Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete
Abstract
1. Introduction
2. Chemical–Mechanical Coupling Model
2.1. Anisotropic Damage Mechanical Model
2.2. Calcium-Leaching Model
2.3. Determination of Model Parameters
3. Numerical Simulation Results and Discussion
3.1. Numerical Simulation of Calcium Ion Diffusion
3.2. Uniaxial Compression After Leaching
3.3. Fully Coupled Numerical Simulation
4. Conclusions
- The model demonstrates precise predictive capability for both calcium-leaching penetration depths and concrete’s mechanical response. The incorporation of plastic strain enables the model to replicate concrete’s load–unload behavior. Since the model does not consider the unilateral effect, it cannot simulate the hysteresis curve of the stress–strain curve.
- Unlike conventional concrete creep dominated by cement paste rheology, leached concrete’s creep primarily results from chemical degradation-induced mechanical deterioration. The stress-chemical coupled damage model can better reflect the chemical creep mechanism of leached concrete. Therefore, this model can accurately obtain the creep characteristics of leached concrete.
- The framework successfully captures directional dependencies in concrete’s chemo–mechanical coupling behavior. The anisotropic crack network simultaneously governs mechanical property variation and preferential ion migration routes. Consequently, structural design must account for both anisotropic behavior and chemo–mechanical interactions.
- Numerical results demonstrate that under chemo–mechanical coupling, chemical degradation dominates over stress-induced microcracking in reducing concrete’s stiffness and strength. Therefore, measures to prevent calcium ion dissolution, such as reducing the permeability of concrete and reducing the porosity of concrete, are crucial to the durability of the structure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, Y.; Ye, F.; Tian, C.; Zhang, J.; Jiang, Y.; Han, X.; Li, Y. Optimizing the development and field application of calcium stabilizing agents for preventing calcium leaching in tunnels. J. Clean. Prod. 2024, 449, 141757. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; Jin, W.; Xia, J. Experiment and simulation on the coupled effects of calcium leaching and chloride transport in concrete under hydraulic pressure. Cem. Concr. Compos. 2025, 155, 105834. [Google Scholar] [CrossRef]
- Huang, D.; Wang, X.; Tian, J.; Liu, Y. Effect of leaching on mechanical properties and durability of concrete: A review. J. Build. Eng. 2025, 100, 111682. [Google Scholar] [CrossRef]
- Faucon, P.; Le Bescop, P.; Adenot, F.; Bonville, P.; Jacquinot, J.; Pineau, F.; Felix, B. Leaching of cement: Study of the surface layer. Cem. Concr. Res. 1996, 26, 1707–1715. [Google Scholar] [CrossRef]
- Adenot, F.; Buil, M. Modelling of the corrosion of the cement paste by deionized water. Cem. Concr. Res. 1992, 22, 489–496. [Google Scholar] [CrossRef]
- Berner, U. Modelling the incongruent dissolution of hydrated cement minerals. Radiochim. Acta 1988, 44, 387–394. [Google Scholar] [CrossRef]
- Berner, U. Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Manag. 1992, 12, 201–219. [Google Scholar] [CrossRef]
- Gerard, B.; Pijaudiier-Cabot, G.; Laborderie, C. Coupled diffusion-damage modelling and the implications on failure due to strain localisation. Int. J. Solids Struct. 1998, 35, 4107–4120. [Google Scholar] [CrossRef]
- Gérard, B.; Le Bellego, C.; Bernard, O. Simplified modelling of calcium leaching of concrete in various environments. Mater. Struct. 2002, 35, 632–640. [Google Scholar] [CrossRef]
- Bellégo, C.; Gérard, B.; Pijaudier-Cabot, G. Chemo-Mechanical Effects in Mortar Beams Subjected to Water Hydrolysis. J. Eng. Mech. 2000, 126, 266–272. [Google Scholar] [CrossRef]
