Decoding Concrete’s Environmental Impact: A Path Toward Sustainable Construction
Abstract
:1. Introduction
2. Research Objectives and Framework
3. Research Methodology
3.1. Assessment Model Development
- a.
- Goal and scope definition
- b.
- Functional unit
- c.
- System boundaries
3.2. Life Cycle Carbon Dioxide Emissions Breakdown
- a.
- Environmental impacts in the product stage
- b.
- Environmental impacts in the construction stage
- c.
- Environmental impacts during a building’s life
- d.
- Environmental impacts in Demolition/Recycling/Disposal stage
3.3. Concrete Mixture Analysed
4. Results and Discussion
4.1. Contribution of Cement to Environmental Impacts
4.2. Environmental Impacts by SCMs Utilisation
- a.
- Climate change impacts
- b.
- Ecotoxicity and human impacts
- c.
- Other environmental impacts
4.3. Environmental Factor of Reusing Concrete Waste Post-Demolition
4.4. Comparison with Other Technologies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deb, M.P.; Finger, M.H.; Kashiwase, K.; Kido, Y.; Kothari, S.; Papageorgiou, M.E.; Hoyle, H.; Oeking, A. Housing Market Stability and Affordability in Asia-Pacific; International Monetary Fund: Washington, DC, USA, 2022. [Google Scholar]
- Beraldi, F.; Zhao, M.Y. The Pricing-Out Phenomenon in the US Housing Market; International Monetary Fund: Washington, DC, USA, 2023. [Google Scholar]
- Shi, S.; Phillips, P.C.B. Housing Fever in Australia 2020–23: Insights from an Econometric Thermometer. Aust. Econ. Rev. 2023, 56, 357–362. [Google Scholar] [CrossRef]
- Lawson, J.; Pawson, H.; Troy, L.; van den Nouwelant, R.; Hamilton, C. Social Housing as Infrastructure: An Investment Pathway; Report No. 306; Australian Housing and Urban Research Institute: Melbourne, Australia, 2018; Available online: https://www.ahuri.edu.au/research/final-reports/306 (accessed on 3 August 2023).
- Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings 2012, 2, 126–152. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- IEA. Cement Technology Roadmap 2009: Carbon Emissions Reductions Up to 2050; IEA: Paris, France, 2009; Available online: https://www.iea.org/reports/cement-technology-roadmap-carbon-emissions-reductions-up-to-2050 (accessed on 10 June 2023).
- Shah, I.H.; Miller, S.A.; Jiang, D.; Myers, R.J. Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nat. Commun. 2022, 13, 5758. [Google Scholar] [CrossRef] [PubMed]
- Chamasemani, N.F.; Kelishadi, M.; Mostafaei, H.; Najvani, M.A.D.; Mashayekhi, M. Environmental Impacts of Reinforced Concrete Buildings: Comparing Common and Sustainable Materials: A Case Study. Constr. Mater. 2023, 4, 1–15. [Google Scholar] [CrossRef]
- WCED. Special Working Session; World Commission on Environment and Development: Berlin, Germany, 1987; pp. 1–91. Available online: https://digitallibrary.un.org/record/139811 (accessed on 23 July 2023).
