Thermal, Hygrothermal, Mechanical and Environmental Study of Stabilized Earth with GGBS-Based Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- CEM II/A-S: Reference binder: 85–95% cement, 5–15% GGBS;
- LW: GGBS-based binder;
- LN: GGBS-based binder.
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Characterization
3. Results and Discussions
3.1. Characterization of Powder and Binder Pastes
- ▪
- Cement powder: C2S, C3S, C3A, C4AF, and anhydrite;
- ▪
- LW powder (blast furnace slag-based binder): C2S, C3S, quartz, and anhydrite;
- ▪
- LN powder (blast-furnace-slag-based binder): C2S, calcite, quartz, and Ca(OH)2.
3.2. Mechanical Strength Development
- ▪
- CEM II binder: At 7 days, CEM II reached 44.7 MPa, higher than LW and LN. By 28 days, it achieved 96% of its maximum strength (52.6 MPa). The early formation of C-S-H, facilitated by C2S and C3S hydration, contributed to its superior mechanical properties;
- ▪
- LW binder: The initial strength was 26.3 MPa at 7 days, increasing to 36.6 MPa at 28 days. The sulpho-calcium activation of slag promoted early C-S-H formation, contributing to strength development. Between 28 and 90 days, the strength increased by 13% due to latent slag reactions;
- ▪
- LN binder: At 7 days, LN reached 13.9 MPa, attributed to the C2S hydration and calcium activation of slag. The strength increased to 21.1 MPa at 28 days and 25.4 MPa at 90 days. Although slag hydration and calcium activation continue over time, the rate of strength gain slows after 28 days.
3.3. Density and Porosity Study
3.4. Thermal Properties Study
3.5. Moisture Buffer Value Study
3.6. Mechanical Properties Study
3.7. Carbon Footprint Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Annexe IV: Règles «Th-Bat 2020»—données d’entrée au calcul de la performance énergétique. Available online: https://rt-re-batiment.developpement-durable.gouv.fr/IMG/pdf/annexeiv_arrete_4_aout_2021.pdf (accessed on 16 January 2025).
- De Filipps, U. Stabilisation de la Terre Par Activation Alcaline: Etude des Phénomènes Physicochimiques et de Leur Influence Sur Les Propriétés D’usage. Ph.D. Thesis, Université de Lyon, Lyon, France, 2021. [Google Scholar]
- Anger, R. Approche Granulaire et Colloïdale du Matériau Terre Pour la Construction. Ph.D. Thesis, INSA de Lyon, Lyon, France, 2011. [Google Scholar]
- Giada, G.; Caponetto, R.; Nocera, F. Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability 2019, 11, 5342. [Google Scholar] [CrossRef]
- Djombou, Y.I.F.; Gorra, M.; Malet-Damour, B. Hygrothermal Optimization for Excavated Soil Reuse in Various Climate Buildings: A Global Literature Meta-Analysis. Recycling 2024, 9, 7. [Google Scholar] [CrossRef]
- Wild, S.; Kinuthia, J.; Jones, G.; Higgins, D. Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Eng. Geol. 1998, 51, 37–53. [Google Scholar] [CrossRef]
- Izemmouren, O. Effet des Ajouts Minéraux sur la Durabilité des Briques de Terre Comprimée. Ph.D. Thesis, Université Mohamed Khider, Biskra, Algeria, 2016. [Google Scholar]
- Amriou, A.; Bencheikh, M.; Ziani, H.; Guelmine, L.; Deboucha, S. Effet de La Teneur de Sable et Du Gravier Sur Les Caractéristiques Mécaniques Du Béton D’argile Stabilisé; Université Mohamed El Bachir El Ibrahimi de Bordj Bou Arréridj El-Anasser, Université de M’sila: M’sila, Algeria, 2019. [Google Scholar]
- Ouedraogo, K.A.J. Stabilisation de Matériaux de Construction Durables ET Ecologiques à Base de Terre Crue Par Des Liants Organiques ET/OU Minéraux à Faibles Impacts Environnementaux. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 2019. [Google Scholar]
- Ardant, D.; Brumaud, C.; Perrot, A.; Habert, G. Robust clay binder for earth-based concrete. Cem. Concr. Res. 2023, 172, 107207. [Google Scholar] [CrossRef]
- Zhang, L.; Gustavsen, A.; Jelle, B.P.; Yang, L.; Gao, T.; Wang, Y. Thermal conductivity of cement stabilized earth blocks. Constr. Build. Mater. 2017, 151, 504–511. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Fodde, E.; Shea, A. Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build. Environ. 2014, 75, 11–18. [Google Scholar] [CrossRef]
- Izemmouren, O.; Guettala, A. Effet du laitier de haut fourneau sur les propriétés d’ingénierie des briques de terre comprimée à base d’un sol portant de sulfate. In Proceedings of the Conférence Matériaux 2014-Colloque Ecomatériau, Montpellier, France, 24–28 November 2014. [Google Scholar]
- Eid, J. Élaboration D’Un éco-géo-Matériau à Base de Terre Crue. Ph.D. Thesis, Université du Havre, Le Havre, France, 2016. [Google Scholar]
- Caner, L. Phyllosilicates Des Sols: De L’Identification a la Quantification. Ph.D. Thesis, Université de Poitiers, Poitiers, France, 2011. [Google Scholar]
- NF P11 300; Exécution des Terrassements-Classification des Matériaux utilisables dans la Construction des Remblais et des couches de forme d’infrastructures Routières. AFNOR. 1992. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-p11300/execution-des-terrassements-classification-des-materiaux-utilisables-dans-l/fa024714/10537 (accessed on 16 January 2025).