- Zhou, L.; Ma, C.; Zhang, Z.; Sun, S.; Liu, X.; Liao, J. Electrochemical Accelerating Leaching Behavior of Plastic Concrete for Cut-Off Walls. Buildings 2023, 13, 937. [Google Scholar] [CrossRef]
- Babaahmadi, A.; Tang, L.; Abbas, Z.; Zack, T.; Mårtensson, P. Development of an electro-chemical accelerated ageing method for leaching of calcium from cementitious materials. Mater. Struct. 2016, 49, 705–718. [Google Scholar] [CrossRef]
- Carde, C.; Francois, R. Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cem. Concr. Res. 1997, 27, 539–550. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Nedjar, B.; Torrenti, J.M. Chemo-mechanical coupling behaviour of leached concrete. Nucl. Eng. Des. 2007, 237, 2083–2089. [Google Scholar] [CrossRef]
- An, S.; Jiang, C.; Li, S.; Shi, C. Experimental study on the effect of ion transmission mode on the calcium leaching rate of cementitious materials. Case Stud. Constr. Mater. 2025, 22, 04215. [Google Scholar] [CrossRef]
- Jiang, C.; An, S.; Li, S.; Chen, Y.; Liu, J. Comparative Study on the Calcium Leaching Resistance of Low-Heat Cement, Moderate-Heat Cement, and Ordinary Portland Cement Pastes. Materials 2025, 18, 212. [Google Scholar] [CrossRef]
- Kargari, A.; Akhaveissy, A.; Pietruszczak, S. An experimental assessment of fracture parameters and microstructure of concrete exposed to calcium leaching. Constr. Build. Mater. 2024, 451, 138856. [Google Scholar] [CrossRef]
- Torrenti, J.; Nguyen, V.; Colina, H.; Le Maou, F.; Benboudjema, F.; Deleruyelle, F. Coupling between leaching and creep of concrete. Cem. Concr. Res. 2008, 38, 816–821. [Google Scholar] [CrossRef]
- Schneider, U.; Chen, S. Deterioration of high-performance concrete subjected to attack by the combination of ammonium nitrate solution and flexure stress. Cem. Concr. Res. 2005, 35, 1705–1713. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, S.Y.; Kim, I.S.; Yang, E.I. Experimental study on structural behaviour of calcium leaching damaged concrete members. Mag. Concr. Res. 2019, 70, 1102–1117. [Google Scholar] [CrossRef]
- Bellégo, C.; Pijaudier-Cabot, G.; Gérard, B.; Dubé, J.; Molez, L. Coupled mechanical and chemical damage in calcium leached cementitious structures. J. Eng. Mech. 2003, 129, 333–341. [Google Scholar] [CrossRef]
- Kuhl, D.; Bangert, F.; Meschke, G. Coupled chemo-mechanical deterioration of cementitious materials: Part I—Modeling. Int. J. Solids Struct. 2004, 41, 15–40. [Google Scholar] [CrossRef]
- Jia, Y.; Bian, H.; Xie, S.; Burlion, N.; Shao, J.F. A numerical study of mechanical behavior of a cement paste under mechanical loading and chemical leaching. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 1848–1869. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, B.; Zhao, J. An improved model for discrete element method simulation of spatial gradient distributions of freeze-thaw-induced damage to sandstone. Comput. Geotech. 2024, 171, 106412. [Google Scholar] [CrossRef]
- Yu, S.; Ren, X.; Zhang, J. Modeling the rock frost cracking processes using an improved ice—Stress-Damage coupling method. Theor. Appl. Fract. Mech. 2024, 131, 104421. [Google Scholar] [CrossRef]
- Shao, J.; Rudnicki, J. A microcrack-based continuous damage model for brittle geomaterials. Mech. Mater. 2000, 32, 607–619. [Google Scholar] [CrossRef]
- Costin, L. Damage mechanics in the post-failure regime. Mech. Mater. 1985, 4, 149–160. [Google Scholar] [CrossRef]
- Costin, L. A microcrack model for the deformation and failure of brittle rock. J. Geophys. Res. Solid Earth 1983, 88, 9485–9492. [Google Scholar] [CrossRef]