- Yeheyis, M.; Hewage, K.; Alam, M.S.; Eskicioglu, C.; Sadiq, R. An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability. Clean Technol. Environ. Policy 2013, 15, 81–91. [Google Scholar] [CrossRef]
- Le, K.N.; Tam, V.W.; Tran, C.N.; Wang, J.; Goggins, B. Life-cycle greenhouse gas emission analyses for Green Star’s concrete credits in Australia. IEEE Trans. Eng. Manag. 2018, 66, 286–298. [Google Scholar] [CrossRef]
- Xian, X.; Logan, C.; Shao, Y. Dimensional stability of cement paste and concrete subject to early-age carbonation curing. Mater. Struct. 2022, 55, 94. [Google Scholar] [CrossRef]
- Zhang, L.; Zha, X.; Ning, J.; Li, W. Research Status on the Application Technology of Early Age Carbon Dioxide Curing. Buildings 2023, 13, 957. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. Sulfuric acid resistance of fly ash based geopolymer concrete. Constr. Build. Mater. 2017, 146, 136–143. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Tchadjie, L.N.; Ekolu, S.O.; Welman-Purchase, M. Circular production of recycled binder from fly ash-based geopolymer concrete. Constr. Build. Mater. 2024, 415, 135098. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle assessment—Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 14025; Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Crawford, R.H.; Stephan, A.; Prideaux, F. Environmental Performance in Construction (EPiC) Database; University of Melbourne: Melbourne, Australia, 2019. [Google Scholar] [CrossRef]
- Passer, A.; Lasvaux, S.; Allacker, K.; De Lathauwer, D.; Spirinckx, C.; Wittstock, B.; Kellenberger, D.; Gschösser, F.; Wall, J.; Wallbaum, H. Environmental product declarations entering the building sector: Critical reflections based on 5 to 10 years experience in different European countries. Int. J. Life Cycle Assess. 2015, 20, 1199–1212. [Google Scholar] [CrossRef]
- Fet, A.M.; Skaar, C.; Michelsen, O. Product category rules and environmental product declarations as tools to promote sustainable products: Experiences from a case study of furniture production. Clean Technol. Environ. Policy 2009, 11, 201–207. [Google Scholar] [CrossRef]
- Minkov, N.; Schneider, L.; Lehmann, A.; Finkbeiner, M. Type III Environmental Declaration Programmes and harmonization of product category rules: Status quo and practical challenges. J. Clean. Prod. 2015, 94, 235–246. [Google Scholar] [CrossRef]
- ISO 21930:2017; Sustainability in Buildings and Civil Engineering Works—Core Rules for Environmental Product Declarations of Construction Products and Services. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- EN 15804:2012+A2:2019; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. CEN (Comité Européen de Normalisation): Brussels, Belgium, 2019.
- UL Environment Standard. Product Category Rules for Building Related Products and Services—Part A: Life Cycle Assessment Calculation Rules and Report Requirements: Standard 10010; UL Environment Standard: Northbrook, IL, USA, 2018. [Google Scholar]
- AS 1379:2007; Specification and Supply of Concrete. Standards Australia: Sydney, Australia, 2007.
- Mohammadi, J.; South, W. Life cycle assessment (LCA) of benchmark concrete products in Australia. Int. J. Life Cycle Assess. 2017, 22, 1588–1608. [Google Scholar] [CrossRef]
- Grant, T. AusLCI Database Manual; Australian Life Cycle Assessment Society (ALCAS): Gold Coast, Australia, 2016. [Google Scholar]
- AS ISO 14040l; Environmental Management—Life Cycle Assessment—Principles and Framework. Standards Australia: Sydney, Australia, 2019.
- Monkman, S.; MacDonald, M. On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. J. Clean. Prod. 2017, 167, 365–375. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Butera, A.; Le, K.N. Microstructure and chemical properties for CO2 concrete. Constr. Build. Mater. 2020, 262, 120584. [Google Scholar] [CrossRef]
- The Global CO2 Initiative (GCI). Global Roadmap for Implementing CO2 Utilization; University of Michigan: Ann Arbor, MI, USA, 2019; Available online: https://deepblue.lib.umich.edu/handle/2027.42/150624 (accessed on 15 August 2024).
- Renne, N.; Kara De Maeijer, P.; Craeye, B.; Buyle, M.; Audenaert, A. Sustainable Assessment of Concrete Repairs through Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA). Infrastructures 2022, 7, 128. [Google Scholar] [CrossRef]
- Hoffmann Sampaio, C.; Ambrós, W.M.; Cazacliu, B.G.; Oliva Moncunill, J.; Veras, M.M.; Miltzarek, G.L.; Silva, L.F.O.; Kuerten, A.S.; Liendo, M.A. Construction and Demolition Waste Recycling through Conventional Jig, Air Jig, and Sensor-Based Sorting: A Comparison. Minerals 2021, 11, 904. [Google Scholar] [CrossRef]
- Alsheyab, M. Recycling of construction and demolition waste and its impact on climate change and sustainable development. Int. J. Environ. Sci. Technol. 2022, 19, 2129–2138. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Waste Account, Australia, Experimental Estimates. Available online: https://www.abs.gov.au/statistics/environment/environmental-management/waste-account-australia-experimental-estimates/latest-release (accessed on 5 February 2023).
