Coaxial Pipes Used as Ground Buried Heat Exchangers—A Review of Research in Recent Years
Abstract
:1. Introduction
2. Coaxial Pipe Used as BHE
3. Parametric Studies of CPGE Heat Transfer Performance
3.1. Impact of CPGE Configurations
3.1.1. Thermal Conductivity of Inner Pipe
3.1.2. Thermal Conductivity of Outer Pipe
3.1.3. Diameter Ratio of Inner Pipe to Outer Pipe
3.1.4. Shape of CPGE Pipe
3.1.5. Shape of Borehole
3.2. Impact of Circulating Fluid Conditions
3.2.1. Types of Circulating Fluid
3.2.2. Flow Rates of Circulating Fluid
3.2.3. Temperature of Inlet Circulating Fluid
3.3. Impact of Surface and Subsurface Properties
3.3.1. Ground Surface Properties
3.3.2. Grout
3.3.3. Soil
3.3.4. Ground Temperature Gradient
3.3.5. Underground Water
3.4. Impact of Flow and Operational Characteristics
3.4.1. Flow Patterns
3.4.2. Operational Modes
4. CPGE Thermal Performance Tests
4.1. TRTs
4.2. DTRTs
4.3. TPTs
5. Applications of CPGEs
5.1. CPGEs Used for Heating or Heat Pump Systems
5.2. CPGEs Used in Heat Storage Systems
5.3. CPGEs Used in Electricity Generation
6. Conclusions
- High inner pipe thermal resistances and low outer pipe thermal resistance values are preferable. Heat transfer efficiency and flow resistance levels were investigated.
- CPGEs of varied geometries were researched.
- Organic aqueous solutions, such as glycol water solution, diathermic oil, and solutions with added nanoparticles, such as CuO and Al2O3 nanoparticles, were used as circulating fluids by researchers.
- CPGE heat removal and release performance under Mode A and Mode B (as shown in Figure 3) were compared. Mode A is commonly selected for heat removal, and Mode B is used for heat release.
- Various operational modes, i.e., continuous heat removal, intermittent heat removal, and alternative heat removal with heat injection, were reviewed.
- Applications of CPGEs in indoor heating and electricity power generation sectors were studied.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Variable | Subscript | |||
c | specific heat capacity, kJ/(kg·K) | i | inner suface | |
Dh | the hydraulic diameter of the cross-section of the annular space | in | inlet | |
o | outer surface | |||
e | eccentricity, % | out | outlet | |
Eh | heat storage efficiency, % | s | heat storage | |
h | specific enthalpy, kJ/kg or convective heat transfer, W/(m2·K) | w | water | |
1 | inner pipe | |||
2 | outer pipe | |||
H | length of the CPGE or depth of the borehole, m | Abbreviation BHE | borehole heat exchangers | |
k | thermal conductivity, W/(m·K) | CCA | concrete core activation | |
Ld | center distance of the inner and outer pipe, (m) | COP | coefficient of performance | |
CPGE | coaxial pipe geothermal exchanger | |||
m | mass flow rate, kg/s | |||
r | radius, m | DTRT | distributed thermal response test | |
R | thermal resistance, (m·k)/W | |||
Rb | three-dimensional borehole resistance, (m·k)/W | HP | heating panel | |
ORC | organic Rankine cycle | |||
Re | Renold Number | TPT | thermal exchange performance test | |
Q | heat, W | |||
ΔT | temperature difference, K or °C | TRT | hermal response test |
References
- Zhang, X.; Lu, Z.; He, M.; Wang, J. What can Beijing learn from the world megacities on energy and environmental issues? Energy Rep. 2022, 8, 414–424. [Google Scholar] [CrossRef]
- Achkari, O.; El Fadar, A. Latest developments on TES and CSP technologies—Energy and environmental issues, applications and research trends. Appl. Therm. Eng. 2020, 167, 114806. [Google Scholar] [CrossRef]
- Amir Raza, M.; Karim, A.; Aman, M.M.; Ahmad Al-Khasawneh, M.; Faheem, M. Global progress towards the Coal: Tracking coal reserves, coal prices, electricity from coal, carbon emissions and coal phase-out. Gondwana Res. 2025, 139, 43–72. [Google Scholar] [CrossRef]
- Hürpekli, M.; Necati Özsezen, A. Determination of combustion and emission characteristics of liquid Fischer-Tropsch diesel fuel synthesized from coal in a diesel engine. Energy Conv. Manag. 2023, 292, 117351. [Google Scholar] [CrossRef]
- Paraschiv, S.; Paraschiv, L.S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 2020, 6, 237–242. [Google Scholar] [CrossRef]
- Avor, E.P.; Supap, T.; Narku-Tetteh, J.; Muchan, P.; Natewong, P.; Appiah, F.A.; Idem, R. Achieving net-zero CO2 emissions from indirect co-combustion of biomass and natural gas with carbon capture using a novel amine blend. Int. J. Green. Gas Con. 2023, 130, 104005. [Google Scholar] [CrossRef]
- Manzini, J.; Hoshika, Y.; Sicard, P.; Anav, A.; De Marco, A.; Sorrentino, B.; Trentanovi, G.; Moura, B.B.; Ferrini, F.; Azzini, L.; et al. Life Cycle Analysis and species-specific net CO2 assimilation model to assess when a new urban forest becomes a carbon sink in a Mediterranean city. Sci. Total Environ. 2025, 959, 178267. [Google Scholar] [CrossRef]
- Zhen, Y.; Zheng, H.; Xiao, Q.; Zhang, C.; Wang, C. Estimation method for karst carbon sinks on the basis of a concentration prediction model. J. Environ. Manag. 2025, 373, 123845. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, Y.; Zhang, J.; Li, Y.; Guo, X.; Li, X. Carbon-oriented energy system planning using forest carbon sink. Energy 2024, 309, 133010. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Ma, R.; Huang, F.; Li, J.; Ye, S.; Guo, Y. Comparative analysis of forest soil carbon sink and source based on bibliometrics: Development, hotspots, and trends. J. Clean. Prod. 2024, 480, 144106. [Google Scholar] [CrossRef]