- NF EN 196; Méthodes D’essais des Ciments. AFNOR. 2016. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1961/methodes-dessais-des-ciments-partie-1-determination-des-resistances/fa184622/57803 (accessed on 16 January 2025).
- NF EN 12350; Essais Pour Béton Frais. AFNOR. 2019. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-123501/essais-pour-beton-frais-partie-1-prelevement-et-appareillage-commun/fa190557/83429 (accessed on 16 January 2025).
- XP P94-041; Sols: Reconnaissance et Essais‡Identification Granulométrique—Méthode de Tamisage par Voie Humide. AFNOR. 1995. Available online: https://www.boutique.afnor.org/fr-fr/norme/xp-p94041/sols-reconnaissance-et-essais-identification-granulometrique-methode-de-tam/fa042149/11085 (accessed on 16 January 2025).
- El Fgaier, F. Conception, production et qualification des briques en terre cuite et en terre crue. Ph.D. Thesis, Ecole Centrale de Lille, Villeneuve-d’Ascq, France, 2013. [Google Scholar]
- Abakar, A. Caractéristiques Mécaniques et Thermiques de l’Argile Stabilisée par la Gomme Arabique et Renforcée par la Paille de Riz. Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2018. [Google Scholar]
- NF P18-459; Béton—Essai pour Béton Durci—Essai de Porosité et de Masse Volumique. AFNOR. 2010. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-p18459/beton-essai-pour-beton-durci-essai-de-porosite-et-de-masse-volumique/fa160729/34961 (accessed on 16 January 2025).
- ASTM C518; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. U.S. Department of Defense: Washington, DC, USA, 2021.
- Carsten, R.; Hannele, P.R.; Kielsgaard, H.K.; Berit, T.; Kaisa, S.; Jesper, A.; Tuomo, O. NORDTEST Project on Moisture Buffer Value of Materials. In Proceedings of the AIVC 26th Conference, Brussels, Belgium, 21–23 September 2005. [Google Scholar]
- Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. Effect of fly ash fineness on microstructure of blended cement paste. Constr. Build. Mater. 2007, 21, 1534–1541. [Google Scholar] [CrossRef]
- Bouchenafa, O. Mécanosynthèse et matériaux de construction: Optimisation et application pour la clinkérisation et la géopolymérisation. Ph.D. Thesis, Université Paris Est., Paris, France, 2019. [Google Scholar]
- Jacquemot, F. Accélération du durcissement des liants à base de laitier de haut fourneau pour les produits en béton. Ph.D. Thesis, University of Lille, Lille, France, 2015. [Google Scholar]
- Mostafa, N.; El-Hemaly, S.; Al-Wakeel, E.; El-Korashy, S.; Brown, P. Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag. Cem. Concr. Res. 2001, 31, 899–904. [Google Scholar] [CrossRef]
- Voinovitch, I.A.; Dron, R. Action of different activators on the hydration of slag. J. Silic. Ind. 1976, 41, 209–212. [Google Scholar]
- Dron, R. Structure et Réactivité Des Laitiers Vitreux; Laboratoire Central des Ponts et Chaussées: Paris, France, 1984. [Google Scholar]
- Singh, M.; Garg, M. Activation of gypsum anhydrite-slag mixtures. Cem. Concr. Res. 1995, 25, 332–338. [Google Scholar] [CrossRef]
- Neto, A.A.M.; Cincotto, M.A.; Repette, W. Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum. Cem. Concr. Compos. 2010, 32, 312–318. [Google Scholar] [CrossRef]
- Ezbakhe, H.; Bousad, S.; El Bakkour, A.; Ajzoul, T.; El Bouardi, A. Etude Thermique de la Terre Stabilisée au Ciment Utilisée en Construction au Nord du Maroc; Université Abdelmalek Essaâdi: Morocco, 2001. [Google Scholar]
- Aubert, J.-E. Caractérisation Des Briques De Terre Crue De Midi-Pyrénées; Université Paul Sabatier Toulouse III: Toulouse, France, 2013. [Google Scholar]
- Bahar, R.; Benazzoug, M.; Kenai, S. Performance of compacted cement-stabilised soil. Cem. Concr. Compos. 2004, 26, 811–820. [Google Scholar] [CrossRef]
- De Larrard, F. Formulation Des Bétons et Propriétés Des Bétons à Très Hautes Performances; LCPC Internal Research Report N.149; 1988. (In French). Ouvrage original: «Concrete Mixture-Proportioning—A Scientific Approach», Modern Concrete Technology Series. Available online: https://betonlabpro.ifsttar.fr/fileadmin/contributeurs/BetonlabPro/doc/OA34.pdf (accessed on 16 January 2025).