- Christophe Brulliard, R.C.; Do, D.; Dornom, T.; Evans, K.; Lim, B.; Olesson, E.; Young, S. The Australian Recycling Sector Report; Department of Sustainability, Environment, Water, Population and Communities (DSEWPaC): Canberra, Australia, 2012. [Google Scholar]
- Chen, B.; Liu, J. Effect of aggregate on the fracture behavior of high strength concrete. Constr. Build. Mater. 2004, 18, 585–590. [Google Scholar] [CrossRef]
- Kozul, R.; Darwin, D. Effects of Aggregate Type, Size, and Content on Concrete Strength and Fracture Energy; University of Kansas Center for Research, Inc.: Lawrence, KS, USA, 1997. [Google Scholar]
- ACI 318-14; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2014.
- Bickley, J.A.; Hooton, R.D.; Hover, K.C. Performance specifications for durable concrete. Concr. Int. 2006, 28, 51–57. [Google Scholar]
- GBCA. Green Star—Design & As Built; Green Building Council of Australia: Sydney, Australia, 2015. [Google Scholar]
- Molin Filho, R.; Longhi, D.A.; de Souza, R.C.T.; Vanderlei, R.D.; Paraiso, P.R.; JORGE, L.d.M. Study of the compressive and tensile strenghts of self-compacting concrete with sugarcane bagasse ash. Rev. IBRACON Estrut. Mater. 2019, 12, 874–883. [Google Scholar] [CrossRef]
- Van Oss, H.G. Background facts and issues concerning cement and cement data. US Geol. Surv. Open File Rep. 2005, 1152, 44. [Google Scholar]
- Petek Gursel, A.; Masanet, E.; Horvath, A.; Stadel, A. Life-cycle inventory analysis of concrete production: A critical review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- Australian Life Cycle Inventory Database Initiative. AusLCI Datasets. Available online: https://www.auslci.com.au/index.php/Datasets (accessed on 5 February 2023).
- Willis, K.; Gangell, S. Profiling heavy vehicle speeding. In Trends & Issues in Crime and Criminal Justice; Australian Institute of Criminology: Canberra, Australia, 2012. [Google Scholar]
- Zhang, X.; Wang, F. Life-cycle assessment and control measures for carbon emissions of typical buildings in China. Build. Environ. 2015, 86, 89–97. [Google Scholar] [CrossRef]
- Crossin, E. Comparative Life Cycle Assessment of Concrete Blends; Centre for Design, RMIT University: Melbourne, Australia, 2012. [Google Scholar]
- Department of Transport and Main Roads. Long Distance Transport and Extended Placement Times for Concrete; Queensland Government: Queensland, Australia, 2014. [Google Scholar]
- Ma, F.; Sha, A.; Yang, P.; Huang, Y. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China. Int. J. Environ. Res. Public Health 2016, 13, 632. [Google Scholar] [CrossRef] [PubMed]
- Tafazzoli, M. A Comprehensive Approach for Making Sustainable Use of Concrete during Design and Construction. In Proceedings of the International conference in Sustainable Construction Materials and Technologies (SCMT4), Las Vegas, NV, USA, 7–11 August 2016. [Google Scholar]
- Khodabakhshian, A.; de Brito, J.; Ghalehnovi, M.; Asadi Shamsabadi, E. Mechanical, environmental and economic performance of structural concrete containing silica fume and marble industry waste powder. Constr. Build. Mater. 2018, 169, 237–251. [Google Scholar] [CrossRef]