- Zayani, I.; Ammari, M.; Ben Allal, L.; Bouhafa, K. Agroforestry olive orchards for soil organic carbon storage: Case of Saiss, Morocco. Heliyon 2023, 9, e22910. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Kang, J.-N.; Dai, M.; Li, X.; Ji, Y.-Z.; Liu, L.-C.; Wei, Y.-M. Unleashing tomorrow’s potential: A comprehensive exploration of risks in carbon capture and storage. Renew. Sustain. Energy Rev 2025, 210, 115174. [Google Scholar] [CrossRef]
- Rong, N.; Wang, S.; Chu, C.; Guo, Z.; Liu, K.; Han, L.; Ge, L.; Shi, X.; Wang, G.; Wang, Y. Deactivated Ca-based sorbent derived from calcium looping CO2 capture as a partial substitute for cement to obtain low-carbon cementitious building materials. Constr. Build. Mater. 2024, 454, 139175. [Google Scholar] [CrossRef]
- Rong, N.; Wang, J.; Han, L.; Wu, Y.; Mu, Z.; Wan, X.; Wang, G. Effect of steam addition during calcination on CO2 capture performance and strength of bio-templated Ca-based pellets. J. CO2 Util. 2022, 63, 102127. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Dang, C.; Wang, Q.; Dong, L.; Liu, X. Energy and environment analysis of R1234yf/R245fa cascade air source heat pump system with double ejectors. Energy Conv. Manag. 2025, 325, 119404. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, B. Development and field demonstration of residential air source integrated heat pump using a three-stage compressor. Energy Build. 2025, 328, 115202. [Google Scholar] [CrossRef]
- Hielscher, S.; Wittmayer, J.M.; Progscha, S.; Wientjes, A.; Sharp, H. Speeding-up wind energy developments: Exploring notions of acceleration and justice in regions within Germany and the Netherlands. Energy Res. Soc. Sci. 2025, 119, 103909. [Google Scholar] [CrossRef]
- Brouwer, B.; van Bergem, R.; Renes, S.; Kamp, L.M.; Hoppe, T. Does local ownership matter? A comparative analysis of fourteen wind energy projects in the Netherlands. Energy Res. Soc. Sci. 2025, 120, 103891. [Google Scholar] [CrossRef]
- Muwanga, R.; Namugenyi, I.; Wabukala, B.M.; Tibesigwa, W.; Katutsi, P.V. Examining social-cultural norms affecting the adoption of solar energy technologies at the household level. Clean. Energy Syst. 2024, 9, 100164. [Google Scholar] [CrossRef]
- Khademi, M.M.; Koohshoori, M.S.; Kasaeian, A. Development of a Renewable Energy System Utilizing Solar Dish Collector, Multi Effect Desalination and Supercritical CO2 Brayton Cycle to Produce Fresh Water and Electricity. Energy 2024, 314, 134285. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Sharif, A.; Ao, T.; Koca, K. Nuclear energy consumption, energy access and energy poverty: Policy implications for the COP27 and environmental sustainability. Technol. Soc. 2023, 75, 102385. [Google Scholar] [CrossRef]
- Vurim, A.; Mukhamedova, N.; Baklanova, Y.; Syssaletin, A.; Akayev, A. Information and analytical system as a promising database used to justify the safety of nuclear energy. Nucl. Eng. Des. 2023, 415, 112704. [Google Scholar] [CrossRef]
- Xu, T.; Haas, K.A.; Gunawan, B. Estimating annual energy production from short tidal current records. Renew. Energy 2023, 207, 105–115. [Google Scholar] [CrossRef]
- Xu, S.; Yu, F.; Zhang, X.; Wei, D.; Diao, Y.; Li, G.; Huang, H. Investigation of temporal and spatial distribution of tidal energy in Liuheng waterway via coastal acoustic tomography. Renew. Energy 2025, 240, 122180. [Google Scholar] [CrossRef]
- Anya, B.; Mohammadpourfard, M.; Akkurt, G.G.; Mohammadi-Ivatloo, B. Exploring geothermal energy based systems: Review from basics to smart systems. Renew. Sustain. Energy Rev. 2025, 210, 115185. [Google Scholar] [CrossRef]
- Shahsavar, A.; Goodarzi, A.; Mohammed, H.I.; Shirneshan, A.; Talebizadehsardari, P. Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system. Energy 2020, 193, 116800. [Google Scholar] [CrossRef]
- Templeton, J.D.; Ghoreishi-Madiseh, S.A.; Hassani, F.; Al-Khawaja, M.J. Abandoned petroleum wells as sustainable sources of geothermal energy. Energy 2014, 70, 366–373. [Google Scholar] [CrossRef]
- Kerme, E.D.; Fung, A.S. Heat transfer simulation, analysis and performance study of single U-tube borehole heat exchanger. Renew. Energy 2020, 145, 1430–1448. [Google Scholar] [CrossRef]
- Faizal, M.; Bouazza, A.; Singh, R.M. Heat transfer enhancement of geothermal energy piles. Renew. Sustain. Energy Rev. 2016, 57, 16–33. [Google Scholar] [CrossRef]
- Beier, R.A.; Acuña, J.; Mogensen, P.; Palm, B. Transient heat transfer in a coaxial borehole heat exchanger. Geothermics 2014, 51, 470–482. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Liu, J.; Ma, Z.; Han, E.; Song, M. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system. Energy Convers. Manag. 2017, 153, 603–615. [Google Scholar] [CrossRef]
- Ikeda, S.; Choi, W.; Ooka, R. Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature. Appl. Energy 2017, 193, 466–478. [Google Scholar] [CrossRef]
- Chen, X.; Rahaman, M.A.; Murshed, M.; Mahmood, H.; Hossain, M.A. Causality analysis of the impacts of petroleum use, economic growth, and technological innovation on carbon emissions in Bangladesh. Energy 2023, 267, 126565. [Google Scholar] [CrossRef]
- Radioti, G.; Cerfontaine, B.; Charlier, R.; Nguyen, F. Experimental and numerical investigation of a long-duration Thermal Response Test: Borehole Heat Exchanger behaviour and thermal plume in the heterogeneous rock mass. Geothermics 2018, 71, 245–258. [Google Scholar] [CrossRef]