- Nilenius, F.; Larsson, F.; Lundgren, K.; Runesson, K. Mesoscale modelling of crack-induced diffusivity in concrete. Comput. Mech. 2015, 55, 359–370. [Google Scholar] [CrossRef]
- Lubarda, V.; Krajcinovic, D. Damage tensors and the crack density distribution. Int. J. Solids Struct. 1993, 30, 2859–2877. [Google Scholar] [CrossRef]
- Kemeny, J.; Cook, N. Micromechanics of deformation in rocks. In Toughening Mechanisms in Quasi-Brittle Materials; Springer: Dordrecht, The Netherlands, 1991; pp. 155–188. [Google Scholar]
- Yu, J.; Zhang, Q.; Jia, C. Experimental and DEM simulations of the mechanical properties of rock under freeze–thaw cycles. Cold Reg. Sci. Technol. 2023, 211, 103866. [Google Scholar] [CrossRef]
- Zhao, C.; Lei, M.; Jia, C. Mechanical Characteristics of Red Sandstone Subjected to Freeze–Thaw Cycles and Increasing Amplitude Cyclic Load. Rock Mech. Rock Eng. 2024, 57, 3237–3256. [Google Scholar] [CrossRef]
- Zheng, Y.; Jia, C.; Lei, M. Investigation of the Constitutive Damage Model of Rock Under the Coupled Effect of Freeze–Thaw Cycles and Loading. Rock Mech. Rock Eng. 2024, 57, 1861–1879. [Google Scholar] [CrossRef]
- Hayakawa, K.; Murakami, S. Thermodynamical Modeling of Elastic-Plastic Damage and Experimental Validation of Damage Potential. Int. J. Damage Mech. 1997, 6, 333–363. [Google Scholar] [CrossRef]
- Krajcinovic, D. Mechanics of solids with a progressively deteriorating structure. In Application of Fracture Mechanics to Cementitious Composites; Springer: Dordrecht, The Netherlands, 1984; pp. 453–479. [Google Scholar]
- Yazsani, S.; Schreyer, H. An anisotropic damage model with dilatation for concrete. Mech. Mater. 1988, 7, 231–244. [Google Scholar] [CrossRef]
- Adenot, F. Durabilité du Béton: Caractérisation et Modélisation des Processus Physiques et Chimiques de Dégradation du Ciment. Ph.D. Thesis, University of Orléans, Orléans, France, 1992. (In French). [Google Scholar]
- Tognazzi, C. Couplage Fissuration-Dégradation Chimique dans les Matériaux Cimentaires: Caractérisation et Modélisation. Ph.D. Thesis, INSA Toulouse, Toulouse, France, 1998. [Google Scholar]
- Camps, GEtude des Interactions Chemo-Mécaniques pour la Simulation du Cycle de vie d’un Élément de Stockage en Béton. Ph.D. Thesis, Paul Sabatier University, Toulouse, France, 2008. (In French).
- Sellier, A. Modélisation Numérique pour la Durabilité des Ouvrages de Génie Civil; Mémoire d’Habilitation à Diriger des Recherches; Université Paul Sabatier: Toulouse, France, 2006; 156p. (In French) [Google Scholar]
- De Larrard, T.; Benboudjema, F.; Colliat, J.-B.; Torrenti, J.M.; Deleruyelle, F. Concrete calcium leaching at variable temperature: Experimental data and numerical model inverse identification. Comput. Mater. Sci. 2010, 49, 35–45. [Google Scholar] [CrossRef]
Sand/ (kg/m3) | Coarse Aggregate/ (kg/m3) | Cement/ (kg/m3) | Water/ (kg/m3) |
---|---|---|---|
858 | 945 | 400 | 178 |
0.19 | 35 | 125 |
16.25 | 9.62 | ||
25.87 | |||
23.87 | |||
0.25 | |||
89.38 | 0.14 | ||
45 | 2.5 | ||
0.202 | 18.15 | ||
9.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; He, W.; Tu, L.; Hou, H. Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete. Buildings 2025, 15, 2725. https://doi.org/10.3390/buildings15152725
Guo F, He W, Tu L, Hou H. Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete. Buildings. 2025; 15(15):2725. https://doi.org/10.3390/buildings15152725
Chicago/Turabian StyleGuo, Feng, Weijie He, Longlong Tu, and Huiming Hou. 2025. "Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete" Buildings 15, no. 15: 2725. https://doi.org/10.3390/buildings15152725
APA StyleGuo, F., He, W., Tu, L., & Hou, H. (2025). Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete. Buildings, 15(15), 2725. https://doi.org/10.3390/buildings15152725