- Tushar, Q.; Bhuiyan, M.A.; Zhang, G.; Maqsood, T.; Tasmin, T. Application of a harmonized life cycle assessment method for supplementary cementitious materials in structural concrete. Constr. Build. Mater. 2022, 316, 125850. [Google Scholar] [CrossRef]
- Kumar, A.; Bheel, N.; Ahmed, I.; Rizvi, S.H.; Kumar, R.; Jhatial, A.A. Effect of silica fume and fly ash as cementitious material on hardened properties and embodied carbon of roller compacted concrete. Environ. Sci. Pollut. Res. 2022, 29, 1210–1222. [Google Scholar] [CrossRef]
- Moro, C. Comparative Analysis of Multi-Criteria Decision Making and Life Cycle Assessment Methods for Sustainable Evaluation of Concrete Mixtures. Sustainability 2023, 15, 12746. [Google Scholar] [CrossRef]
- Dacić, A.; Mester-Szabó, E.; Fenyvesi, O.; Szalay, Z. Life cycle assessment of concrete incorporating all concrete recycling products. Case Stud. Constr. Mater. 2024, 21, e03910. [Google Scholar] [CrossRef]
- Arrigoni, A.; Panesar, D.K.; Duhamel, M.; Opher, T.; Saxe, S.; Posen, I.D.; MacLean, H.L. Life cycle greenhouse gas emissions of concrete containing supplementary cementitious materials: Cut-off vs. substitution. J. Clean. Prod. 2020, 263, 121465. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Whiteside, M.; Herndon, J.M. New paradigm: Coal fly ash as the main cause of stratospheric ozone depletion. Eur. J. Appl. Sci. 2022, 10, 207–221. [Google Scholar]
- Joshua Tapas, M.; Thomas, P.; Vessalas, K.; Sirivivatnanon, V. Mechanisms of alkali-silica reaction mitigation in AMBT conditions: Comparative study of traditional supplementary cementitious materials. J. Mater. Civ. Eng. 2022, 34, 04021460. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Jameel, M.; Ibrahim, Z.; Bunnori, N.M. Incorporation of recycled aggregates and silica fume in concrete: An environmental savior-a systematic review. J. Mater. Res. Technol. 2022, 20, 4525–4544. [Google Scholar] [CrossRef]
- Thomas, J.V.; Thomas, R.M. Improvement in field applicability of concrete using fly ash and ground granulated blast furnace slag by sodium silicate activation. Asian J. Civ. Eng. 2022, 23, 337–349. [Google Scholar] [CrossRef]
- Alonso, J.D.; Gaviria, X.; López, J.E.; Saldarriaga, J.F. Estimation of the addition of fly ash and its environmental impact in the manufacture of cement pastes. Environ. Dev. Sustain. 2024, 26, 31677–31701. [Google Scholar] [CrossRef]
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 2022, 48, 741–746. [Google Scholar] [CrossRef]
- O’Brien, K.R.; Ménaché, J.; O’Moore, L.M. Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int. J. Life Cycle Assess. 2009, 14, 621–629. [Google Scholar] [CrossRef]
- Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 2019, 240, 118163. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Zhao, X.-J.; Davidson, K.; Zuo, J. A corporate social responsibility indicator system for construction enterprises. J. Clean. Prod. 2012, 29–30, 277–289. [Google Scholar] [CrossRef]
- Elahi, A.; Basheer, P.A.M.; Nanukuttan, S.V.; Khan, Q.U.Z. Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 2010, 24, 292–299. [Google Scholar] [CrossRef]
- Megat Johari, M.A.; Brooks, J.J.; Kabir, S.; Rivard, P. Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 2011, 25, 2639–2648. [Google Scholar] [CrossRef]