- Alexander, K.; Phillip, S.; Dirk, M. Development of a Long-Term Operational Optimization Model for a Building Energy System Supplied by a Geothermal Field. J. Therm. Sci. 2022, 31, 1293–1301. [Google Scholar]
- Anand, J.; Liu, X.; Anees, F.; Li, Y.; Eckman, B.; Malhotra, M. Assessing the impacts of air-sealing on the sizing, operation, and economic feasibility of ground-source heat pumps for electrifying single-family houses in the US. J. Build. Eng. 2024, 98, 111149. [Google Scholar] [CrossRef]
- Abdel-Salam, M.R.H.; Zaidi, A.; Cable, M. Field study of heating performance of three ground-source heat pumps in Canadian single-family houses. Energ. Build. 2021, 247, 110959. [Google Scholar] [CrossRef]
- Kumar, S.; Murugesan, K. Experimental investigation of thermal performance of ground source heat pump system for summer and monsoon seasons of Himalayan region of India: A case study. Renew. Energy 2024, 237, 121842. [Google Scholar] [CrossRef]
- Weeratunge, H.; Aditya, G.R.; Dunstall, S.; de Hoog, J.; Narsilio, G.; Halgamuge, S. Feasibility and performance analysis of hybrid ground source heat pump systems in fourteen cities. Energy 2021, 234, 121254. [Google Scholar] [CrossRef]
- Benti, N.E.; Woldegiyorgis, T.A.; Geffe, C.A.; Gurmesa, G.S.; Chaka, M.D.; Mekonnen, Y.S. Overview of geothermal resources utilization in Ethiopia: Potentials, opportunities, and challenges. Sci. Afr. 2023, 19, e01562. [Google Scholar] [CrossRef]
- Venomhata, H.D.V.; Oketch, P.O.; Gathitu, B.B.; Chisale, P. Working fluid selection for the geothermal-solar hybrid cycle at Olkaria II power plant in Kenya. Heliyon 2023, 9, e12762. [Google Scholar] [CrossRef] [PubMed]
- Agemar, T.; Weber, J.; Schulz, R. Deep Geothermal Energy Production in Germany. Energies 2014, 7, 4397–4416. [Google Scholar] [CrossRef]
- Cai, W.; Wang, F.; Liu, J.; Wang, Z.; Ma, Z. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems. Appl. Therm. Eng. 2019, 149, 975–986. [Google Scholar] [CrossRef]
- Li, C.; Guan, Y.; Yang, R.; Lu, X.; Xiong, W.; Long, A. Effect of inner pipe type on the heat transfer performance of deep-buried coaxial double-pipe heat exchangers. Renew. Energy 2020, 145, 1049–1060. [Google Scholar] [CrossRef]
- Deng, J.; Wei, Q.; Liang, M.; He, S.; Zhang, H. Field test on energy performance of medium-depth geothermal heat pump systems (MD-GHPs). Energy Build. 2019, 184, 289–299. [Google Scholar] [CrossRef]
- Brettschneider, A.L.; Perković, L. Theoretical analysis of using multiple borehole heat exchangers for production of heating and cooling energy in shallow geothermal reservoirs with underground water flow. Appl. Therm. Eng. 2024, 254, 123914. [Google Scholar] [CrossRef]
- Hassan Al-Kbodi, B.; Rajeh, T.; Li, Y.; Zhao, J.; Zhao, T.; Zayed, M.E. Heat extraction analyses and energy consumption characteristics of novel designs of geothermal borehole heat exchangers with elliptic and oval double U-tube structures. Appl. Therm. Eng. 2023, 235, 121418. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Bai, Z.; Dong, J. Assessment of the effect of heat storage on the production of clean geothermal energy using the medium and deep U-type borehole heat exchanger system. J. Clean. Prod. 2024, 447, 141471. [Google Scholar] [CrossRef]
- Biglarian, H.; Abbaspour, M.; Saidi, M.H. Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system. Energy 2018, 147, 81–93. [Google Scholar] [CrossRef]
- Song, X.; Shi, Y.; Li, G.; Yang, R.; Xu, Z.; Zheng, R.; Wang, G.; Lyu, Z. Heat extraction performance simulation for various configurations of a downhole heat exchanger geothermal system. Energy 2017, 141, 1489–1503. [Google Scholar] [CrossRef]
- Al-Khoury, R.; Focaccia, S. A spectral model for transient heat flow in a double U-tube geothermal heat pump system. Renew. Energy 2016, 85, 195–205. [Google Scholar] [CrossRef]
- Pärisch, P.; Mercker, O.; Oberdorfer, P.; Bertram, E.; Tepe, R.; Rockendorf, G. Short-term experiments with borehole heat exchangers and model validation in TRNSYS. Renew. Energy 2015, 74, 471–477. [Google Scholar] [CrossRef]
- Shah, S.K.; Aye, L.; Rismanchi, B. Validations of a double U-tube borehole model and a seasonal solar thermal energy storage system model. Renew. Energy 2022, 201, 462–485. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, Q.; Song, X.; Xu, F.; Song, G. Study on thermal performances of a horizontal ground heat exchanger geothermal system with different configurations and arrangements. Renew. Energy 2022, 193, 448–463. [Google Scholar] [CrossRef]
- Hasan, N.; Ali, M.H.; Pratik, N.A.; Lubaba, N.; Miyara, A. Improving the thermal performance of vertical ground heat exchanger by modifying spiral tube geometry: A numerical study. Heliyon 2024, 10, e35718. [Google Scholar] [CrossRef]
- Agbossou, A.; Souyri, B.; Stutz, B. Modelling of helical coil heat exchangers for heat pump applications: Analysis of operating modes and distance between heat exchangers. Appl. Therm. Eng. 2018, 129, 1068–1078. [Google Scholar] [CrossRef]
- Choi, H.K.; Yoo, G.J.; Pak, J.H.; Lee, C.H. Numerical study on heat transfer characteristics in branch tube type ground heat exchanger. Renew. Energy 2018, 115, 585–599. [Google Scholar] [CrossRef]
- Wang, G.; Song, X.; Shi, Y.; Zheng, R.; Li, J.; Li, Z. Production performance of a novel open loop geothermal system in a horizontal well. Energy Convers. Manag. 2020, 206, 112478. [Google Scholar] [CrossRef]