- Ismail, M.A.; Joer, H.A.; Sim, W.H.; Randolph, M.F. Effect of Cement Type on Shear Behavior of Cemented Calcareous Soil. J. Geotech. Geoenvironmental Eng. 2002, 128, 520–529. [Google Scholar] [CrossRef]
- Achour, T. Étude de L’influence de la Nature des Granulats sur les Propriétés des Bétons Hydrauliques: Cas des Granulats Calcaires Tunisiens. Ph.D. Thesis, Université Henri Poincaré-Nancy 1, Nancy, France, 2007. [Google Scholar]
- Tang, A.-M.; Cui, Y.-J.; Le, T.-T. A study on the thermal conductivity of compacted bentonites. Appl. Clay Sci. 2008, 41, 181–189. [Google Scholar] [CrossRef]
- Xu, L.-J.; Wang, X.-Z.; Wang, R.; Zhu, C.-Q.; Liu, X.-P. Physical and mechanical properties of calcareous soils: A review. Mar. Georesources Geotechnol. 2022, 40, 751–766. [Google Scholar] [CrossRef]
- Kohandelnia, M. Development of Self-Consolidating Earth Concrete (SCEC) with Improved Multifunctional Performan ce for Green Construction. Ph.D. Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2023. (In English). [Google Scholar]
- Jemmal, Y.; Zari, N.; Asbik, M.; Maaroufi, M. Experimental characterization and thermal performance comparison of six Moroccan rocks used as filler materials in a packed bed storage system. J. Energy Storage 2020, 30, 101513. [Google Scholar] [CrossRef]
- Helson, O. Comportement Thermo-Hydro-Mécanique et Durabilité des Bétons de sol: Influence des Paramètres de Formulation et Conditions D’exposition. Ph.D. Thesis, Université de Cergy Pontoise, Cergy, France, 2017. [Google Scholar]
- Sakurai, K.; Teshima, A.; Kyuma, K. Changes in Zero Point of Charge (ZPC), Specific Surface Area (SSA), and Cation Exchange Capacity (CEC) of kaolinite and montmorillonite, and strongly weathered soils caused by Fe and Al coatings. Soil Sci. Plant Nutr. 1990, 36, 73–81. [Google Scholar] [CrossRef]
- Bell, F.G. Lime stabilization of clay minerals and soils. Eng. Geol. 1996, 42, 223–237. [Google Scholar] [CrossRef]
- Alliance HQE-GBC. INIES Database: Environmental Impact Sheets for Construction Materials 2024. Available online: https://www.inies.fr/ (accessed on 16 January 2025).
