T.M.; Mohammadi, Y.; Taghipoor, H. Performance Assessment of Hybrid Fibre-Reinforced Concrete (FRC) under Low-Speed Impact: Experimental Analysis and Optimized Mixture. Shock. Vib. 2023, 2023, 7110987. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Yoon, Y.-S. Structural performance of UHPC: A comprehensive review. Constr. Build. Mater. 2021, 306, 124887. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Static and dynamic properties of UHPC. Constr. Build. Mater. 2022, 327, 126949. [Google Scholar] [CrossRef]
- Schmidt, W.; Krelaus, S.; Teichmann, T. Material characteristics of UHPC under dynamic loading. Cem. Concr. Compos. 2021, 115, 103822. [Google Scholar] [CrossRef]
- Ousalem, H.; Akguzel, U.; Taucer, F. Comparative performance of UHPC and ECC in seismic retrofitting applications. Bull. Earthq. Eng. 2023, 21, 897–920. [Google Scholar] [CrossRef]
- Su, J.; Li, J.; Chu, S.; Wu, D.; Ma, J.; Li, Z. Assessment of seismic performance for ultra-high performance concrete (UHPC) retrofitted RC bridge piers with height-varying corrosion: A lifetime perspective. Eng. Struct. 2025, 339, 120693. [Google Scholar] [CrossRef]
- Shehab, H.; Eisa, A.; Wahba, A.M.; Sabol, P.; Katunský, D. Strengthening of Reinforced Concrete Columns Using Ultra-High Performance Fiber-Reinforced Concrete Jacket. Buildings 2023, 13, 2036. [Google Scholar] [CrossRef]
- Ro, K.M.; Kim, M.S.; Lee, Y.H. An Experimental Study on Torsional Behavior of Reinforced Concrete Columns Retrofitted with Hybrid Concrete Jackets. Materials 2023, 16, 1256. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Kuo, C.-W.; Hung, C.-C. Seismic Performance of Full-Scale UHPC-Jacket-Strengthened RC Columns under High Axial Loads. Eng. Struct. 2021, 243, 112657. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, C.-H.; Choi, E.-S. Parametric study on UHPC jacket thickness for column retrofitting. Constr. Build. Mater. 2023, 367, 130287. [Google Scholar] [CrossRef]
- Yuan, F.; Xiang, Y. Thickness effects of UHPC jackets on column seismic performance. Eng. Struct. 2023, 276, 115354. [Google Scholar] [CrossRef]
- Zeng, J.; Su, T.; Chen, J.; Hu, X.; Ng, C.; Zheng, Y.; Quach, W.; Zhuge, Y. Novel prefabricated FRP bar reinforced UHPC shells for column strengthening: Development and axial compression tests. J. Build. Eng. 2024, 94, 109935. [Google Scholar] [CrossRef]
- Priestley, M.J.N.; Seible, F.; Calvi, G.M. Seismic Design and Retrofit of Bridges; John Wiley & Sons, Inc.: New York, NY, USA, 2018. [Google Scholar]
- Tazarv, M.; Moustafa, M.A. UHPC for repair and retrofit of bridge columns: Experimental validation. J. Bridg. Eng. 2023, 28, 04022134. [Google Scholar] [CrossRef]
- Hung, C.-C.; Hu, F.-Y.; Yen, C.-I. Seismic repair of damaged RC columns using ultra-high performance fiber-reinforced concrete. Eng. Struct. 2023, 274, 115172. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M. Composition of reactive powder concretes. Cem. Concr. Res. 2023, 165, 107068. [Google Scholar] [CrossRef]
- Wille, K.; Kim, D.J.; Naaman, A.E. Strain-hardening UHPC with PE fibers. Cem. Concr. Compos. 2022, 126, 104327. [Google Scholar] [CrossRef]
- Akguzel, U.; Pampanin, S. Assessment of interfacial bond in concrete retrofits. J. Compos. Constr. 2022, 26, 04022012. [Google Scholar] [CrossRef]
- Belarbi, A.; Bae, S.-W. Durability aspects of UHPC-concrete interfaces. Constr. Build. Mater. 2023, 334, 127483. [Google Scholar] [CrossRef]
- Hoshikuma, J.; Kawashima, K.; Nagaya, K. Seismic performance of bridge columns with partial UHPC jackets. Earthq. Eng. Struct. Dyn. 2022, 51, 1021–1040. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, X.; Guo, A.; Li, C.; Dong, Z.; Wu, X. Cyclic performance of RC bridge piers retrofitted with UHPC jackets: Experimental investigation. Eng. Struct. 2022, 259, 114139. [Google Scholar] [CrossRef]
- Motaref, S.; Lepage, A. Finite element modeling of UHPC retrofitted bridge piers. Engineering Structures. Eng. Struct. 2022, 252, 113672. [Google Scholar] [CrossRef]
- JTG 004-89; Specification of Earthquake Resistant Design for Highway Engineering. Ministry of Transportation of People’s Republic of China: Beijing, China, 1989.
- JTG T B02-01-2008; Guidelines for Seismic Design of Highway Bridges. Ministry of Transport of People’s Republic of China: Beijing, China, 2008.
- T/CBMF 37-2018; Fundamental Characteristics and Test Methods of Ultra-High Performance Concrete. China Building Material federation: Beijing, China, 2018.