- Jia, G.; Wang, J.; Ma, C.; Tao, Z.; Zhang, Z.; Ma, Z.; Jin, L. Influence of eccentricity on the thermal performance of pipe-in-pipe heat exchanger utilized for geothermal heating, an experimental study. Appl. Therm. Eng. 2024, 252, 123723. [Google Scholar] [CrossRef]
- Jalaluddin; Miyara, A. Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode. Appl. Therm. Eng. 2012, 33–34, 167–174. [Google Scholar] [CrossRef]
- Fu, Q.; Ding, J.; Lao, J.; Xie, W.; Wang, W.; Lu, J. Numerical Simulation of Heat Transfer Performance between Molten Salt and Supercritical CO2 in Double-pipe Heat Exchanger. In Proceedings of the 10th International Conference on Applied Energy, Hong Kong, China, 22–25 August 2018; pp. 5741–5746. [Google Scholar]
- Gordon, D.; Bolisetti, T.; Ting, D.S.K.; Reitsma, S. Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger. Renew. Energy 2018, 115, 946–953. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Twaha, S.; Riffat, S. A comprehensive review on 2D and 3D models of vertical ground heat exchangers. Renew. Sustain. Energy Rev. 2018, 94, 84–114. [Google Scholar] [CrossRef]
- Bu, X.; Ran, Y.; Zhang, D. Experimental and simulation studies of geothermal single well for building heating. Renew. Energy 2019, 143, 1902–1909. [Google Scholar] [CrossRef]
- Gordon, D.; Bolisetti, T.; Ting, D.S.K.; Reitsma, S. Short-term fluid temperature variations in either a coaxial or U-tube borehole heat exchanger. Geothermics 2017, 67, 29–39. [Google Scholar] [CrossRef]
- Brown, C.S.; Kolo, I.; Banks, D.; Falcone, G. Comparison of the thermal and hydraulic performance of single U-tube, double U-tube and coaxial medium-to-deep borehole heat exchangers. Geothermics 2024, 117, 102888. [Google Scholar] [CrossRef]
- Bär, K.; Rühaak, W.; Welsch, B.; Schulte, D.; Homuth, S.; Sass, I. Seasonal High Temperature Heat Storage with Medium Deep Borehole Heat Exchangers. Energy Procedia 2015, 76, 351–360. [Google Scholar] [CrossRef]
- Fang, L.; Diao, N.; Shao, Z.; Wang, Z.; Fang, Z. Study on Thermal Resistance of Coaxial Tube Boreholes in Ground-Coupled Heat Pump Systems. Procedia. Eng. 2017, 205, 3735–3742. [Google Scholar] [CrossRef]
- Beier, R.A.; Acuña, J.; Mogensen, P.; Palm, B. Borehole resistance and vertical temperature profiles in coaxial borehole heat exchangers. Appl. Energy 2013, 102, 665–675. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals and Applications, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Jingjing, W.; Juntao, D.; Jianguo, Z.; Yongtang, Y.; Jianmin, Z.; Xin, H. A segmented analytical solution heat transfer model of U-tube ground heat exchanger based on finite solid cylindrical heat source method. Geothermics 2025, 125, 103170. [Google Scholar] [CrossRef]
- Luo, Y.; Yan, T.; Yu, J. Integrated analytical modeling of transient heat transfer inside and outside U-tube ground heat exchanger: A new angle from composite-medium method. Int. commun. Heat. Mass. Transf. 2020, 162, 120373. [Google Scholar] [CrossRef]
- Soltani, M.; Farzanehkhameneh, P.; Moradi Kashkooli, F.; Al-Haq, A.; Nathwani, J. Optimization and energy assessment of geothermal heat exchangers for different circulating fluids. Energy Conv. Manag. 2021, 228, 113733. [Google Scholar] [CrossRef]
- Kerme, E.D.; Fung, A.S. Comprehensive simulation based thermal performance comparison between single and double U-tube borehole heat exchanger and sensitivity analysis. Energ. Build. 2021, 241, 110876. [Google Scholar] [CrossRef]
- Salilih, E.M.; Abu-Hamdeh, N.H.; Oztop, H.F. Analysis of double U-tube ground heat exchanger for renewable energy applications with two-region simulation model by combining analytical and numerical techniques. Int. Commun. Heat Mass. 2021, 123, 105144. [Google Scholar] [CrossRef]
- Raymond, J.; Mercier, S.; Nguyen, L. Designing coaxial ground heat exchangers with a thermally enhanced outer pipe. Geotherm. Energy 2015, 3, 7. [Google Scholar] [CrossRef]
- Nian, Y.-L.; Cheng, W.-L. Analytical g-function for vertical geothermal boreholes with effect of borehole heat capacity. Appl. Therm. Eng. 2018, 140, 733–744. [Google Scholar] [CrossRef]
- Ma, Z.D.; Zhang, Y.P.; Saw, L.H.; Cui, X.; Jia, G.S.; Jin, L.W. Investigation on local geothermal energy attenuation after long-term operation of ground heat exchanger with considering aquifer effect. Geothermics 2023, 107, 102608. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Kang, M.; Oh, K.; Choi, H. Effect of tube-in-tube configuration on thermal performance of coaxial-type ground heat exchanger. Renew. Energy 2022, 197, 518–527. [Google Scholar] [CrossRef]
- Dong, S.; Yu, Y.; Li, B.; Ni, L. Field test and geologic-thermal-economic analysis of medium-depth borehole heat exchanger. J. Clean. Prod. 2024, 447, 141381. [Google Scholar] [CrossRef]
- Oh, K.; Lee, S.; Park, S.; Han, S.-I.; Choi, H. Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions. Renew. Energy 2019, 144, 84–96. [Google Scholar] [CrossRef]
- Śliwa, T.; Kruszewski, M.; Zare, A.; Assadi, M.; Sapińska-Śliwa, A. Potential application of vacuum insulated tubing for deep borehole heat exchangers. Geothermics 2018, 75, 58–67. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Yang, F.; Tan, H.; Wang, B. Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers. Renew. Energy 2023, 205, 1125–1136. [Google Scholar] [CrossRef]