- Kim, M.-J.; Chun, B.; Choi, H.-J.; Shin, W.; Yoo, D.-Y. Effects of Supplementary Cementitious Materials and Curing Condition on Mechanical Properties of Ultra-High-Performance, Strain-Hardening Cementitious Composites. Appl. Sci. 2021, 11, 2394. [Google Scholar] [CrossRef]
- Tam, V.W.; Le, K.N.; Evangelista, A.C.J.; Butera, A.; Tran, C.N.; Teara, A. Effect of fly ash and slag on concrete: Properties and emission analyses. Front. Eng. Manag. 2019, 6, 395–405. [Google Scholar] [CrossRef]
- Berndt, M.L. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater. 2009, 23, 2606–2613. [Google Scholar] [CrossRef]
- Eom, J.Y.; Yang, S.J.; Lee, M.J.; Yang, Y.R.; Wie, Y.M.; Lee, K.G.; Lee, K.H. Recycling Fly Ash into Lightweight Aggregate: Life Cycle Assessment and Economic Evaluation of Waste Disposal. Sustainability 2024, 16, 9271. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Sun, M.; Guo, Y.; Cheng, F.; Gao, C. Studying the cement industry’s policy incentives and the optimization path for carbon neutrality technology based on an integrated model. Environ. Dev. Sustain. 2025, 1–23. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.; Tam, V.W. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. J. Clean. Prod. 2020, 263, 121265. [Google Scholar] [CrossRef]
- Çimen, Ö. Construction and built environment in circular economy: A comprehensive literature review. J. Clean. Prod. 2021, 305, 127180. [Google Scholar] [CrossRef]
- Schöggl, J.-P.; Stumpf, L.; Baumgartner, R.J. The narrative of sustainability and circular economy—A longitudinal review of two decades of research. Resour. Conserv. Recycl. 2020, 163, 105073. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef]
- Sharma, D.; Goyal, S. Accelerated carbonation curing of cement mortars containing cement kiln dust: An effective way of CO2 sequestration and carbon footprint reduction. J. Clean. Prod. 2018, 192, 844–854. [Google Scholar] [CrossRef]
- Huang, H.; Guo, R.; Wang, T.; Hu, X.; Garcia, S.; Fang, M.; Luo, Z.; Maroto-Valer, M.M. Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment. J. Clean. Prod. 2019, 211, 830–841. [Google Scholar] [CrossRef]
- Seo, J.H.; Amr, I.T.; Park, S.M.; Bamagain, R.A.; Fadhel, B.A.; Kim, G.M.; Hunaidy, A.S.; Lee, H.K. CO2 Uptake of Carbonation-Cured Cement Blended with Ground Volcanic Ash. Materials 2018, 11, 2187. [Google Scholar] [CrossRef] [PubMed]
- Kravanja, G.; Knez, Ž. Enhancing Strength and CO2 Uptake into Mortar Through Supercritical CO2 Treatment; Springer Nature: Cham, Switzerland, 2025; pp. 315–326. [Google Scholar]
- Wang, T.; Huang, H.; Hu, X.; Fang, M.; Luo, Z.; Guo, R. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate. Chem. Eng. J. 2017, 323, 320–329. [Google Scholar] [CrossRef]
- Wang, Z.H. A Survey of Factors and Life Cycle Assessment in Selection of Green Construction Materials. J. Comput. Intell. Mater. Sci. 2023, 1, 023–033. [Google Scholar]
- Cormos, A.-M.; Cormos, C.-C. Reducing the carbon footprint of cement industry by post-combustion CO2 capture: Techno-economic and environmental assessment of a CCS project in Romania. Chem. Eng. Res. Des. 2017, 123, 230–239. [Google Scholar] [CrossRef]
- Vatopoulos, K.; Tzimas, E. Assessment of CO2 capture technologies in cement manufacturing process. J. Clean. Prod. 2012, 32, 251–261. [Google Scholar] [CrossRef]
Australian’s State | 2010/2011 | 2020/21 |