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical Stress-Strain Model for Confined Concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Li, X.; Chen, K.; Hu, P.; He, W.; Xiao, L.; Zhang, R. Effect of ECC jackets for enhancing the lateral cyclic behavior of RC bridge columns. Eng. Struct. 2020, 219, 110714. [Google Scholar] [CrossRef]
- Kawashima, K.; MacRae, G.A.; Hoshikuma, J.-I.; Nagaya, K. Residual Displacement Response Spectrum. J. Struct. Eng. 1998, 124, 523–530. [Google Scholar] [CrossRef]
- Gomes, A.; Appleton, J. Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling. Eng. Struct. 1997, 19, 822–826. [Google Scholar] [CrossRef]
- Kunnath, S.K.; Heo, Y.; Mohle, J.F. Nonlinear Uniaxial Material Model for Reinforcing Steel Bars. J. Struct. Eng. 2009, 135, 335–343. [Google Scholar] [CrossRef]
- Alamoodi, M.A.; Zahid, M.; Abu Bakar, B.; Tayeh, B.A.; Zeyad, A.M. Behavior of Damaged Reinforced Concrete Columns Retrofitted with Ultra-High Performance Fiber Reinforced Concrete Jackets under Uniaxial Loading. J. Build. Eng. 2025, 108, 112837. [Google Scholar] [CrossRef]
- Zhang, R.; Gu, X.; Liu, Z.; Chen, K.; Zhao, R. Cyclic behavior of existing RC bridge piers strengthened by exterior ECC and BFRP/ECC composite jacketing at pier base. Structures 2024, 62, 106326. [Google Scholar] [CrossRef]
Specimen | UHPC Jacket | Column Section (mm) | ρl (%) | ρs (%) | |
---|---|---|---|---|---|
t (mm) | h (mm) | ||||
RC | – | – | 300 × 300 | 1.51 | 1.02 |
U30 | 30 | 400 |
Length (mm) | Diameter (mm) | Tensile Strength (MPa) | Shape | Surface |
---|---|---|---|---|
13 | 0.2 | 1560 | Straight | Smooth |
W/B 1 | Water | Cement | Fly Ash | Silica Fume | Quartz Sand | Steel Fiber | HPWR 2 |
---|---|---|---|---|---|---|---|
0.17 | 170 | 730 | 110 | 160 | 1032 | 156 | 30 |
W/B 1 | Water | Cement | Fly Ash | Silica Fume | Sand | Gravel | HPWR 2 |
---|---|---|---|---|---|---|---|
0.34 | 139 | 310 | 80 | 20 | 789 | 1089 | 4.1 |
Material | First Cracking Strength | Ultimate Tensile Strength | Compressive Strength | |||
---|---|---|---|---|---|---|
Mean 1 (MPa) | C.V 2 (%) | Mean (MPa) | C.V. (%) | Mean (MPa) | C.V. (%) | |
UHPC | 5.26 | 1.2 | 7.81 | 7.4 | 127.9 | 4.0 |
D (mm) | fy | fu (MPa) | ||
---|---|---|---|---|
Mean 1 (MPa) | C.V 2 (%) | Mean (MPa) | C.V. (%) | |
12 | 530.3 | 0.2 | 636.1 | 0.0 |
6 | 513.4 | 0.5 | 629.8 | 0.5 |
Specimen | Δy (mm) | Py (kN) | Δmax (mm) | Pmax (kN) |
---|---|---|---|---|
RC | 7.30 | 100.40 | 17.99 | 118.12 |
U30 | 7.45 | 125.09 | 20.99 | 147.16 |
Specimen | Buckling Module | Fatigue Module | |||||
---|---|---|---|---|---|---|---|
lsr | β | r | γ | Cf | α | Cd | |
RC | 6.66 | 1 | 0.5 | 0.8 | 0.26 | 0.500 | 0.389 |
Retrofitted columns | 6.66 | 1 | 0.5 | 0.8 | 0.26 | 0.425 | 0.400 |
fc (MPa) | εc | f’u (MPa) | ε′u | λ | ft (MPa) | Ets (MPa) | |
---|---|---|---|---|---|---|---|
Unconfined concrete | 57 | 0.00238 | 11.40 | 0.00547 | 0.1 | 0 | 0 |
Confined concrete | 62.7 | 0.00358 | 12.55 | 0.10740 |
t (mm) | fc (MPa) | εc | f’u (MPa) | ε′u | λ | ft (MPa) | Ets (MPa) | |
---|---|---|---|---|---|---|---|---|
UHPC confined concrete | 15 | 59.29 | 0.0029 | 11.85 | 0.086 | 0.1 | 0 | 0 |
30 | 60.43 | 0.0031 | 12.09 | 0.093 | ||||
45 | 61.58 | 0.0033 | 12.32 | 0.100 | ||||
UHPC and tie-confined concrete | 15 | 65.02 | 0.0040 | 13.00 | 0.120 | |||
30 | 66.17 | 0.0043 | 13.23 | 0.129 | ||||
45 | 67.32 | 0.0045 | 13.46 | 0.135 |
fc (MPa) | εc | f’u | ε′u (MPa) | λ | ft (MPa) | Ets (MPa) | |
---|---|---|---|---|---|---|---|
UHPC | 127.9 | 0.0035 | 25.58 | 0.105 | 0.1 | 7.81 | 2057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.; Zhang, R. Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness. Buildings 2025, 15, 2609. https://doi.org/10.3390/buildings15152609
Gu S, Zhang R. Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness. Buildings. 2025; 15(15):2609. https://doi.org/10.3390/buildings15152609
Chicago/Turabian StyleGu, Songtao, and Rui Zhang. 2025. "Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness" Buildings 15, no. 15: 2609. https://doi.org/10.3390/buildings15152609
APA StyleGu, S., & Zhang, R. (2025). Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness. Buildings, 15(15), 2609. https://doi.org/10.3390/buildings15152609