- Sapinska-Sliwa, A.; Rosen, M.A.; Gonet, A.; Sliwa, T. Deep Borehole Heat Exchangers—A Conceptual and Comparative Review. Int. J. Air-Cond. 2016, 24, 1630001. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, H.; Meggers, F.; Zhang, L. Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis. Energy 2019, 185, 1298–1313. [Google Scholar] [CrossRef]
- Song, X.; Wang, G.; Shi, Y.; Li, R.; Xu, Z.; Zheng, R.; Wang, Y.; Li, J. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system. Energy 2018, 164, 1298–1310. [Google Scholar] [CrossRef]
- Du, D.; Li, Y.; Wang, K.; Zhao, Y.; Hu, Z.; Zhang, W.; Wang, Q. Experimental and numerical simulation research on heat transfer performance of coaxial casing heat exchanger in 3500m-deep geothermal well in Weihe Basin. Geothermics 2023, 109, 102658. [Google Scholar] [CrossRef]
- Harris, B.E.; Lightstone, M.F.; Reitsma, S.; Cotton, J.S. Analysis of the transient performance of coaxial and u-tube borehole heat exchangers. Geothermics 2022, 101, 102319. [Google Scholar] [CrossRef]
- Wood, C.J.; Liu, H.B.; Riffat, S.B. Comparative performance of ‘U-tube’ and ‘coaxial’ loop designs for use with a ground source heat pump. Appl. Therm. Eng. 2012, 37, 190–195. [Google Scholar] [CrossRef]
- Acuña, J.; Palm, B. Distributed thermal response tests on pipe-in-pipe borehole heat exchangers. Appl. Energy 2013, 109, 312–320. [Google Scholar] [CrossRef]
- Iry, S.; Rafee, R. Transient numerical simulation of the coaxial borehole heat exchanger with the different diameters ratio. Geothermics 2019, 77, 158–165. [Google Scholar] [CrossRef]
- Pan, A.; Lu, L.; Cui, P.; Jia, L. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes. Int. commun. Heat. Mass. Transf. 2019, 141, 1056–1065. [Google Scholar] [CrossRef]
- Yekoladio, P.J.; Bello-Ochende, T.; Meyer, J.P. Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). Renew. Energy 2013, 55, 128–137. [Google Scholar] [CrossRef]
- Morchio, S.; Fossa, M. Thermal modeling of deep borehole heat exchangers for geothermal applications in densely populated urban areas. Therm. Sci. Eng. Prog. 2019, 13, 100363. [Google Scholar] [CrossRef]
- Mokhtari, H.; Hadiannasab, H.; Mostafavi, M.; Ahmadibeni, A.; Shahriari, B. Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger. Energy 2016, 102, 260–275. [Google Scholar] [CrossRef]
- Daneshipour, M.; Rafee, R. Nanofluids as the circuit fluids of the geothermal borehole heat exchangers. Int. Commun. Heat. Mass. Transf. 2017, 81, 34–41. [Google Scholar] [CrossRef]
- Zarrella, A.; Scarpa, M.; Carli, M.D. Short-time step performances of coaxial and double U-tube heat exchangers: Modeling and measurements. HVAC&R Res. 2011, 17, 959–976. [Google Scholar]
- Liu, Q.; Zhang, Y.; Zhang, X.; Luo, J.; Zheng, J.; Liu, Y.; Cheng, Y.; Lou, J. Numerical study on the heat transfer performance evaluation, flow characteristics, exergy efficiency, and entropy generation analysis of a novel coaxial geothermal heat exchanger. J. Build. Eng. 2024, 84, 108555. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Luo, J.; Zheng, J.; Cheng, Y. Numerical study on heat transfer and flow characteristics of coaxial geothermal heat exchangers with helical finned inner tubes. J. Build. Eng. 2023, 65, 105752. [Google Scholar] [CrossRef]
- Rajeh, T.; Al-Kbodi, B.H.; Li, Y.; Zhao, J.; Zhang, Y. Modeling and techno-economic comparison of two types of coaxial with double U-tube ground heat exchangers. Appl. Therm. Eng. 2023, 225, 120221. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Xu, W.; Zhu, Q.; Li, W.; Zhao, J.; Zhu, J. Multi-external-chamber coaxial borehole heat exchanger: Dynamic heat transfer and energy consumption analysis. Energy Convers. Manag. 2020, 207, 112519. [Google Scholar] [CrossRef]
- Huchtemann, K.; Müller, D. Combined simulation of a deep ground source heat exchanger and an office building. Build. Environ. 2014, 73, 97–105. [Google Scholar] [CrossRef]
- Mottaghy, D.; Dijkshoorn, L. Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code. Renew. Energy 2012, 45, 59–71. [Google Scholar] [CrossRef]
- Rajeh, T.; Hassan Al-Kbodi, B.; Li, Y.; Zhao, J.; Zayed, M.E.; Rehman, S. Comparative numerical modeling complemented with multi-objective optimization and dynamic life cycle assessment of coaxial ground heat exchangers with oval-shaped and typical circular-shaped configurations. Appl. Therm. Eng. 2024, 244, 122673. [Google Scholar] [CrossRef]
- Rajeh, T.; Al-Kbodi, B.H.; Zayed, M.E.; Li, Y.; Zhao, J.; Rehman, S. Local entropy generation optimization and thermodynamic irreversibility analysis of oval-shaped coaxial ground heat exchangers: A detailed numerical investigation. Int. Commun. Heat. Mass. Transf. 2024, 228, 125650. [Google Scholar] [CrossRef]
- Kurevija, T.; Strpić, K. Hydraulic and thermogeological design differences between two-loop vertical and inclined coaxial borehole heat exchangers. Renew. Energy 2018, 117, 314–323. [Google Scholar] [CrossRef]
- Dai, C.; Li, J.; Shi, Y.; Zeng, L.; Lei, H. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design. Appl. Energy 2019, 252, 113447. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Liu, J.; Nian, Y.-L.; Wang, C.-L. Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs. Energy 2016, 109, 537–545. [Google Scholar] [CrossRef]
- Yin, H.; Song, C.; Ma, L.; Gao, L.; Yang, X.; Li, W.; Zhao, J. Analysis of flow and thermal breakthrough in leaky downhole coaxial open loop geothermal system. Appl. Therm. Eng. 2021, 194, 117098. [Google Scholar] [CrossRef]