Composition (%) | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | Na2O | Others |
---|---|---|---|---|---|---|---|
Earth A | 47.9 | 7.9 | 13.6 | 19.0 | 4.8 | 4.1 | 2.7 |
Earth B | 62.6 | 0.3 | 17.3 | 6.6 | 1.8 | 3.1 | 8.3 |
Earth C | 60.2 | 1.9 | 19.6 | 5.3 | 2.2 | 2.3 | 8.5 |
Earth D | 8.6 | 83.4 | 3.6 | 1.7 | 1.4 | 0.0 | 1.3 |
Excavated Earth | Gravel >2 mm (%) | Sand <2 mm (%) | <80 µm (%) | Fine <63 µm (%) | NF P11-300 Standard |
---|---|---|---|---|---|
Earth A | 44 | 35 | 22 | 21 | Granular high fine |
Earth B | 49 | 41 | 11 | 10 | Granular low fine |
Earth C | 27 | 55 | 20 | 18 | Sandy high fine |
Earth D | 24 | 35 | 41 | 41 | Sandy fine |
Excavated Earth | Density (kg·m−3) | Sd | Absolute Density (kg·m−3) | Sd | Calculated Porosity (%) | Sd |
---|---|---|---|---|---|---|
Earth A | 1528 | 24 | 2787 | 14 | 45 | 1 |
Earth B | 1636 | 11 | 2664 | 13 | 39 | 1 |
Earth C | 1278 | 18 | 2611 | 13 | 51 | 1 |
Earth D | 1328 | 13 | 2700 | 14 | 51 | 1 |
Excavated Earth (%) | Binder (%) | Water Added (%) | ||
---|---|---|---|---|
Earth A | >90% | CEM II LW LN | <10% | 13% |
Earth B | 13% | |||
Earth C | 20% | |||
Earth D | 15% |
Earth Concrete | Density (kg·m−3) | Sd | Porosity (%) | Sd |
CEM II | ||||
Earth A CEM II | 1980 | 20 | 26 | 0.6 |
Earth B CEM II | 1960 | 21 | 24 | 0.5 |
Earth C CEM II | 1620 | 18 | 37 | 0.7 |
Earth D CEM II | 1750 | 13 | 33 | 0.7 |
LW Binder | ||||
Earth A LW | 1950 | 18 | 25 | 0.5 |
Earth B LW | 1940 | 20 | 27 | 0.5 |
Earth C LW | 1640 | 17 | 37 | 0.7 |
Earth D LW | 1770 | 11 | 33 | 0.7 |
LN Binder | ||||
Earth A LN | 1950 | 20 | 26 | 0.5 |
Earth B LN | 1940 | 21 | 24 | 0.5 |
Earth C LN | 1640 | 18 | 37 | 0.7 |
Earth D LN | 1700 | 13 | 33 | 0.7 |
Earth concrete | Conductivity W·m−1·K−1 | Sd | Mass heat capacity J·g−1·K−1 | Sd | Volumetric heat capacity J·m−3·K−1 | Sd |
CEM II | ||||||
Earth A CEM II | 0.59 | 0.01 | 1.02 | 0.01 | 2030 | 20 |
Earth B CEM II | 0.58 | 0.01 | 0.98 | 0.01 | 1920 | 21 |
Earth C CEM II | 0.49 | 0.01 | 1.03 | 0.01 | 1660 | 18 |
Earth D CEM II | 0.48 | 0.01 | 1.09 | 0.01 | 1920 | 13 |
LW Binder | ||||||
Earth A LW | 0.54 | 0.01 | 0.99 | 0.01 | 1940 | 18 |
Earth B LW | 0.58 | 0.01 | 1.01 | 0.01 | 1950 | 20 |
Earth C LW | 0.49 | 0.01 | 1.01 | 0.01 | 1660 | 17 |
Earth D LW | 0.55 | 0.01 | 1.13 | 0.01 | 2000 | 11 |
LN Binder | ||||||
Earth A LN | 0.49 | 0.01 | 0.98 | 0.01 | 1900 | 16 |
Earth B LN | 0.55 | 0.01 | 0.95 | 0.01 | 1830 | 22 |
Earth C LN | 0.50 | 0.01 | 1.02 | 0.01 | 1670 | 15 |
Earth D LN | 0.44 | 0.01 | 1.09 | 0.01 | 1850 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, A.; Hamzaoui, R.; Kindinis, A.; Idir, R.; Lamberet, S.; Patrix, S. Thermal, Hygrothermal, Mechanical and Environmental Study of Stabilized Earth with GGBS-Based Binders. Buildings 2025, 15, 594. https://doi.org/10.3390/buildings15040594
Lam A, Hamzaoui R, Kindinis A, Idir R, Lamberet S, Patrix S. Thermal, Hygrothermal, Mechanical and Environmental Study of Stabilized Earth with GGBS-Based Binders. Buildings. 2025; 15(4):594. https://doi.org/10.3390/buildings15040594
Chicago/Turabian StyleLam, Arthur, Rabah Hamzaoui, Andrea Kindinis, Rachida Idir, Séverine Lamberet, and Stéphane Patrix. 2025. "Thermal, Hygrothermal, Mechanical and Environmental Study of Stabilized Earth with GGBS-Based Binders" Buildings 15, no. 4: 594. https://doi.org/10.3390/buildings15040594
APA StyleLam, A., Hamzaoui, R., Kindinis, A., Idir, R., Lamberet, S., & Patrix, S. (2025). Thermal, Hygrothermal, Mechanical and Environmental Study of Stabilized Earth with GGBS-Based Binders. Buildings, 15(4), 594. https://doi.org/10.3390/buildings15040594