---|---|---|
Northern Territory | 19% | 19% |
Queensland | 47% | 47% |
Tasmania | 51% | 51% |
Victoria | 67% | 67% |
New South Wales | 67% | 67% |
Western Australia | 64% | 64% |
Australian Capital Territory | 69% | 69% |
South Australia | 77% | 81% |
Average rate | 57.63% | 58.13% |
Impact Category | Unit | 20 MPa | 35 MPa | 40 MPa | |||||
Normal | Curing | Normal | Curing | Normal | Curing | ||||
Abiotic depletion | kg Sb-eq | ||||||||
Abiotic depletion (fossil fuels) | MJ | 2269.647 | 2026.065 | 2285.067 | 2039.723 | 2290.023 | 2044.113 | ||
Global warming (GWP100a) | -eq | 299.710 | 268.954 | 301.797 | 270.819 | 302.468 | 271.419 | ||
Ozone layer depletion (ODP) | kg CFC-11-eq | ||||||||
Human toxicity | kg 1.4-DB-eq | 277.587 | 217.4607 | 279.5103 | 218.949 | 280.1285 | 219.4274 | ||
Fresh water aquatic ecotox. | kg 1.4-DB-eq | 505.216 | 490.055 | 508.810 | 493.540 | 509.965 | 494.660 | ||
Marine aquatic ecotoxicity | kg 1.4-DB-eq | 549,661.3 | 516,825.2 | 553,545 | 520,471.4 | 554,793.4 | 521,643.5 | ||
Terrestrial ecotoxicity | kg 1.4-DB-eq | 0.745 | 0.492 | 0.751 | 0.495 | 0.752 | 0.496 | ||
Photochemical oxidation | -eq | ||||||||
Acidification | -eq | 0.826 | 0.738 | 0.831 | 0.743 | 0.833 | 0.744 | ||
Eutrophication | -eq | ||||||||
Impact category | Unit | 50 MPa | 65 MPa | 80 MPa | 100 MPa | ||||
Normal | curing | Normal | curing | Normal | curing | Normal | curing | ||
Abiotic depletion | kg Sb eq | ||||||||
Abiotic depletion (fossil fuels) | MJ | 2294.662 | 2048.221 | 2297.291 | 2050.55 | 2303.312 | 2055.883 | 2315.176 | 2066.391 |
Global warming (GWP100a) | -eq | 303.096 | 271.980 | 303.452 | 272.298 | 304.267 | 273.026 | 305.873 | 274.461 |
Ozone layer depletion (ODP) | kg CFC-11 eq | ||||||||
Human toxicity | kg 1.4-DB-eq | 280.707 | 219.875 | 281.035 | 220.129 | 281.786 | 220.710 | 283.266 | 221.855 |
Fresh water aquatic ecotox | kg 1.4-DB-eq | 511.046 | 495.708 | 511.659 | 496.302 | 513.062 | 497.663 | 515.827 | 500.343 |
Marine aquatic ecotoxicity | kg 1.4-DB-eq | 555,961.8 | 522,740.4 | 556,623.9 | 523,361.9 | 558,140.6 | 524,785.9 | 561,128.6 | 527,591.1 |
Terrestrial ecotoxicity | kg 1.4-DB-eq | 0.754 | 0.497 | 0.755 | 0.497 | 0.757 | 0.498 | 0.761 | 0.501 |
Photochemical oxidation | -eq | ||||||||
Acidification | -eq | 0.835 | 0.746 | 0.836 | 0.747 | 0.838 | 0.749 | 0.842 | 0.753 |
Eutrophication | -eq |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, C.N.N.; Illankoon, I.M.C.S.; Tam, V.W.Y. Decoding Concrete’s Environmental Impact: A Path Toward Sustainable Construction. Buildings 2025, 15, 442. https://doi.org/10.3390/buildings15030442
Tran CNN, Illankoon IMCS, Tam VWY. Decoding Concrete’s Environmental Impact: A Path Toward Sustainable Construction. Buildings. 2025; 15(3):442. https://doi.org/10.3390/buildings15030442
Chicago/Turabian StyleTran, Cuong N. N., I. M. Chethana S. Illankoon, and Vivian W. Y. Tam. 2025. "Decoding Concrete’s Environmental Impact: A Path Toward Sustainable Construction" Buildings 15, no. 3: 442. https://doi.org/10.3390/buildings15030442
APA StyleTran, C. N. N., Illankoon, I. M. C. S., & Tam, V. W. Y. (2025). Decoding Concrete’s Environmental Impact: A Path Toward Sustainable Construction. Buildings, 15(3), 442. https://doi.org/10.3390/buildings15030442