- Mohammadzadeh Bina, S.; Fujii, H.; Tsuya, S.; Kosukegawa, H.; Naganawa, S.; Harada, R. Evaluation of utilizing horizontal directional drilling technology for ground source heat pumps. Geothermics 2020, 85, 101769. [Google Scholar] [CrossRef]
- Akram, M.W.; Chen, Q.; Nortz, G.; Nortz, P. Experimental investigation and numerical modeling of an innovative horizontal coaxial ground heat exchanger (HCGHE) for geothermal heat pump applications. Appl. Therm. Eng. 2024, 257, 124492. [Google Scholar] [CrossRef]
- Alimonti, C.; Soldo, E. Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger. Renew. Energy 2016, 86, 292–301. [Google Scholar] [CrossRef]
- ASHRAE. 2017 Handbook—Fundamentals, SI ed.; ASHRAE: Atlanta, GA, USA, 2017. [Google Scholar]
- Olson, J.M. Nanofluids and a Method of Making Nano Fluids for Ground Source Heat Pumps and Other Applications. U.S. Patent 8,580,138, 12 November 2013. [Google Scholar]
- Liu, Q.; Tao, Y.; Shi, L.; Zhou, T.; Huang, Y.; Peng, Y.; Wang, Y.; Tu, J. Experimental investigation on the use of CuO/water nanofluid in horizontal spiral-coil ground heat exchanger. Int. J. Refrig. 2023, 149, 204–223. [Google Scholar] [CrossRef]
- Togun, H.; Abdulrazzaq, T.; Kazi, S.N.; Badarudin, A.; Kadhum, A.A.H.; Sadeghinezhad, E. A review of studies on forced, natural and mixed heat transfer to fluid and nanofluid flow in an annular passage. Renew. Sustain. Energy Rev. 2014, 39, 835–856. [Google Scholar] [CrossRef]
- Pisarevsky, M.I.; Struchalin, P.G.; Balakin, B.V.; Kutsenko, K.V.; Maslov, Y.A. Experimental study of nanofluid heat transfer for geothermal applications. Renew. Energy 2024, 221, 119631. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, L.; Liang, Z.; Liu, Q.; Jiang, F. Thermal response analysis of a medium-deep coaxial borehole heat exchanger by circulating CO2. Geothermics 2023, 112, 102746. [Google Scholar] [CrossRef]
- Xie, K.; Nian, Y.-L.; Cheng, W.-L. Analysis and optimization of underground thermal energy storage using depleted oil wells. Energy 2018, 163, 1006–1016. [Google Scholar] [CrossRef]
- Nian, Y.-L.; Cheng, W.-L.; Yang, X.-Y.; Xie, K. Simulation of a novel deep ground source heat pump system using abandoned oil wells with coaxial BHE. Int. commun. Heat. Mass. Transf. 2019, 137, 400–412. [Google Scholar] [CrossRef]
- Li, M.; Shi, Y.; Chen, H.; Liu, C.; Li, H. Study on the heat transfer performance of coaxial casing heat exchanger for medium and deep geothermal energy in cold regions. Renew. Energy 2024, 237, 121666. [Google Scholar] [CrossRef]
- Niu, Q.; Ma, K.; Wang, W.; Pan, J.; Wang, Q.; Du, Z.; Wang, Z.; Yuan, W.; Zheng, Y.; Shangguan, S.; et al. Multifactor analysis of heat extraction performance of coaxial heat exchanger applied to hot dry rock resources exploration: A case study in matouying uplift, Tangshan, China. Energy 2023, 282, 128277. [Google Scholar] [CrossRef]
- Saadi, M.S.; Gomri, R. Investigation of dynamic heat transfer process through coaxial heat exchangers in the ground. Int. J. Hydrogen. Energy 2017, 42, 18014–18027. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, J.; He, Z.; Liu, X.; Liu, H.; Shao, Z. A developed fatigue analysis approach for composite wind turbine blade adhesive joints using finite-element submodeling technique. Eng. Fail. Anal. 2024, 164, 108701. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, J.; He, Z.; Liu, X.; Liu, H.; Shao, Z. Finite element submodeling technique-based fatigue analysis and reliability modeling of wind turbine blade trailing edge. Compo. Struct. 2025, 352, 118699. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Zhu, S.-P.; Zhu, P.; Liu, W.; Correia, J.A.F.O.; De Jesus, A.M.P. Reliability assessment of measurement accuracy for FBG sensors used in structural tests of the wind turbine blades based on strain transfer laws. Eng. Fail. Anal. 2020, 112, 104506. [Google Scholar] [CrossRef]
- Sliwa, T.; Rosen, M.A. Efficiency analysis of borehole heat exchangers as grout varies via thermal response test simulations. Geothermics 2017, 69, 132–138. [Google Scholar] [CrossRef]
- Song, X.; Zheng, R.; Li, G.; Shi, Y.; Wang, G.; Li, J. Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir. Geothermics 2018, 76, 190–200. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Sensitivity Analysis on the Performance of a Ground Source Heat Pump Equipped with a Double U-pipe Borehole Heat Exchanger. Energy Procedia 2014, 59, 301–308. [Google Scholar] [CrossRef]
- Zarrella, A.; Emmi, G.; Graci, S.; Carli, M.D.; Cultrera, M.; Santa, G.D.; Galgaro, A.; Bertermann, D.; Müller, J.; Pockelé, L.; et al. Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods. Energies 2017, 10, 801. [Google Scholar] [CrossRef]
- Fang, L.; Diao, N.; Shao, Z.; Zhu, K.; Fang, Z. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers. Energ. Build. 2018, 167, 79–88. [Google Scholar] [CrossRef]
- Le Lous, M.; Larroque, F.; Dupuy, A.; Moignard, A. Thermal performance of a deep borehole heat exchanger: Insights from a synthetic coupled heat and flow model. Geothermics 2015, 57, 157–172. [Google Scholar] [CrossRef]
- Holmberg, H.; Acuña, J.; Næss, E.; Sønju, O.K. Thermal evaluation of coaxial deep borehole heat exchangers. Renew. Energy 2016, 97, 65–76. [Google Scholar] [CrossRef]
- Dai, C.; Shi, Y.; Zeng, L.; Li, J.; Lei, H. Heat Extraction Performance of a Deep Downhole Heat Exchanger. Energy Procedia 2019, 158, 5602–5607. [Google Scholar] [CrossRef]
- Caulk, R.A.; Tomac, I. Reuse of abandoned oil and gas wells for geothermal energy production. Renew. Energy 2017, 112, 388–397. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, J.; Li, Y.; McLennan, J.; Zhang, Y.; Jiang, H. Experimental and numerical investigation of the influence of groundwater flow on the borehole heat exchanger performance: A case study from Tangshan, China. Energ. Build. 2021, 248, 111199. [Google Scholar] [CrossRef]
- Choi, W.; Kikumoto, H.; Ooka, R. Critical comparison between thermal performance test (TPT) and thermal response test (TRT): Differences in heat transfer process and extractable information. Energy Conv. Manag. 2019, 199, 111967. [Google Scholar] [CrossRef]
- Choi, W.; Kikumoto, H.; Ooka, R. Two thermal performance test (TPT) datasets of a single U-tube borehole heat exchanger with inlet setpoint temperatures of 30 °C and 40 °C. Data Brief 2018, 20, 1769–1774. [Google Scholar] [CrossRef]
- Liu, Y.D.; Beier, R.A. Required duration for borehole test validated by field data. ASHRAE Trans. 2009, 115, 782–792. [Google Scholar]
- Li, C.; Jiang, C.; Guan, Y.; Chen, H.; Yang, R.; Wan, R.; Shen, L. Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances. Renew. Energy 2023, 210, 95–106. [Google Scholar] [CrossRef]
- Amer, R.; Xue, Z.; Hashimoto, T.; Nagata, T. Distributed fiber optic temperature and strain sensing in cementing and water injection: Insights to well integrity monitoring and multisensing optical fiber cable design. Gas Sci. Eng. 2024, 130, 205430. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xie, Y.; Zhang, Y.; Gao, X. Thermal performance analysis on the composition attributes of deep coaxial borehole heat exchanger for building heating. Energ. Build. 2020, 221, 110019. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xie, Y.; Zhang, Y.; Gao, X.; Ma, J. Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor. Energy 2020, 210, 118643. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xie, Y.; Zhang, Y.; Gao, X.; Ma, J. Long-term thermal performance analysis of deep coaxial borehole heat exchanger based on field test. J. Clean. Prod. 2021, 278, 123396. [Google Scholar] [CrossRef]
- Pokhrel, S.; Sasmito, A.P.; Sainoki, A.; Tosha, T.; Tanaka, T.; Nagai, C.; Ghoreishi-Madiseh, S.A. Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production. Renew. Energy 2022, 182, 521–535. [Google Scholar] [CrossRef]
- Bu, X.; Ma, W.; Li, H. Geothermal energy production utilizing abandoned oil and gas wells. Renew. Energy 2012, 41, 80–85. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Sun, Y.; Zhao, S. Heat extraction by deep coaxial borehole heat exchanger for clean space heating near Beijing, China: Field test, model comparison and operation pattern evaluation. Renew. Energy 2022, 199, 803–815. [Google Scholar] [CrossRef]
- Luo, F.; Ma, C.; Liu, J.; Yang, L.; Zhou, W. Effect of gas–liquid phase change of axial rotating heat pipe on fluid-thermal-solid behaviors of high-speed spindle. Appl. Therm. Eng. 2023, 232, 121117. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, C.; Yang, L.; Luo, F.; Liu, J. Regulation of thermo-fluid-solid coupling characteristics in high-speed spindle-bearing system for boring machine tool based on sintered-core heat pipes. Int. commun. Heat. Mass. Transf. 2024, 157, 107717. [Google Scholar] [CrossRef]
- Zeng, S.; Ma, C.; Liu, J.; Li, M.; Gui, H. Sequence-to-sequence based LSTM network modeling and its application in thermal error control framework. Appl. Soft Comput. 2023, 138, 110221. [Google Scholar] [CrossRef]
- Li, M.; Zeng, S.; Hu, J.; Ma, C. Free-mounted cooling plate multi-objective topology optimization method towards precision machine tool heat dissipation: An experimental and numerical study. Int. J. Heat Mass. Tran. 2023, 214, 124394. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, J.; Ma, C. Topology optimization in cooling moving heat sources for enhanced precision of machine tool feed drive systems. Int. J. Therm. Sci. 2024, 202, 109065. [Google Scholar] [CrossRef]
- Li, M.; Ma, C.; Liu, J. Topology optimization design of cooling water jacket structure for highspeed spindle-bearing system. J. Manuf. Proc. 2023, 102, 1–22. [Google Scholar] [CrossRef]
- Li, M.; Ma, C.; Liu, J.; Gui, H.; Zeng, S.; Luo, F. Thermal error prediction of precision boring machine tools based on extreme gradient boosting algorithm-improved sailed fish optimizer-bi-directional ordered neurons-long short-term memory neural network model and physical-edge-cloud system. Eng. Appl. Artif. Intell. 2024, 127, 107278. [Google Scholar] [CrossRef]
- Serageldin, A.A.; Sakata, Y.; Katsura, T.; Nagano, K. Performance enhancement of borehole ground source heat pump using single U-tube heat exchanger with a novel oval cross-section (SUO) and a novel spacer. Sustain. Energy Technol. Assess. 2020, 42, 100805. [Google Scholar] [CrossRef]
- Kimiaei, S.; Kazemi-Ranjbar, S.; Jalali, A.; Ahmadi, P. A novel three-dimensional numerical model to simulate heat transfer inside a double U-tube borehole with two independent circuits. Int. J. Heat Mass. Tran. 2022, 184, 122243. [Google Scholar] [CrossRef]
- Tarrad, A.H. An Analytical Model for the Thermal Assessment of a Vertical Double U-Tube Ground-Coupled Heat Pump System in Steady-State Conditions. Fluid Dyn. Mater. Proc. 2022, 18, 1111–1127. [Google Scholar] [CrossRef]
- Quirosa, G.; Torres, M.; Becerra, J.A.; Jiménez-Espadafor, F.J.; Chacartegui, R. Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers. Energy 2023, 278, 127885. [Google Scholar] [CrossRef]
- Zhou, W.; Li, R.; Chen, Y.; Zhu, S. Numerical Simulation of Mid-Deep Buried Casing Heat Exchanger and its Heating System Application. J. Therm. Sci. 2023, 32, 1445–1454. [Google Scholar] [CrossRef]
- Cetin, A.; Kadioglu, Y.K.; Paksoy, H. Underground thermal heat storage and ground source heat pump activities in Turkey. Sol. Energy 2020, 200, 22–28. [Google Scholar] [CrossRef]
- Shah, S.K.; Aye, L.; Rismanchi, B. Seasonal thermal energy storage system for cold climate zones: A review of recent developments. Renew. Sustain. Energy Rev. 2018, 97, 38–49. [Google Scholar] [CrossRef]
Authors | Materials | Thermal Conductivity [W/(m K)] | Specific Heat Capacity [J/(kg K)] | Density (kg/m3) |
---|---|---|---|---|
Wang et al. [31] | polyethylene pipe | 0.18 | 2100 | 930 |
Cai et al. [43] | high-density polyethylene | 0.45 | 2300 | 950 |
Gordon et al. [65] | high-density polyethylene | 0.4 | - | - |
Oh et al. [81] | high-density polyethylene | 0.4 | - | - |
Śliwa et al. [82] | fibre glass | 0.361 | - | 1900 |
Śliwa et al. [82] | vacuum tubes filled with insulation | 0.006 to 0.0008 | - | - |
Chen et al. [83] | 540 polyethylene | 0.42 | 2300 | 950 |
Authors | Materials | Thermal Conductivity [W/(m K)] | Specific Heat Capacity [J/(kg K)] | Density (kg/m3) |
---|---|---|---|---|
Wang et al. [31] | carbon steel | 54 | 470 | 7820 |
Cai et al. [43] | Seamless steel J55 | 40 | 498 | 7850 |
Oh et al. [81] | Stainless steel | 15 | - | - |
Chen et al. [83] | 540Steel | 40 | 498 | 7850 |
Authors | Circulating Fluid | Density (kg/m3) | Thermal Conductivity (W/m·K) | Specific Heat (J/kg·K) | Dynamic Viscosity (Pa·s) |
---|---|---|---|---|---|
Luo et al. [85] | water (15 °C) | 999 | 0.59 | 4190 | --- |
Alimonti and Soldo [112] | diathermic oil (60 °C) | 762 | 0.13 | 2500 | 3.3 |
Ashrae [113] | 30% glycol water solution (30 °C) | 1041.26 | 0.455 | 3674 | 1.69 |
Nanoparticle | Density (kg/m3) | Heat Capacity (J/kg·K) | Thermal Conductivity (W/m·K) |
---|---|---|---|
CuO [96] | 6320 | 532 | 76 |
Al2O3 [96] | 3900 | 880 | 40 |
Authors | Grout | Thermal Conductivity (W/m K) | Thermal Diffusivity (×10−6 m2/s) | Thermal Capacity (J/kg K) | Density (kg/m3) |
---|---|---|---|---|---|
Wang et al. [31] | protoplasm | 4.0 | - | 1172 | 2283 |
Deng et al. [45] | synthetic mud ball | 2.0 | - | 850 | 2700 |
Zarrella et al. [130] | --- | 1.4 | 0.70 | ||
Oh et al. [81] | cement | 1.373 | - | - | - |
Oh et al. [81] | bentonite | 0.86 | - | - | - |
Song et al. [128] | conventional cement | 0.7 | - | 2000 | 2140 |
Xie et al. [119] | cement | 0.73 | - | - | - |
Song et al. [128] | cement | 0.8 | - | 1900 | 2140 |
Chen et al. [83] | 540 cement mortar | 0.93 | 1050 | 1800 |
Authors | Borehole Diameter (mm) | External Diameter (mm) | Thickness of Pipes (mm) | Materials of Pipes | Tube Length (m) | Fluid | Flowrate (L/h) | Flow Pattern | Heat Transfer Mode | Grout or Soil | Time Duration (h) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inner Pipe | Outer Pipe | Inner Pipe | Outer Pipe | Inner Pipe | Outer Pipe | |||||||||
Wang et al. [31] | 311 | 110 | 177.8 | 10 | 9.19 | high-density polyethylene pipe | J55-special steel | 2000 | water | 5270 | Mode B | extraction | rock-soil (2.5–5.5 W/mK) | 118.5 |
Deng et al. [45] | 254 | 93 | 159 | 3.0 | 4.5 | polyethylene pipe | carbon steel | 2000/2500 | water | 1.29 × 104 −2.88 × 104 | Mode B | extraction | synthetic mud ball (2.0 W/mK) | 84 |
Kurevija and Strpi [106] | 110 | 63 | 32/40 | --- | --- | PE | PE | 100 | glycol solution | --- | Mode B | injection | Soil | 50 |
Gordon et al. [65] | 98.6 | 48. 2 | 89 | 4.6 | 8.6 | high-density polyethylene | high-density polyethylene | 183 | water | 2016 | Mode A | Injection | sand and limestone | 9 |
Oh et al. [81] | 150 | 40 | 75 | --- | --- | high-density polyethylene | stainless steel | 50 | water | 1788 | Mode A | injection | bentonite (grout 0.86 W/mK) | 48 |
Beier et al. [30] | 115 | 40 | 114 | 2.4 | 0.4 | medium- density polyethylene | polyethylene | 188 | water | 2088 | Mode A | injection | Soil (3.25 W/mK) | 78 |
Dai et al. [107] | 110 | --- | 10 | -- | thermal proof plastic | --- | 1780 | water | 6 × 104 | Mode B | extraction | soil | 336 | |
Holmberg et al. [133] | 114 | 40 | 114 | 2.4 | 0.4 | polypropylene | polypropylene | 165 | Water | 2088 | Mode B | injection | --- | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Rong, N.; Li, X.; Hu, N.; Zhang, Z.; Zhang, Y.; Wang, Y. Coaxial Pipes Used as Ground Buried Heat Exchangers—A Review of Research in Recent Years. Buildings 2025, 15, 243. https://doi.org/10.3390/buildings15020243
Wang G, Rong N, Li X, Hu N, Zhang Z, Zhang Y, Wang Y. Coaxial Pipes Used as Ground Buried Heat Exchangers—A Review of Research in Recent Years. Buildings. 2025; 15(2):243. https://doi.org/10.3390/buildings15020243
Chicago/Turabian StyleWang, Geng, Nai Rong, Xuefei Li, Ning Hu, Zhi Zhang, Yuan Zhang, and Yuhan Wang. 2025. "Coaxial Pipes Used as Ground Buried Heat Exchangers—A Review of Research in Recent Years" Buildings 15, no. 2: 243. https://doi.org/10.3390/buildings15020243
APA StyleWang, G., Rong, N., Li, X., Hu, N., Zhang, Z., Zhang, Y., & Wang, Y. (2025). Coaxial Pipes Used as Ground Buried Heat Exchangers—A Review of Research in Recent Years. Buildings, 15(2), 243. https://doi.org/10.3390/buildings15020243